Soliton versus the gas: Fredholm determinants, analysis, and the rapid oscillations behind the kinetic equation
We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the so...
Saved in:
Published in | Communications on pure and applied mathematics Vol. 76; no. 11; pp. 3233 - 3299 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley and Sons, Limited
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the solution can be decomposed as the sum of the background gas solution (a modulated elliptic wave), plus a soliton solution: the individual expressions are however quite convoluted due to the interaction dynamics. Additionally, we are able to derive the local phase shift of the gas after the passage of the soliton, and we can trace the location of the soliton peak as the dynamics evolves. Finally, we show that the soliton peak, while interacting with the soliton gas, has an oscillatory velocity whose leading order average value satisfies the kinetic velocity equation analogous to the one posited by V. Zakharov and G. El. |
---|---|
AbstractList | We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the solution can be decomposed as the sum of the background gas solution (a modulated elliptic wave), plus a soliton solution: the individual expressions are however quite convoluted due to the interaction dynamics. Additionally, we are able to derive the local phase shift of the gas after the passage of the soliton, and we can trace the location of the soliton peak as the dynamics evolves. Finally, we show that the soliton peak, while interacting with the soliton gas, has an oscillatory velocity whose leading order average value satisfies the kinetic velocity equation analogous to the one posited by V. Zakharov and G. El. We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show that the solution can be expressed in terms of Fredholm determinants as well as in terms of a Riemann–Hilbert problem. We then show that the solution can be decomposed as the sum of the background gas solution (a modulated elliptic wave), plus a soliton solution: the individual expressions are however quite convoluted due to the interaction dynamics. Additionally, we are able to derive the local phase shift of the gas after the passage of the soliton, and we can trace the location of the soliton peak as the dynamics evolves. Finally, we show that the soliton peak, while interacting with the soliton gas, has an oscillatory velocity whose leading order average value satisfies the kinetic velocity equation analogous to the one posited by V. Zakharov and G. El. |
Author | McLaughlin, Ken T‐R Girotti, Manuela Jenkins, Robert Grava, Tamara Minakov, Alexander |
Author_xml | – sequence: 1 givenname: Manuela surname: Girotti fullname: Girotti, Manuela organization: Saint Mary's University – sequence: 2 givenname: Tamara surname: Grava fullname: Grava, Tamara organization: SISSA INFN sezione di Trieste and University of Bristol – sequence: 3 givenname: Robert surname: Jenkins fullname: Jenkins, Robert organization: University of Central Florida – sequence: 4 givenname: Ken T‐R surname: McLaughlin fullname: McLaughlin, Ken T‐R organization: Tulane University – sequence: 5 givenname: Alexander surname: Minakov fullname: Minakov, Alexander organization: Univerzita Karlova |
BookMark | eNptkDFPwzAQhS1UJNrCwD-wxIREWttpYocNVRSQKjEAc3SxHeqS2qntIPXfE9JOiOnu9L473XsTNLLOaoSuKZlRQthctjBjjJL8DI0pKXhCUspGaEwIJUmaL8gFmoSw7Ue6EOkYuTfXmOgs_tY-dAHHjcafEO7xymu1cc0OKx213xkLNoY7DBaaQzBDpwbaQ2sUdkGapoFonA240htzUr-M1dFIrPfdIF6i8xqaoK9OdYo-Vo_vy-dk_fr0snxYJ5IVLCYAlayymvEqF5ngRBW1UAIUpYqC4lBBVYucQ1FISYTMmVKLSgAjNOOSZZBO0c3xbuvdvtMhllvX-f75UDKRs958kfGeuj1S0rsQvK7L1psd-ENJSfmbZ9nnWQ559uz8DytNHDxFD6b5Z-MHTmx8PQ |
CitedBy_id | crossref_primary_10_1063_5_0112982 crossref_primary_10_1088_1361_6544_accfdf crossref_primary_10_1007_s00220_024_04988_7 crossref_primary_10_1016_j_jde_2024_10_006 crossref_primary_10_1103_PhysRevE_111_014204 crossref_primary_10_1103_PhysRevE_109_034207 crossref_primary_10_1007_s00332_023_09940_y crossref_primary_10_1111_sapm_70027 crossref_primary_10_1016_j_aml_2024_109308 crossref_primary_10_21468_SciPostPhys_18_2_075 crossref_primary_10_1103_PhysRevE_109_061001 crossref_primary_10_1103_PhysRevResearch_5_L042002 crossref_primary_10_1016_j_wavemoti_2024_103480 crossref_primary_10_1016_j_physd_2025_134573 crossref_primary_10_1098_rspa_2024_0764 |
Cites_doi | 10.1088/0951-7715/26/7/1839 10.15407/mag14.04.406 10.1007/s00220-021-03942-1 10.1007/BF02103713 10.1002/cpa.3160210503 10.1143/JPSJ.34.1289 10.1002/cpa.3160360503 10.15407/mag12.01.003 10.1214/19-AAP1509 10.1103/PhysRevE.101.052207 10.1137/0520065 10.1002/cpa.10050 10.1007/s00220-021-03968-5 10.1016/j.euromechflu.2005.11.001 10.1016/j.physd.2016.04.002 10.1007/s00220-011-1383-x 10.1016/j.physleta.2016.04.023 10.1103/PhysRevLett.95.204101 10.1002/cpa.3160360302 10.1063/1.3470505 10.5194/nhess-11-323-2011 10.1002/cpa.3160370105 10.1017/jfm.2012.628 10.1023/A:1011892100149 10.1103/PhysRevE.103.042201 10.1016/S0375-9601(03)00515-2 10.1111/sapm.12615 10.1093/imamat/hxs017 10.1002/cpa.3160440823 10.1090/mmono/070 10.1017/jfm.2019.830 10.1017/jfm.2014.273 10.1215/S0012-7094-92-06805-0 10.1002/cpa.3160360606 10.1007/BFb0076661 10.1016/j.physleta.2014.09.008 10.1137/0144066 10.1007/s11040-009-9062-2 10.1103/PhysRevLett.127.064101 10.1016/j.jfa.2023.110160 10.1137/0152052 10.1137/19M1279964 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1002/cpa.22106 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1097-0312 |
EndPage | 3299 |
ExternalDocumentID | 10_1002_cpa_22106 |
GroupedDBID | --Z .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 6OB 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABLJU ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL S10 SAMSI SUPJJ TN5 TWZ UB1 UHB V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 YZZ ZY4 ZZTAW ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 |
ID | FETCH-LOGICAL-c292t-aabcb5f27b685870d9f8d8ad11d1ad7ababf867a99cc08c62dd4b8a20157c25a3 |
ISSN | 0010-3640 |
IngestDate | Fri Jul 25 10:58:08 EDT 2025 Tue Jul 01 02:50:32 EDT 2025 Thu Apr 24 23:12:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-aabcb5f27b685870d9f8d8ad11d1ad7ababf867a99cc08c62dd4b8a20157c25a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpa.22106 |
PQID | 2862148957 |
PQPubID | 48818 |
PageCount | 67 |
ParticipantIDs | proquest_journals_2862148957 crossref_primary_10_1002_cpa_22106 crossref_citationtrail_10_1002_cpa_22106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Communications on pure and applied mathematics |
PublicationYear | 2023 |
Publisher | John Wiley and Sons, Limited |
Publisher_xml | – name: John Wiley and Sons, Limited |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 Sande K. (e_1_2_8_50_1) 2021; 928 Zakharov V. (e_1_2_8_54_1) 1971; 33 e_1_2_8_3_1 Sprenger P. (e_1_2_8_48_1) 2018; 97 e_1_2_8_5_1 e_1_2_8_7_1 Zaitsev A. (e_1_2_8_53_1) 1983; 28 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 Gurevich A. V. (e_1_2_8_30_1) 1974; 38 e_1_2_8_29_1 Biondini G. (e_1_2_8_9_1) 2019; 99 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Simon B. (e_1_2_8_47_1) 2005 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Holian B. L. (e_1_2_8_31_1) 1981; 24 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Deift P. (e_1_2_8_14_1) 1999 Deift P. (e_1_2_8_15_1) 1999; 2 e_1_2_8_10_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 |
References_xml | – volume: 28 start-page: 720 issue: 9 year: 1983 ident: e_1_2_8_53_1 article-title: Formation of stationary nonlinear waves by superposition of solitons publication-title: Soviet Phys. Dokl. – volume-title: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach year: 1999 ident: e_1_2_8_14_1 – ident: e_1_2_8_18_1 doi: 10.1088/0951-7715/26/7/1839 – ident: e_1_2_8_20_1 doi: 10.15407/mag14.04.406 – ident: e_1_2_8_25_1 doi: 10.1007/s00220-021-03942-1 – ident: e_1_2_8_49_1 doi: 10.1007/BF02103713 – ident: e_1_2_8_35_1 doi: 10.1002/cpa.3160210503 – ident: e_1_2_8_52_1 doi: 10.1143/JPSJ.34.1289 – volume: 99 issue: 022215 year: 2019 ident: e_1_2_8_9_1 article-title: Nonlinear interactions between solitons and dispersive shocks in focusing media publication-title: Phys. Rev. E – ident: e_1_2_8_37_1 doi: 10.1002/cpa.3160360503 – ident: e_1_2_8_19_1 doi: 10.15407/mag12.01.003 – ident: e_1_2_8_5_1 doi: 10.1214/19-AAP1509 – ident: e_1_2_8_44_1 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevE.101.052207 – ident: e_1_2_8_55_1 doi: 10.1137/0520065 – ident: e_1_2_8_28_1 doi: 10.1002/cpa.10050 – ident: e_1_2_8_8_1 doi: 10.1007/s00220-021-03968-5 – volume: 33 start-page: 538 issue: 3 year: 1971 ident: e_1_2_8_54_1 article-title: Kinetic equation for solitons publication-title: Sov. Phys.‐JETP – ident: e_1_2_8_43_1 doi: 10.1016/j.euromechflu.2005.11.001 – ident: e_1_2_8_17_1 doi: 10.1016/j.physd.2016.04.002 – ident: e_1_2_8_7_1 doi: 10.1007/s00220-011-1383-x – ident: e_1_2_8_46_1 doi: 10.1016/j.physleta.2016.04.023 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevLett.95.204101 – volume: 38 start-page: 291 year: 1974 ident: e_1_2_8_30_1 article-title: Nonstationary structure of a collisionless shock wave publication-title: JETP Lett. – ident: e_1_2_8_36_1 doi: 10.1002/cpa.3160360302 – volume: 24 start-page: 2595 year: 1981 ident: e_1_2_8_31_1 article-title: Shock waves in the toda lattice: analysis publication-title: Phys. Lett. A – volume: 928 issue: 21 year: 2021 ident: e_1_2_8_50_1 article-title: Dynamic soliton‐mean flow interaction with nonconvex flux publication-title: J. Fluid Mech. – volume: 97 issue: 032218 year: 2018 ident: e_1_2_8_48_1 article-title: Hydrodynamic optical soliton tunneling publication-title: Phys. Rev. E – ident: e_1_2_8_33_1 doi: 10.1063/1.3470505 – ident: e_1_2_8_45_1 doi: 10.5194/nhess-11-323-2011 – ident: e_1_2_8_6_1 doi: 10.1002/cpa.3160370105 – ident: e_1_2_8_40_1 doi: 10.1017/jfm.2012.628 – ident: e_1_2_8_26_1 doi: 10.1023/A:1011892100149 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevE.103.042201 – volume: 2 start-page: 1491 year: 1999 ident: e_1_2_8_15_1 article-title: Strong asymptotics of orthogonal polynomials with respect to exponential weights publication-title: Comm. Math. Phys. – ident: e_1_2_8_21_1 doi: 10.1016/S0375-9601(03)00515-2 – ident: e_1_2_8_3_1 doi: 10.1111/sapm.12615 – volume-title: Trace Ideals and Their Applications year: 2005 ident: e_1_2_8_47_1 – ident: e_1_2_8_39_1 doi: 10.1093/imamat/hxs017 – ident: e_1_2_8_51_1 doi: 10.1002/cpa.3160440823 – ident: e_1_2_8_4_1 doi: 10.1090/mmono/070 – ident: e_1_2_8_42_1 doi: 10.1017/jfm.2019.830 – ident: e_1_2_8_2_1 – ident: e_1_2_8_41_1 doi: 10.1017/jfm.2014.273 – ident: e_1_2_8_24_1 doi: 10.1215/S0012-7094-92-06805-0 – ident: e_1_2_8_38_1 doi: 10.1002/cpa.3160360606 – ident: e_1_2_8_32_1 doi: 10.1007/BFb0076661 – ident: e_1_2_8_16_1 doi: 10.1016/j.physleta.2014.09.008 – ident: e_1_2_8_12_1 doi: 10.1137/0144066 – ident: e_1_2_8_29_1 doi: 10.1007/s11040-009-9062-2 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevLett.127.064101 – ident: e_1_2_8_11_1 doi: 10.1016/j.jfa.2023.110160 – ident: e_1_2_8_10_1 doi: 10.1137/0152052 – ident: e_1_2_8_27_1 doi: 10.1137/19M1279964 |
SSID | ssj0011483 |
Score | 2.5581548 |
Snippet | We analyse the case of a dense modified Korteweg–de Vries (mKdV) soliton gas and its large time behaviour in the presence of a single trial soliton. We show... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3233 |
SubjectTerms | Kinetic equations Solitary waves |
Title | Soliton versus the gas: Fredholm determinants, analysis, and the rapid oscillations behind the kinetic equation |
URI | https://www.proquest.com/docview/2862148957 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBa0QB6TgYK-f4YaAtqoIh5JKvVmzD7cRaRKcmAO_jp_G7Mt2aA6Fi2Xtrm3F82V3Zv3NN4S8TmJZJXEGgdAZMlqQPCgq4EGVV2EiZJEJkyQ2-ZodnyUn5-n5YPC7x1pqNnwkfu3MK_kfq2Ib2lVnyf6DZdubYgOeo33xiBbG441s_E2T19B8mlrRrI0PeQGG43ZYK6n3O4eyR3exTE0rQuJZm4ZhCKuZHGpVy7lnxnF1OXO939EP1aqu6kfTWdFrG_TTS8yHh5X_IAHOvb1qdWFb7_1oVi83lkYwgUWj5u3ScFTDT-PNTuEK6rb5ROkCD-uOCd7tJn6B5uLSFZ3HRWM4bdkbp_0NDRa7zL7eJK2XhsyqOI2UnZdDLRobR1sTty0c4wEa9abhmFl1Dbekx8wWYbq2XFj5WbGCEcPQd4ck919LZUtgtGLPrMRLS3PpLXKbYaCia2h8Om0FzHSwaTkO7id5bauQvWufuu0RbTsExsuZ3if3XHhCP1isPSADtXhI7k46Gz4iS4c6alFHsYsi6t5Tjznax9xb6hGnz6QZbfBG-3ijFm-m1-GNerw9JmeHn6cfjwNXtiMQbMw2AQAXPK1YznVtgzyU46qQBcgokhHIHDjwqshyGI-FCAuRMSkTXgB6omkuWArxE7K3WC7UU0J5HqtMKJ0unicZ-lUcw1-exhBmoQqF2idv_KsrhdO016VV5uU1A-2TV-3QlRVy2TXowL__0v3P1yXDoB_tOE7zZze5x3Nyp0P1Adnb1I16gY7rhr802PgDzqqdtg |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soliton+versus+the+gas%3A+Fredholm+determinants%2C+analysis%2C+and+the+rapid+oscillations+behind+the+kinetic+equation&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Girotti%2C+Manuela&rft.au=Grava%2C+Tamara&rft.au=Jenkins%2C+Robert&rft.au=McLaughlin%2C+Ken+T%E2%80%90R&rft.date=2023-11-01&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=76&rft.issue=11&rft.spage=3233&rft.epage=3299&rft_id=info:doi/10.1002%2Fcpa.22106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpa_22106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon |