Soliton versus the gas: Fredholm determinants, analysis, and the rapid oscillations behind the kinetic equation

We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the so...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 76; no. 11; pp. 3233 - 3299
Main Authors Girotti, Manuela, Grava, Tamara, Jenkins, Robert, McLaughlin, Ken T‐R, Minakov, Alexander
Format Journal Article
LanguageEnglish
Published New York John Wiley and Sons, Limited 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the solution can be decomposed as the sum of the background gas solution (a modulated elliptic wave), plus a soliton solution: the individual expressions are however quite convoluted due to the interaction dynamics. Additionally, we are able to derive the local phase shift of the gas after the passage of the soliton, and we can trace the location of the soliton peak as the dynamics evolves. Finally, we show that the soliton peak, while interacting with the soliton gas, has an oscillatory velocity whose leading order average value satisfies the kinetic velocity equation analogous to the one posited by V. Zakharov and G. El.
AbstractList We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the solution can be decomposed as the sum of the background gas solution (a modulated elliptic wave), plus a soliton solution: the individual expressions are however quite convoluted due to the interaction dynamics. Additionally, we are able to derive the local phase shift of the gas after the passage of the soliton, and we can trace the location of the soliton peak as the dynamics evolves. Finally, we show that the soliton peak, while interacting with the soliton gas, has an oscillatory velocity whose leading order average value satisfies the kinetic velocity equation analogous to the one posited by V. Zakharov and G. El.
We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the solution can be decomposed as the sum of the background gas solution (a modulated elliptic wave), plus a soliton solution: the individual expressions are however quite convoluted due to the interaction dynamics. Additionally, we are able to derive the local phase shift of the gas after the passage of the soliton, and we can trace the location of the soliton peak as the dynamics evolves. Finally, we show that the soliton peak, while interacting with the soliton gas, has an oscillatory velocity whose leading order average value satisfies the kinetic velocity equation analogous to the one posited by V. Zakharov and G. El.
Author McLaughlin, Ken T‐R
Girotti, Manuela
Jenkins, Robert
Grava, Tamara
Minakov, Alexander
Author_xml – sequence: 1
  givenname: Manuela
  surname: Girotti
  fullname: Girotti, Manuela
  organization: Saint Mary's University
– sequence: 2
  givenname: Tamara
  surname: Grava
  fullname: Grava, Tamara
  organization: SISSA INFN sezione di Trieste and University of Bristol
– sequence: 3
  givenname: Robert
  surname: Jenkins
  fullname: Jenkins, Robert
  organization: University of Central Florida
– sequence: 4
  givenname: Ken T‐R
  surname: McLaughlin
  fullname: McLaughlin, Ken T‐R
  organization: Tulane University
– sequence: 5
  givenname: Alexander
  surname: Minakov
  fullname: Minakov, Alexander
  organization: Univerzita Karlova
BookMark eNptkDFPwzAQhS1UJNrCwD-wxIREWttpYocNVRSQKjEAc3SxHeqS2qntIPXfE9JOiOnu9L473XsTNLLOaoSuKZlRQthctjBjjJL8DI0pKXhCUspGaEwIJUmaL8gFmoSw7Ue6EOkYuTfXmOgs_tY-dAHHjcafEO7xymu1cc0OKx213xkLNoY7DBaaQzBDpwbaQ2sUdkGapoFonA240htzUr-M1dFIrPfdIF6i8xqaoK9OdYo-Vo_vy-dk_fr0snxYJ5IVLCYAlayymvEqF5ngRBW1UAIUpYqC4lBBVYucQ1FISYTMmVKLSgAjNOOSZZBO0c3xbuvdvtMhllvX-f75UDKRs958kfGeuj1S0rsQvK7L1psd-ENJSfmbZ9nnWQ559uz8DytNHDxFD6b5Z-MHTmx8PQ
CitedBy_id crossref_primary_10_1063_5_0112982
crossref_primary_10_1088_1361_6544_accfdf
crossref_primary_10_1007_s00220_024_04988_7
crossref_primary_10_1016_j_jde_2024_10_006
crossref_primary_10_1103_PhysRevE_111_014204
crossref_primary_10_1103_PhysRevE_109_034207
crossref_primary_10_1007_s00332_023_09940_y
crossref_primary_10_1111_sapm_70027
crossref_primary_10_1016_j_aml_2024_109308
crossref_primary_10_21468_SciPostPhys_18_2_075
crossref_primary_10_1103_PhysRevE_109_061001
crossref_primary_10_1103_PhysRevResearch_5_L042002
crossref_primary_10_1016_j_wavemoti_2024_103480
crossref_primary_10_1016_j_physd_2025_134573
crossref_primary_10_1098_rspa_2024_0764
Cites_doi 10.1088/0951-7715/26/7/1839
10.15407/mag14.04.406
10.1007/s00220-021-03942-1
10.1007/BF02103713
10.1002/cpa.3160210503
10.1143/JPSJ.34.1289
10.1002/cpa.3160360503
10.15407/mag12.01.003
10.1214/19-AAP1509
10.1103/PhysRevE.101.052207
10.1137/0520065
10.1002/cpa.10050
10.1007/s00220-021-03968-5
10.1016/j.euromechflu.2005.11.001
10.1016/j.physd.2016.04.002
10.1007/s00220-011-1383-x
10.1016/j.physleta.2016.04.023
10.1103/PhysRevLett.95.204101
10.1002/cpa.3160360302
10.1063/1.3470505
10.5194/nhess-11-323-2011
10.1002/cpa.3160370105
10.1017/jfm.2012.628
10.1023/A:1011892100149
10.1103/PhysRevE.103.042201
10.1016/S0375-9601(03)00515-2
10.1111/sapm.12615
10.1093/imamat/hxs017
10.1002/cpa.3160440823
10.1090/mmono/070
10.1017/jfm.2019.830
10.1017/jfm.2014.273
10.1215/S0012-7094-92-06805-0
10.1002/cpa.3160360606
10.1007/BFb0076661
10.1016/j.physleta.2014.09.008
10.1137/0144066
10.1007/s11040-009-9062-2
10.1103/PhysRevLett.127.064101
10.1016/j.jfa.2023.110160
10.1137/0152052
10.1137/19M1279964
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOI 10.1002/cpa.22106
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 3299
ExternalDocumentID 10_1002_cpa_22106
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABLJU
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c292t-aabcb5f27b685870d9f8d8ad11d1ad7ababf867a99cc08c62dd4b8a20157c25a3
ISSN 0010-3640
IngestDate Fri Jul 25 10:58:08 EDT 2025
Tue Jul 01 02:50:32 EDT 2025
Thu Apr 24 23:12:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-aabcb5f27b685870d9f8d8ad11d1ad7ababf867a99cc08c62dd4b8a20157c25a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpa.22106
PQID 2862148957
PQPubID 48818
PageCount 67
ParticipantIDs proquest_journals_2862148957
crossref_primary_10_1002_cpa_22106
crossref_citationtrail_10_1002_cpa_22106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2023
Publisher John Wiley and Sons, Limited
Publisher_xml – name: John Wiley and Sons, Limited
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
Sande K. (e_1_2_8_50_1) 2021; 928
Zakharov V. (e_1_2_8_54_1) 1971; 33
e_1_2_8_3_1
Sprenger P. (e_1_2_8_48_1) 2018; 97
e_1_2_8_5_1
e_1_2_8_7_1
Zaitsev A. (e_1_2_8_53_1) 1983; 28
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
Gurevich A. V. (e_1_2_8_30_1) 1974; 38
e_1_2_8_29_1
Biondini G. (e_1_2_8_9_1) 2019; 99
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Simon B. (e_1_2_8_47_1) 2005
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Holian B. L. (e_1_2_8_31_1) 1981; 24
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Deift P. (e_1_2_8_14_1) 1999
Deift P. (e_1_2_8_15_1) 1999; 2
e_1_2_8_10_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
References_xml – volume: 28
  start-page: 720
  issue: 9
  year: 1983
  ident: e_1_2_8_53_1
  article-title: Formation of stationary nonlinear waves by superposition of solitons
  publication-title: Soviet Phys. Dokl.
– volume-title: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach
  year: 1999
  ident: e_1_2_8_14_1
– ident: e_1_2_8_18_1
  doi: 10.1088/0951-7715/26/7/1839
– ident: e_1_2_8_20_1
  doi: 10.15407/mag14.04.406
– ident: e_1_2_8_25_1
  doi: 10.1007/s00220-021-03942-1
– ident: e_1_2_8_49_1
  doi: 10.1007/BF02103713
– ident: e_1_2_8_35_1
  doi: 10.1002/cpa.3160210503
– ident: e_1_2_8_52_1
  doi: 10.1143/JPSJ.34.1289
– volume: 99
  issue: 022215
  year: 2019
  ident: e_1_2_8_9_1
  article-title: Nonlinear interactions between solitons and dispersive shocks in focusing media
  publication-title: Phys. Rev. E
– ident: e_1_2_8_37_1
  doi: 10.1002/cpa.3160360503
– ident: e_1_2_8_19_1
  doi: 10.15407/mag12.01.003
– ident: e_1_2_8_5_1
  doi: 10.1214/19-AAP1509
– ident: e_1_2_8_44_1
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevE.101.052207
– ident: e_1_2_8_55_1
  doi: 10.1137/0520065
– ident: e_1_2_8_28_1
  doi: 10.1002/cpa.10050
– ident: e_1_2_8_8_1
  doi: 10.1007/s00220-021-03968-5
– volume: 33
  start-page: 538
  issue: 3
  year: 1971
  ident: e_1_2_8_54_1
  article-title: Kinetic equation for solitons
  publication-title: Sov. Phys.‐JETP
– ident: e_1_2_8_43_1
  doi: 10.1016/j.euromechflu.2005.11.001
– ident: e_1_2_8_17_1
  doi: 10.1016/j.physd.2016.04.002
– ident: e_1_2_8_7_1
  doi: 10.1007/s00220-011-1383-x
– ident: e_1_2_8_46_1
  doi: 10.1016/j.physleta.2016.04.023
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevLett.95.204101
– volume: 38
  start-page: 291
  year: 1974
  ident: e_1_2_8_30_1
  article-title: Nonstationary structure of a collisionless shock wave
  publication-title: JETP Lett.
– ident: e_1_2_8_36_1
  doi: 10.1002/cpa.3160360302
– volume: 24
  start-page: 2595
  year: 1981
  ident: e_1_2_8_31_1
  article-title: Shock waves in the toda lattice: analysis
  publication-title: Phys. Lett. A
– volume: 928
  issue: 21
  year: 2021
  ident: e_1_2_8_50_1
  article-title: Dynamic soliton‐mean flow interaction with nonconvex flux
  publication-title: J. Fluid Mech.
– volume: 97
  issue: 032218
  year: 2018
  ident: e_1_2_8_48_1
  article-title: Hydrodynamic optical soliton tunneling
  publication-title: Phys. Rev. E
– ident: e_1_2_8_33_1
  doi: 10.1063/1.3470505
– ident: e_1_2_8_45_1
  doi: 10.5194/nhess-11-323-2011
– ident: e_1_2_8_6_1
  doi: 10.1002/cpa.3160370105
– ident: e_1_2_8_40_1
  doi: 10.1017/jfm.2012.628
– ident: e_1_2_8_26_1
  doi: 10.1023/A:1011892100149
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevE.103.042201
– volume: 2
  start-page: 1491
  year: 1999
  ident: e_1_2_8_15_1
  article-title: Strong asymptotics of orthogonal polynomials with respect to exponential weights
  publication-title: Comm. Math. Phys.
– ident: e_1_2_8_21_1
  doi: 10.1016/S0375-9601(03)00515-2
– ident: e_1_2_8_3_1
  doi: 10.1111/sapm.12615
– volume-title: Trace Ideals and Their Applications
  year: 2005
  ident: e_1_2_8_47_1
– ident: e_1_2_8_39_1
  doi: 10.1093/imamat/hxs017
– ident: e_1_2_8_51_1
  doi: 10.1002/cpa.3160440823
– ident: e_1_2_8_4_1
  doi: 10.1090/mmono/070
– ident: e_1_2_8_42_1
  doi: 10.1017/jfm.2019.830
– ident: e_1_2_8_2_1
– ident: e_1_2_8_41_1
  doi: 10.1017/jfm.2014.273
– ident: e_1_2_8_24_1
  doi: 10.1215/S0012-7094-92-06805-0
– ident: e_1_2_8_38_1
  doi: 10.1002/cpa.3160360606
– ident: e_1_2_8_32_1
  doi: 10.1007/BFb0076661
– ident: e_1_2_8_16_1
  doi: 10.1016/j.physleta.2014.09.008
– ident: e_1_2_8_12_1
  doi: 10.1137/0144066
– ident: e_1_2_8_29_1
  doi: 10.1007/s11040-009-9062-2
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevLett.127.064101
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jfa.2023.110160
– ident: e_1_2_8_10_1
  doi: 10.1137/0152052
– ident: e_1_2_8_27_1
  doi: 10.1137/19M1279964
SSID ssj0011483
Score 2.5581548
Snippet We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3233
SubjectTerms Kinetic equations
Solitary waves
Title Soliton versus the gas: Fredholm determinants, analysis, and the rapid oscillations behind the kinetic equation
URI https://www.proquest.com/docview/2862148957
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBa0QB6TgYK-f4YaAtqoIh5JKvVmzD7cRaRKcmAO_jp_G7Mt2aA6Fi2Xtrm3F82V3Zv3NN4S8TmJZJXEGgdAZMlqQPCgq4EGVV2EiZJEJkyQ2-ZodnyUn5-n5YPC7x1pqNnwkfu3MK_kfq2Ib2lVnyf6DZdubYgOeo33xiBbG441s_E2T19B8mlrRrI0PeQGG43ZYK6n3O4eyR3exTE0rQuJZm4ZhCKuZHGpVy7lnxnF1OXO939EP1aqu6kfTWdFrG_TTS8yHh5X_IAHOvb1qdWFb7_1oVi83lkYwgUWj5u3ScFTDT-PNTuEK6rb5ROkCD-uOCd7tJn6B5uLSFZ3HRWM4bdkbp_0NDRa7zL7eJK2XhsyqOI2UnZdDLRobR1sTty0c4wEa9abhmFl1Dbekx8wWYbq2XFj5WbGCEcPQd4ck919LZUtgtGLPrMRLS3PpLXKbYaCia2h8Om0FzHSwaTkO7id5bauQvWufuu0RbTsExsuZ3if3XHhCP1isPSADtXhI7k46Gz4iS4c6alFHsYsi6t5Tjznax9xb6hGnz6QZbfBG-3ijFm-m1-GNerw9JmeHn6cfjwNXtiMQbMw2AQAXPK1YznVtgzyU46qQBcgokhHIHDjwqshyGI-FCAuRMSkTXgB6omkuWArxE7K3WC7UU0J5HqtMKJ0unicZ-lUcw1-exhBmoQqF2idv_KsrhdO016VV5uU1A-2TV-3QlRVy2TXowL__0v3P1yXDoB_tOE7zZze5x3Nyp0P1Adnb1I16gY7rhr802PgDzqqdtg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soliton+versus+the+gas%3A+Fredholm+determinants%2C+analysis%2C+and+the+rapid+oscillations+behind+the+kinetic+equation&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Girotti%2C+Manuela&rft.au=Grava%2C+Tamara&rft.au=Jenkins%2C+Robert&rft.au=McLaughlin%2C+Ken+T%E2%80%90R&rft.date=2023-11-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=76&rft.issue=11&rft.spage=3233&rft.epage=3299&rft_id=info:doi/10.1002%2Fcpa.22106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_22106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon