Self assured Deep Learning with Minimum Pre Labeled Data for Wafer Pattern Classification

Data quality plays an important role during the training stage of machine/deep learning models. The annotation hinges on the experiences of domain experts. To acquire the experts knowledge in the context of machine learning, manual data labeling, a tedious and time-consuming task in supervised learn...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on semiconductor manufacturing Vol. 36; no. 3; p. 1
Main Authors Fan, Shu-Kai S., Tsai, Du-Ming, Shih, Ya-Fang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data quality plays an important role during the training stage of machine/deep learning models. The annotation hinges on the experiences of domain experts. To acquire the experts knowledge in the context of machine learning, manual data labeling, a tedious and time-consuming task in supervised learning, should be given a top priority. However, the domain experts in the line of plentiful manual annotation may easily get distracted or fatigued after long-time work, causing judgment errors, mislabeling, etc. The pattern recognition of wafer defect map is investigated in this paper, the primary goal of which is to train the convolutional neural network (CNN) model through a very limited number of manually labeled data so that the trained model is capable of performing pseudo labeling. Subsequently, a self-assured adaptive ensemble learner in terms of a series of shallow neural networks is proposed to filter wafer map samples with untrusted pseudo-labels. In the result, the amount of human annotations is significantly reduced by 61% for training a highly accurate classifier. A minimum number of manually labeled data is suggested while the equally high classification performance of wafer defect pattern is maintained. For the evaluation purpose, the proposed self-assured learning is compared with the confidence learning.
AbstractList Data quality plays an important role during the training stage of machine/deep learning models. The annotation hinges on the experiences of domain experts. To acquire the expert’s knowledge in the context of machine learning, manual data labeling, a tedious and time-consuming task in supervised learning, should be given a top priority. However, the domain experts in the line of plentiful manual annotation may easily get distracted or fatigued after long-time work, causing judgment errors, mislabeling, etc. The pattern recognition of wafer defect map is investigated in this paper, the primary goal of which is to train the convolutional neural network (CNN) model through a very limited number of manually labeled data so that the trained model is capable of performing pseudo labeling. Subsequently, a self-assured adaptive ensemble learner in terms of a series of shallow neural networks is proposed to filter wafer map samples with untrusted pseudo-labels. In the result, the amount of human annotations is significantly reduced by 61% for training a highly accurate classifier. A minimum number of manually labeled data is suggested while the equally high classification performance of wafer defect pattern is maintained. For the evaluation purpose, the proposed self-assured learning is compared with the confidence learning.
Data quality plays an important role during the training stage of machine/deep learning models. The annotation hinges on the experiences of domain experts. To acquire the experts knowledge in the context of machine learning, manual data labeling, a tedious and time-consuming task in supervised learning, should be given a top priority. However, the domain experts in the line of plentiful manual annotation may easily get distracted or fatigued after long-time work, causing judgment errors, mislabeling, etc. The pattern recognition of wafer defect map is investigated in this paper, the primary goal of which is to train the convolutional neural network (CNN) model through a very limited number of manually labeled data so that the trained model is capable of performing pseudo labeling. Subsequently, a self-assured adaptive ensemble learner in terms of a series of shallow neural networks is proposed to filter wafer map samples with untrusted pseudo-labels. In the result, the amount of human annotations is significantly reduced by 61% for training a highly accurate classifier. A minimum number of manually labeled data is suggested while the equally high classification performance of wafer defect pattern is maintained. For the evaluation purpose, the proposed self-assured learning is compared with the confidence learning.
Author Fan, Shu-Kai S.
Tsai, Du-Ming
Shih, Ya-Fang
Author_xml – sequence: 1
  givenname: Shu-Kai S.
  orcidid: 0000-0003-3068-504X
  surname: Fan
  fullname: Fan, Shu-Kai S.
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
– sequence: 2
  givenname: Du-Ming
  orcidid: 0000-0001-8783-7994
  surname: Tsai
  fullname: Tsai, Du-Ming
  organization: Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan
– sequence: 3
  givenname: Ya-Fang
  surname: Shih
  fullname: Shih, Ya-Fang
  organization: Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
BookMark eNp9kEtLw0AUhQepYFvdu3Ax4Dp13kmWUp_QYqEVcTXcpnd0SprUyQTx35vaLsSFq7s53zncb0B6VV0hIeecjThn-dViPh0JJuRIitRk3ByRPtc6S4RUukf6LMtVYjRLT8igadaMcaXytE9e51g6Ck3TBlzRG8QtnSCEyldv9NPHdzr1ld-0GzoLSCewxHIXgwjU1YG-gMNAZxAjhoqOy67HO19A9HV1So4dlA2eHe6QPN_dLsYPyeTp_nF8PUkKkYuYgJYKHBNKCaULAUagds7kGUohcy0050KwJRTIOTeSrZaaAy_cCp1EAJBDcrnv3Yb6o8Um2nXdhqqbtCJTOk2ZSlWXYvtUEeqmCejsNvgNhC_Lmd0JtJ1AuxNoDwI7xPxBCh9_XosBfPkfeLEHPSL-2uHCsDyT337ZfvA
CODEN ITSMED
CitedBy_id crossref_primary_10_1115_1_4065118
crossref_primary_10_1016_j_ijpe_2024_109275
crossref_primary_10_1109_TIM_2025_3545980
crossref_primary_10_1007_s10845_024_02521_0
crossref_primary_10_1080_21681015_2023_2279101
crossref_primary_10_1088_1361_6501_ad9cb0
Cites_doi 10.1109/TASE.2021.3106011
10.1109/TSM.2022.3159246
10.1109/TSM.2019.2929765
10.1109/TSM.2019.2940334
10.1109/TSM.2018.2841416
10.1613/jair.1.12125
10.1109/ICCE46568.2020.9043041
10.1109/TSM.2020.2964581
10.1109/TSM.2019.2944181
10.1006/jcss.1997.1504
10.1109/TSM.2020.2994357
10.1109/EDTM50988.2021.9421037
10.1109/CVPR.2016.90
10.1109/TSM.2021.3137982
10.1109/ACCESS.2021.3068378
10.1109/TSM.2014.2364237
10.1109/TSM.2011.2154870
10.1109/TSM.2019.2937793
10.1109/TSM.2020.3013004
10.1109/TSM.2019.2925361
10.1109/TPAMI.2020.3031898
10.1109/TSM.2018.2825482
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TSM.2023.3276816
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1558-2345
EndPage 1
ExternalDocumentID 10_1109_TSM_2023_3276816
10126098
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST-111-2221-E-027-070-MY3
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-a534af0244245c2a62e5ff698e323952511220bace111630db51a1cfdef3eaaa3
IEDL.DBID RIE
ISSN 0894-6507
IngestDate Mon Jun 30 17:01:47 EDT 2025
Tue Jul 01 03:16:25 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Wed Aug 27 02:56:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-a534af0244245c2a62e5ff698e323952511220bace111630db51a1cfdef3eaaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8783-7994
0000-0003-3068-504X
PQID 2845770474
PQPubID 85442
PageCount 1
ParticipantIDs ieee_primary_10126098
crossref_primary_10_1109_TSM_2023_3276816
proquest_journals_2845770474
crossref_citationtrail_10_1109_TSM_2023_3276816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on semiconductor manufacturing
PublicationTitleAbbrev TSM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
Dosovitskiy (ref21) 2020
Simonyan (ref19) 2014
ref24
ref23
ref25
ref22
Tan (ref20)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1109/TASE.2021.3106011
– ident: ref16
  doi: 10.1109/TSM.2022.3159246
– ident: ref24
  doi: 10.1109/TSM.2019.2929765
– ident: ref9
  doi: 10.1109/TSM.2019.2940334
– start-page: 6105
  volume-title: Proc. 36th Int. Conf. Mach. Learn. (ICML)
  ident: ref20
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref5
  doi: 10.1109/TSM.2018.2841416
– ident: ref17
  doi: 10.1613/jair.1.12125
– year: 2014
  ident: ref19
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref14
  doi: 10.1109/ICCE46568.2020.9043041
– year: 2020
  ident: ref21
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref2
  doi: 10.1109/TSM.2020.2964581
– ident: ref7
  doi: 10.1109/TSM.2019.2944181
– ident: ref22
  doi: 10.1006/jcss.1997.1504
– ident: ref11
  doi: 10.1109/TSM.2020.2994357
– ident: ref13
  doi: 10.1109/EDTM50988.2021.9421037
– ident: ref18
  doi: 10.1109/CVPR.2016.90
– ident: ref25
  doi: 10.1109/TSM.2021.3137982
– ident: ref12
  doi: 10.1109/ACCESS.2021.3068378
– ident: ref3
  doi: 10.1109/TSM.2014.2364237
– ident: ref1
  doi: 10.1109/TSM.2011.2154870
– ident: ref8
  doi: 10.1109/TSM.2019.2937793
– ident: ref10
  doi: 10.1109/TSM.2020.3013004
– ident: ref6
  doi: 10.1109/TSM.2019.2925361
– ident: ref15
  doi: 10.1109/TPAMI.2020.3031898
– ident: ref4
  doi: 10.1109/TSM.2018.2825482
SSID ssj0014497
Score 2.3718076
Snippet Data quality plays an important role during the training stage of machine/deep learning models. The annotation hinges on the experiences of domain experts. To...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Annotations
Artificial neural networks
Convolutional neural networks
Data models
Deep learning
Defects
Labeling
Labels
Machine learning
minimum pre-labeled data
Neural networks
Pattern classification
Pattern recognition
pseudo labeling
self-assured labeling
Semiconductor device modeling
Subject specialists
Supervised learning
Training
wafer defect pattern classification
Title Self assured Deep Learning with Minimum Pre Labeled Data for Wafer Pattern Classification
URI https://ieeexplore.ieee.org/document/10126098
https://www.proquest.com/docview/2845770474
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ui3rwLa4vcvDiod22SdrmKD4QcUVQUU8lSSciapW1vfjrTdJWFkXx1sOkBL4kM8nMfB_AHk8xxljJQJkIAxZncaAiaoKS55rrONfGuObk0UV6esPO7vhd16zue2EQ0RefYeg-fS6_fNWNeyobOi6qNBL5NEzbm1vbrPWVMmBMtLSeggU27Mj6nGQkhtdXo9DJhIc0sdG1kzaf8EFeVOXHSezdy8kiXPQTa6tKnsKmVqH--MbZ-O-ZL8FCF2iSg3ZlLMMUVisw2_chv6_A_AQV4SrcX-GzITaSbsZYkiPEN9JRrz4Q91ZLRo_V40vzQi7HSM6lst7KmslaEhv1kltpcEwuPVdnRbzQpitB8qivwc3J8fXhadDJLgQ6EUkdSE6ZNNZ3u6SoTmSaIDcmFTnShAru7iRJEimp0Z6TKY1KxWMZa1OioSilpOswU71WuAGE5hrzGE2mbBTgVM3R8ZOVQlszzJkcwLAHotAdJ7mTxngu_N0kEoWFrnDQFR10A9j_GvHW8nH8YbvmkJiwa0EYwHYPdtHt2PfCummeZRHL2OYvw7Zgzv29rf7bhpl63OCOjUhqtetX4ie13tv6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219EB7KC0FdVtofeiFQ7KJP5L4WLWgpd1dIbEIOEW2M0YICGhJLv31tZ0ErYqouOUwViw92zP2zLwH8E1kmGKqVaRtghFP8zTSCbNRJQojTFoYa31z8myeTU74rzNx1jerh14YRAzFZxj7z5DLr25N65_Kxp6LKktk8RJeOccvaNeu9ZA04Fx2xJ6SRy7wyIesZCLHi-NZ7IXCY0ZdfO3FzVe8UJBVeXQWBwdzsAHzYWpdXclV3DY6Nn_-YW189tzfwds-1CTfu7XxHl5gvQnrQyfy_Sa8WSEj_ADnx3htiYul2yVW5CfiHenJVy-If60ls8v68qa9IUdLJFOlnb9yZqpRxMW95FRZXJKjwNZZkyC16YuQAu5bcHKwv_gxiXrhhchQSZtICcaVdd7bp0UNVRlFYW0mC2SUSeFvJZQmWhl0J2XGkkqLVKXGVmgZKqXYNqzVtzV-BMIKg0WKNtcuDvC65ugZyippnBkWXI1gPABRmp6V3ItjXJfhdpLI0kFXeujKHroR7D2MuOsYOf5ju-WRWLHrQBjBzgB22e_Z-9I5apHnCc_5pyeGfYX1yWI2LaeH89-f4bX_U1cLuANrzbLFXRefNPpLWJV_AV0h30Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self+assured+Deep+Learning+with+Minimum+Pre+Labeled+Data+for+Wafer+Pattern+Classification&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Fan%2C+Shu-Kai+S.&rft.au=Tsai%2C+Du-Ming&rft.au=Shih%2C+Ya-Fang&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=0894-6507&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTSM.2023.3276816&rft.externalDocID=10126098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon