Tuning donor level of nitrogen-doped diamond by deep strain engineering—An ab initio study

The development of diamond semiconductor devices has been hindered by the challenge of preparing n-type diamond with a shallow donor state. Recently, elastic strain engineering has emerged as a promising strategy for modulating the electrical properties of diamond. In this study, we used first-princ...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 123; no. 6
Main Authors Yang, Limin, Fan, Rong, Hu, Alice, Ma, Junzhang, Liu, Yingxia, Lu, Yang
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of diamond semiconductor devices has been hindered by the challenge of preparing n-type diamond with a shallow donor state. Recently, elastic strain engineering has emerged as a promising strategy for modulating the electrical properties of diamond. In this study, we used first-principles calculations to investigate the influence of large, uniaxial elastic strain on the electrical properties of nitrogen (N)-doped diamond, particularly the donor level. We found that both tensile and compressive strains can shift the donor level of N to a shallower state, but compressive strains of more than 9% along [100] appear more effective in making N a shallower donor in strained diamond. This study offers insights for future experimental design to combine strain engineering and doping toward practical diamond semiconductor devices.
AbstractList The development of diamond semiconductor devices has been hindered by the challenge of preparing n-type diamond with a shallow donor state. Recently, elastic strain engineering has emerged as a promising strategy for modulating the electrical properties of diamond. In this study, we used first-principles calculations to investigate the influence of large, uniaxial elastic strain on the electrical properties of nitrogen (N)-doped diamond, particularly the donor level. We found that both tensile and compressive strains can shift the donor level of N to a shallower state, but compressive strains of more than 9% along [100] appear more effective in making N a shallower donor in strained diamond. This study offers insights for future experimental design to combine strain engineering and doping toward practical diamond semiconductor devices.
Author Ma, Junzhang
Fan, Rong
Liu, Yingxia
Lu, Yang
Hu, Alice
Yang, Limin
Author_xml – sequence: 1
  givenname: Limin
  surname: Yang
  fullname: Yang, Limin
  organization: Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong
– sequence: 2
  givenname: Rong
  surname: Fan
  fullname: Fan, Rong
  organization: Department of Mechanical Engineering, City University of Hong Kong
– sequence: 3
  givenname: Alice
  surname: Hu
  fullname: Hu, Alice
  organization: 6Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
– sequence: 4
  givenname: Junzhang
  surname: Ma
  fullname: Ma, Junzhang
  organization: Department of Physics, City University of Hong Kong
– sequence: 5
  givenname: Yingxia
  surname: Liu
  fullname: Liu, Yingxia
  organization: Department of Systems Engineering, City University of Hong Kong
– sequence: 6
  givenname: Yang
  surname: Lu
  fullname: Lu, Yang
  organization: 6Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
BookMark eNp9kM1KAzEUhYNUsK0ufIOAK4Wx-ZnMNMtS_IOCm7oThmRyU1KmyZiZCt35ED6hT2JK60bE1eXCd86954zQwAcPCF1ScktJwSfillAhp0yeoCElZZlxSqcDNCSE8KyQgp6hUdet0yoY50P0utx651fYBB8ibuAdGhws9q6PYQU-M6EFg41Tm-AN1jtsAFrc9VE5j8GvnAeIyeDr43PmsdLYJakLidia3Tk6tarp4OI4x-jl_m45f8wWzw9P89kiq5lkfaaMtqyUoGuTnhJcWq44gNXWKCI1MFNoEJYVQAtTclnXWoiUMifSMqE1H6Org28bw9sWur5ah2306WTFpvlU5Dwv8kRdH6g6hq6LYKs2uo2Ku4qSal9eJapjeYmd_GJr16sUzO-TN38qbg6K7of8x_4b02CCGA
CODEN APPLAB
CitedBy_id crossref_primary_10_1021_accountsmr_3c00273
crossref_primary_10_1088_2633_4356_ad4e8d
crossref_primary_10_1063_5_0172704
crossref_primary_10_1016_j_addma_2024_104288
crossref_primary_10_1016_j_diamond_2024_111602
crossref_primary_10_1021_acsami_4c11757
Cites_doi 10.1103/PhysRevLett.25.656
10.1021/acs.jpcc.8b04822
10.1063/1.4789414
10.1016/j.carbon.2020.09.065
10.1103/PhysRevLett.77.3865
10.1039/b910206j
10.1016/S1369-7021(07)70349-8
10.1109/LED.2004.825195
10.1103/PhysRevB.54.11169
10.1016/S0925-9635(00)00217-X
10.1063/1.4742312
10.1126/sciadv.1501382
10.1126/sciadv.abn5722
10.1016/S0020-7462(02)00027-6
10.1143/JJAP.29.824
10.1557/mrs.2014.3
10.1088/1674-4926/43/2/021801
10.1002/pssa.200671407
10.1080/26941112.2022.2151322
10.1107/S0021889875010965
10.1126/sciadv.add4768
10.1021/acs.nanolett.5b04989
10.1016/j.diamond.2016.03.013
10.1063/1.5052718
10.1109/TED.2004.836648
10.1103/PhysRevLett.123.195504
10.1080/26941112.2021.1877019
10.1038/s41467-019-13378-w
10.1016/j.commatsci.2010.05.010
10.1038/s41524-021-00538-0
10.1038/nphoton.2010.157
10.1126/science.abc4174
10.1073/pnas.1818555116
10.1016/0038-1098(69)90593-6
10.1103/PhysRevLett.82.2111
10.1088/0953-8984/15/19/314
10.1557/s43578-021-00163-z
10.1107/S0021889811038970
10.1126/science.aar4165
10.1103/PhysRevLett.124.147001
10.1016/0921-4526(93)90235-X
10.1039/C8AY02197J
10.1063/1.3683544
10.1073/pnas.2013565117
10.1016/j.carbon.2018.03.091
10.1103/PhysRevB.90.094117
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0159829
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0159829
apl
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong Special Administrative Region
  grantid: RFS2021-1S05
– fundername: NSFC/RGC Joint Research Scheme
  grantid: N_HKU159/22
– fundername: Department of Science and Technology of Hunan Province
  grantid: 2022RC4017
GroupedDBID -DZ
-~X
.DC
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-adbf279ebcd523539f3a3eefbfda09be2d6be5f26e16d739ccb55159409f25bb3
ISSN 0003-6951
IngestDate Sun Jun 29 15:40:00 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Tue Jul 01 01:08:33 EDT 2025
Fri Jun 21 00:10:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-adbf279ebcd523539f3a3eefbfda09be2d6be5f26e16d739ccb55159409f25bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9280-2718
0009-0006-3158-4805
0000-0002-0883-315X
0000-0002-4648-3576
0000-0002-8909-1492
0000-0003-0482-3904
PQID 2848543464
PQPubID 2050678
PageCount 6
ParticipantIDs crossref_primary_10_1063_5_0159829
crossref_citationtrail_10_1063_5_0159829
scitation_primary_10_1063_5_0159829
proquest_journals_2848543464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230807
2023-08-07
PublicationDateYYYYMMDD 2023-08-07
PublicationDate_xml – month: 08
  year: 2023
  text: 20230807
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Li, Chou, Zhang, Lu, Hu (c13) 2019
Banerjee, Bernoulli, Zhang, Yuen, Liu, Dong, Ding, Lu, Dao, Zhang, Lu, Suresh (c16) 2018
Farrer (c34) 1969
Momma, Izumi (c38) 2011
Tsymbalov, Shi, Dao, Suresh, Li, Shapeev (c44) 2021
Sun, Haunschild, Xiao, Bulik, Scuseria, Perdew (c25) 2013
Perdew, Burke, Ernzerhof (c23) 1996
Shikata (c2) 2016
Luong, Male, Glennon (c7) 2009
Kresse, Furthmüller (c22) 1996
Hom, Kiszenik, Post (c24) 1975
Dang, Chou, Dai, Chou, Yang, Fan, Lin, Meng, Hu, Zhu, Han, Minor, Li, Lu (c21) 2021
Briddon, Jones (c29) 1993
Setyawan, Curtarolo (c37) 2010
Katcho, Carrete, Li, Mingo (c31) 2014
Lu, Yang, Dang, Wang, Zhang, Li, Zhang, Lu (c4) 2022
Resende, Jones, Öberg, Briddon (c35) 1999
Shi, Tsymbalov, Dao, Suresh, Shapeev, Li (c17) 2019
Koizumi, Suzuki (c40) 2006
Thompson, Armstrong, Auth, Alavi, Buehler, Chau, Cea, Ghani, Glass, Hoffman, Jan, Kenyon, Klaus, Kuhn, Zhiyong, Mcintyre, Mistry, Murthy, Obradovic, Nagisetty, Phi, Sivakumar, Shaheed, Shifren, Tufts, Tyagi, Bohr, El-Mansy (c15) 2004
Liu, Song, Li, Ma, Chen (c18) 2020
Koizumi, Teraji, Kanda (c36) 2000
Muzyka, Sun, Fereja, Lan, Zhang, Xu (c6) 2019
Li, Zhang, Chou, Wei, Lu, Hu (c12) 2018
Liao (c3) 2021
Messmer, Watkins (c32) 1970
Nie, Bu, Li, Zhang, Jin, Liu, Su, Wang, He, Liu, Wang, Tian, Yang (c39) 2019
Lombardi, Mainwood, Osuch, Reynhardt (c30) 2003
Dang, Lu, Wang, Zhang, Lu (c9) 2022
Thompson, Armstrong, Auth, Cea, Chau, Glass, Hoffman, Klaus, Zhiyong, Mcintyre, Murthy, Obradovic, Shifren, Sivakumar, Tyagi, Ghani, Mistry, Bohr, El-Mansy (c14) 2004
Velez, Allen, Jones, Donohue, Li, Pister, Govindjee, Meyers, Minor (c47) 2021
Fujimori, Nakahata, Imai (c5) 1990
Liu, Song, Li, Ma, Chen (c20) 2019
Li, Shan, Ma (c8) 2014
Shi, Dao, Tsymbalov, Shapeev, Li, Suresh (c19) 2020
Ferrari, Salustro, Gentile, Mackrodt, Dovesi (c27) 2018
Ortín, Delaey (c48) 2002
Sun, Xiao, Ruzsinszky (c26) 2012
Hess (c28) 2012
Conejeros, Othman, Croot, Hart, O'Donnell, May, Allan (c33) 2021
Wheeler, Raghavan, Wehrs, Zhang, Erni, Michler (c43) 2016
Wort, Balmer (c1) 2008
Michel, Liu, Kimerling (c10) 2010
Zhang, Tersoff, Xu, Chen, Zhang, Zhang, Yang, Lee, Tu, Li, Lu (c11) 2016
Zhang, Wang, Tian, Samri, Moh, McMeeking, Hensel, Arzt (c45) 2022
Liu, Tian, Li, Chen, Zhang, Shi, Wang, Shao (c46) 2022
(2023081013152022500_c30) 2003; 15
(2023081013152022500_c34) 1969; 7
(2023081013152022500_c5) 1990; 29
(2023081013152022500_c35) 1999; 82
(2023081013152022500_c38) 2011; 44
(2023081013152022500_c8) 2014; 39
(2023081013152022500_c11) 2016; 2
(2023081013152022500_c6) 2019; 11
(2023081013152022500_c44) 2021; 7
(2023081013152022500_c1) 2008; 11
(2023081013152022500_c25) 2013; 138
(2023081013152022500_c43) 2016; 16
(2023081013152022500_c10) 2010; 4
(2023081013152022500_c9) 2022; 43
(2023081013152022500_c40) 2006; 203
(2023081013152022500_c26) 2012; 137
(2023081013152022500_c23) 1996; 77
(2023081013152022500_c19) 2020; 117
(2023081013152022500_c37) 2010; 49
(2023081013152022500_c46) 2022; 8
(2023081013152022500_c18) 2020; 124
(2023081013152022500_c36) 2000; 9
(2023081013152022500_c7) 2009; 134
(2023081013152022500_c13) 2019; 125
(2023081013152022500_c21) 2021; 371
(2023081013152022500_c15) 2004; 51
2023081013152022500_c42
2023081013152022500_c41
(2023081013152022500_c47) 2021; 36
(2023081013152022500_c4) 2022; 2
(2023081013152022500_c12) 2018; 122
(2023081013152022500_c48) 2002; 37
(2023081013152022500_c3) 2021; 1
(2023081013152022500_c14) 2004; 25
(2023081013152022500_c20) 2019; 123
(2023081013152022500_c32) 1970; 25
(2023081013152022500_c27) 2018; 134
(2023081013152022500_c45) 2022; 8
(2023081013152022500_c33) 2021; 171
(2023081013152022500_c2) 2016; 65
(2023081013152022500_c16) 2018; 360
(2023081013152022500_c28) 2012; 111
(2023081013152022500_c31) 2014; 90
(2023081013152022500_c39) 2019; 10
(2023081013152022500_c29) 1993; 185
(2023081013152022500_c17) 2019; 116
(2023081013152022500_c24) 1975; 8
(2023081013152022500_c22) 1996; 54
References_xml – start-page: 22
  year: 2008
  ident: c1
  publication-title: Mater. Today
– start-page: 051101
  year: 2012
  ident: c26
  publication-title: J. Chem. Phys.
– start-page: 4117
  year: 2019
  ident: c17
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 299
  year: 2010
  ident: c37
  publication-title: Comput. Mater. Sci.
– start-page: 76
  year: 2021
  ident: c44
  publication-title: npj Comput. Mater.
– start-page: 15780
  year: 2018
  ident: c12
  publication-title: J. Phys. Chem. C
– start-page: eadd4768
  year: 2022
  ident: c45
  publication-title: Sci. Adv.
– start-page: 457
  year: 1975
  ident: c24
  publication-title: J. Appl. Crystallogr.
– start-page: 2111
  year: 1999
  ident: c35
  publication-title: Phys. Rev. Lett.
– start-page: 935
  year: 2000
  ident: c36
  publication-title: Diamond Relat. Mater.
– start-page: 824
  year: 1990
  ident: c5
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 151
  year: 2022
  ident: c4
  publication-title: Funct. Diamond
– start-page: 812
  year: 2016
  ident: c43
  publication-title: Nano Lett.
– start-page: 147001
  year: 2020
  ident: c18
  publication-title: Phys. Rev. Lett.
– start-page: 044113
  year: 2013
  ident: c25
  publication-title: J. Chem. Phys.
– start-page: e1501382
  year: 2016
  ident: c11
  publication-title: Sci. Adv.
– start-page: 051101
  year: 2012
  ident: c28
  publication-title: J. Appl. Phys.
– start-page: 082520
  year: 2019
  ident: c13
  publication-title: J. Appl. Phys.
– start-page: 1790
  year: 2004
  ident: c15
  publication-title: IEEE Trans. Electron Devices
– start-page: 397
  year: 2019
  ident: c6
  publication-title: Anal. Methods
– start-page: 1965
  year: 2009
  ident: c7
  publication-title: Analyst
– start-page: 76
  year: 2021
  ident: c21
  publication-title: Science
– start-page: 685
  year: 1969
  ident: c34
  publication-title: Solid State Commun.
– start-page: 108
  year: 2014
  ident: c8
  publication-title: MRS Bull.
– start-page: 300
  year: 2018
  ident: c16
  publication-title: Science
– start-page: 179
  year: 1993
  ident: c29
  publication-title: Physica B
– start-page: eabn5722
  year: 2022
  ident: c46
  publication-title: Sci. Adv.
– start-page: 656
  year: 1970
  ident: c32
  publication-title: Phys. Rev. Lett.
– start-page: 5533
  year: 2019
  ident: c39
  publication-title: Nat. Commun.
– start-page: 195504
  year: 2019
  ident: c20
  publication-title: Phys. Rev. Lett.
– start-page: 094117
  year: 2014
  ident: c31
  publication-title: Phys. Rev. B
– start-page: 3135
  year: 2003
  ident: c30
  publication-title: J. Phys.: Condens. Matter
– start-page: 29
  year: 2021
  ident: c3
  publication-title: Funct. Diamond
– start-page: 191
  year: 2004
  ident: c14
  publication-title: IEEE Electron Device Lett.
– start-page: 1275
  year: 2002
  ident: c48
  publication-title: Int. J. Non-Linear Mech.
– start-page: 24634
  year: 2020
  ident: c19
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 354
  year: 2018
  ident: c27
  publication-title: Carbon
– start-page: 857
  year: 2021
  ident: c33
  publication-title: Carbon
– start-page: 11169
  year: 1996
  ident: c22
  publication-title: Phys. Rev. B
– start-page: 2456
  year: 2021
  ident: c47
  publication-title: J. Mater. Res.
– start-page: 168
  year: 2016
  ident: c2
  publication-title: Diamond Relat. Mater.
– start-page: 527
  year: 2010
  ident: c10
  publication-title: Nat. Photonics
– start-page: 1272
  year: 2011
  ident: c38
  publication-title: J. Appl. Crystallogr.
– start-page: 3358
  year: 2006
  ident: c40
  publication-title: Phys. Status Solidi A
– start-page: 021801
  year: 2022
  ident: c9
  publication-title: J. Semicond.
– start-page: 3865
  year: 1996
  ident: c23
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 656
  year: 1970
  ident: 2023081013152022500_c32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.25.656
– volume: 122
  start-page: 15780
  year: 2018
  ident: 2023081013152022500_c12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b04822
– volume: 138
  start-page: 044113
  year: 2013
  ident: 2023081013152022500_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4789414
– volume: 171
  start-page: 857
  year: 2021
  ident: 2023081013152022500_c33
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.09.065
– ident: 2023081013152022500_c42
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023081013152022500_c23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 134
  start-page: 1965
  year: 2009
  ident: 2023081013152022500_c7
  publication-title: Analyst
  doi: 10.1039/b910206j
– volume: 11
  start-page: 22
  year: 2008
  ident: 2023081013152022500_c1
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(07)70349-8
– volume: 25
  start-page: 191
  year: 2004
  ident: 2023081013152022500_c14
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2004.825195
– volume: 54
  start-page: 11169
  year: 1996
  ident: 2023081013152022500_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 9
  start-page: 935
  year: 2000
  ident: 2023081013152022500_c36
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/S0925-9635(00)00217-X
– volume: 137
  start-page: 051101
  year: 2012
  ident: 2023081013152022500_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4742312
– volume: 2
  start-page: e1501382
  year: 2016
  ident: 2023081013152022500_c11
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501382
– volume: 8
  start-page: eabn5722
  year: 2022
  ident: 2023081013152022500_c46
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abn5722
– volume: 37
  start-page: 1275
  year: 2002
  ident: 2023081013152022500_c48
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(02)00027-6
– volume: 29
  start-page: 824
  year: 1990
  ident: 2023081013152022500_c5
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.29.824
– volume: 39
  start-page: 108
  year: 2014
  ident: 2023081013152022500_c8
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2014.3
– volume: 43
  start-page: 021801
  year: 2022
  ident: 2023081013152022500_c9
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/43/2/021801
– volume: 203
  start-page: 3358
  year: 2006
  ident: 2023081013152022500_c40
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200671407
– volume: 2
  start-page: 151
  year: 2022
  ident: 2023081013152022500_c4
  publication-title: Funct. Diamond
  doi: 10.1080/26941112.2022.2151322
– volume: 8
  start-page: 457
  year: 1975
  ident: 2023081013152022500_c24
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889875010965
– volume: 8
  start-page: eadd4768
  year: 2022
  ident: 2023081013152022500_c45
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add4768
– volume: 16
  start-page: 812
  year: 2016
  ident: 2023081013152022500_c43
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04989
– volume: 65
  start-page: 168
  year: 2016
  ident: 2023081013152022500_c2
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2016.03.013
– volume: 125
  start-page: 082520
  year: 2019
  ident: 2023081013152022500_c13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5052718
– volume: 51
  start-page: 1790
  year: 2004
  ident: 2023081013152022500_c15
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2004.836648
– volume: 123
  start-page: 195504
  year: 2019
  ident: 2023081013152022500_c20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.195504
– volume: 1
  start-page: 29
  year: 2021
  ident: 2023081013152022500_c3
  publication-title: Funct. Diamond
  doi: 10.1080/26941112.2021.1877019
– volume: 10
  start-page: 5533
  year: 2019
  ident: 2023081013152022500_c39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13378-w
– ident: 2023081013152022500_c41
– volume: 49
  start-page: 299
  year: 2010
  ident: 2023081013152022500_c37
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.05.010
– volume: 7
  start-page: 76
  year: 2021
  ident: 2023081013152022500_c44
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00538-0
– volume: 4
  start-page: 527
  year: 2010
  ident: 2023081013152022500_c10
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.157
– volume: 371
  start-page: 76
  year: 2021
  ident: 2023081013152022500_c21
  publication-title: Science
  doi: 10.1126/science.abc4174
– volume: 116
  start-page: 4117
  year: 2019
  ident: 2023081013152022500_c17
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1818555116
– volume: 7
  start-page: 685
  year: 1969
  ident: 2023081013152022500_c34
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(69)90593-6
– volume: 82
  start-page: 2111
  year: 1999
  ident: 2023081013152022500_c35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.2111
– volume: 15
  start-page: 3135
  year: 2003
  ident: 2023081013152022500_c30
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/15/19/314
– volume: 36
  start-page: 2456
  year: 2021
  ident: 2023081013152022500_c47
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-021-00163-z
– volume: 44
  start-page: 1272
  year: 2011
  ident: 2023081013152022500_c38
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 360
  start-page: 300
  year: 2018
  ident: 2023081013152022500_c16
  publication-title: Science
  doi: 10.1126/science.aar4165
– volume: 124
  start-page: 147001
  year: 2020
  ident: 2023081013152022500_c18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.147001
– volume: 185
  start-page: 179
  year: 1993
  ident: 2023081013152022500_c29
  publication-title: Physica B
  doi: 10.1016/0921-4526(93)90235-X
– volume: 11
  start-page: 397
  year: 2019
  ident: 2023081013152022500_c6
  publication-title: Anal. Methods
  doi: 10.1039/C8AY02197J
– volume: 111
  start-page: 051101
  year: 2012
  ident: 2023081013152022500_c28
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3683544
– volume: 117
  start-page: 24634
  year: 2020
  ident: 2023081013152022500_c19
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2013565117
– volume: 134
  start-page: 354
  year: 2018
  ident: 2023081013152022500_c27
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.03.091
– volume: 90
  start-page: 094117
  year: 2014
  ident: 2023081013152022500_c31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.094117
SSID ssj0005233
Score 2.4705017
Snippet The development of diamond semiconductor devices has been hindered by the challenge of preparing n-type diamond with a shallow donor state. Recently, elastic...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Compressive properties
Design of experiments
Diamonds
Electrical properties
First principles
Nitrogen
Semiconductor devices
Strain
Title Tuning donor level of nitrogen-doped diamond by deep strain engineering—An ab initio study
URI http://dx.doi.org/10.1063/5.0159829
https://www.proquest.com/docview/2848543464
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB5qi1gfpFaL0VYG9UEIa-PM7mzmMfRCERXBFvogLHOFQLob0u1D-9Qf0V_YX9Izl70EIlTzsIRlMlnO9-XMNyfnnEHoUzpmsAiRNEmt5bBBGYtE5rlJtHspKwTVPkH2Jzs5S7-dZ-fdSYW-uqSWX9TNyrqS_0EV7gGurkr2H5BtJ4Ub8B7whSsgDNfHYXzloxq6KqvFcObSf3xexrReVPCZRFdzkJNAgAtXpAI6Uxszd9UhwvUJ6RoRNgkP6aQcCjmcunyiqtd4tmlSGwVrCIZcwhf61pyt34iRZ1cy1TLuOP7NVMUF0hMoFNZMVS_tNhSIlDcufN0PRBDq0-DyJedKE8Zj_1gT_Okod2HQ6GIbhxsqjCOz2EpHDsoJrO9aqroOg7xbrdocQjGfPUEbBHYH4N42Joc_vv_u5fZQ2hyV6J6oaSnF6H475bIQ6XYXz0B6hCyIntA43UIv4g4BTwLcL9GaKbfR817fyG309FeA4BX6EyiAPQWwpwCuLF6mAI4UwPIaOwrgQAHco8D97d2kxELiAD724L9GZ8dHpwcnSTwwI1GEkzoRWlqScyOVBgtklFsqqDFWWi1GXBqimTSZJcx8ZTqnXCmZOT0Le3xLMinpDlovq9K8QRhcf67STIB-kanSI66FEJZa8PkSFgkyQJ8b6xWNvdyzzwqf1cBokRXR0AP0oR06Dy1UVg3abSAo4i_ssgDpNHalzywdoI8tLH-f5O2jRr1Dmx19d9F6vbgye6Asa_k-8ugB62x6yw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+donor+level+of+nitrogen-doped+diamond+by+deep+strain+engineering%E2%80%94An+ab+initio+study&rft.jtitle=Applied+physics+letters&rft.au=Yang%2C+Limin&rft.au=Fan%2C+Rong&rft.au=Hu%2C+Alice&rft.au=Ma%2C+Junzhang&rft.date=2023-08-07&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=6&rft_id=info:doi/10.1063%2F5.0159829&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon