Parametric amplification induced giant nonreciprocal unconventional photon blockade in a single microring resonator
We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single m...
Saved in:
Published in | Applied physics letters Vol. 123; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-6951 1077-3118 |
DOI | 10.1063/5.0158334 |
Cover
Loading…
Abstract | We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single microring
χ
2-nonlinear resonator, UPB happens when the resonator is pumped to induce a parametric amplification nonlinear process in one direction but not the other. This originates from the induced nonreciprocal transmission for the driving mode's resonance by the unidirectionally pumping, leading to different quantum interference effects between distinct driven-dissipative excitation paths for the CW and CCW modes. We analytically give the optimal conditions for achieving the nonreciprocal UPB. Our work provides a way to achieve single quantum nonreciprocal devices without moving parts, which greatly simplifies its experimental implementation. |
---|---|
AbstractList | We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single microring χ2-nonlinear resonator, UPB happens when the resonator is pumped to induce a parametric amplification nonlinear process in one direction but not the other. This originates from the induced nonreciprocal transmission for the driving mode's resonance by the unidirectionally pumping, leading to different quantum interference effects between distinct driven-dissipative excitation paths for the CW and CCW modes. We analytically give the optimal conditions for achieving the nonreciprocal UPB. Our work provides a way to achieve single quantum nonreciprocal devices without moving parts, which greatly simplifies its experimental implementation. We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single microring χ 2-nonlinear resonator, UPB happens when the resonator is pumped to induce a parametric amplification nonlinear process in one direction but not the other. This originates from the induced nonreciprocal transmission for the driving mode's resonance by the unidirectionally pumping, leading to different quantum interference effects between distinct driven-dissipative excitation paths for the CW and CCW modes. We analytically give the optimal conditions for achieving the nonreciprocal UPB. Our work provides a way to achieve single quantum nonreciprocal devices without moving parts, which greatly simplifies its experimental implementation. |
Author | Wu, Ying Huang, Kai-Wei Liu, Da-Wei Si, Liu-Gang |
Author_xml | – sequence: 1 givenname: Da-Wei surname: Liu fullname: Liu, Da-Wei organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Kai-Wei surname: Huang fullname: Huang, Kai-Wei organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Ying surname: Wu fullname: Wu, Ying organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Liu-Gang surname: Si fullname: Si, Liu-Gang organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
BookMark | eNp9kE9LAzEQxYNUsK0e_AYBTwrbTjab3eQoxX9Q0IOelzSbram7SU2ygt_e1NaLiKeZgd9783gTNLLOaoTOCcwIlHTOZkAYp7Q4QmMCVZVRQvgIjQGAZqVg5ARNQtikk-WUjlF4kl72OnqjsOy3nWmNktE4i41tBqUbvDbSRpzeeK3M1jslOzxY5eyHtjswndtXF5Ni1Tn1JhudpFjiYOy607g3yjufdux1SHR0_hQdt7IL-uwwp-jl9uZ5cZ8tH-8eFtfLTOUij5kkRKuc5YoDFEoyyktGWV7ySqxYUQlgpdTQSNBMsFUBLSW8bBivZAGiIZRO0cXeN6V-H3SI9cYNPgUOdc6LCoSoSJmoyz2VcobgdVtvveml_6wJ1LtOa1YfOk3s_BerTPyuK3ppuj8VV3tF-CH_sf8CgdWIhw |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1002_qute_202400217 crossref_primary_10_1103_PhysRevA_108_063715 crossref_primary_10_1364_OE_534446 crossref_primary_10_1364_OE_512280 crossref_primary_10_1007_s11433_023_2340_7 crossref_primary_10_3389_fphy_2023_1332496 crossref_primary_10_1103_PhysRevApplied_22_064001 crossref_primary_10_1103_PhysRevA_110_063711 crossref_primary_10_1002_qute_202400089 crossref_primary_10_1103_PhysRevA_109_043712 crossref_primary_10_1038_s41534_024_00870_5 crossref_primary_10_1364_OE_519368 |
Cites_doi | 10.1103/PhysRevA.83.021802 10.1103/PhysRevA.61.011801 10.1038/nphoton.2014.133 10.1103/PhysRevLett.102.213903 10.1038/s41566-017-0051-x 10.1364/PRJ.7.000630 10.1364/OL.392514 10.1038/nature03804 10.1103/PhysRevA.101.023805 10.1364/OL.459917 10.1103/PhysRevA.98.043858 10.1088/2058-9565/ac4425 10.1103/PhysRevLett.110.234101 10.1103/PhysRevLett.121.043602 10.1103/PhysRevLett.120.043901 10.1103/PhysRevA.102.053710 10.1103/RevModPhys.79.135 10.1103/PhysRevA.90.043822 10.1364/OL.35.002376 10.1103/PhysRevA.85.031805 10.1103/PhysRevA.88.023853 10.1103/PhysRevA.101.013826 10.1103/PhysRevLett.118.033901 10.1103/PhysRevLett.79.1467 10.1103/PhysRevLett.121.153601 10.1103/PhysRevA.102.053713 10.1126/science.1152261 10.1103/PhysRevA.102.033713 10.1038/nphoton.2016.161 10.1103/PhysRevA.96.053810 10.1103/PhysRevLett.107.053602 10.1103/PhysRevLett.121.043601 10.1103/PhysRevLett.108.030502 10.1103/PhysRevLett.104.183601 10.1038/s41377-021-00464-2 10.1063/1.3633111 10.1103/PhysRevA.101.062112 10.1038/35051009 10.1103/PhysRevLett.114.093602 10.1103/PhysRevA.100.062131 10.1364/OE.25.006767 10.1103/PhysRevLett.107.063601 10.1038/nphoton.2011.35 10.1103/PhysRevLett.125.143605 10.1103/PhysRevLett.107.223601 10.1103/PhysRevA.100.053832 10.1103/PhysRevLett.128.083604 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0158334 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0158334 apl |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11975103 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11875029 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2021YFA1400702 funderid: 10.13039/501100012166 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-a11ec252c8004ca538653526879b5479056ae0da0e595b40f3186d587a409d133 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 07:13:48 EDT 2025 Tue Jul 01 01:08:33 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Fri Jun 21 00:10:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-a11ec252c8004ca538653526879b5479056ae0da0e595b40f3186d587a409d133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-0510-7704 |
PQID | 2847099716 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_5_0158334 crossref_citationtrail_10_1063_5_0158334 proquest_journals_2847099716 crossref_primary_10_1063_5_0158334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230807 2023-08-07 |
PublicationDateYYYYMMDD | 2023-08-07 |
PublicationDate_xml | – month: 08 year: 2023 text: 20230807 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Shen, Li, Wu (c8) 2020 Xu, Li (c21) 2014 Vaneph, Morvan, Aiello, Féchant, Aprili, Gabelli, Estève (c24) 2018 Wang, Wu, Yu, Zhang (c37) 2019 Kok, Munro, Nemoto, Ralph, Dowling, Milburn (c14) 2007 Bender, Factor, Bodyfelt, Ramezani, Christodoulides, Ellis, Kottos (c33) 2013 Ramezani, Jha, Wang, Zhang (c28) 2018 Rabl (c3) 2011 Xiao, Liu, Li, Chen, Li, Gong (c43) 2012 Giovannetti, Lloyd, Maccone (c12) 2011 Hoffman, Srinivasan, Schmidt, Spietz, Aumentado, Türeci, Houck (c2) 2011 Sounas, Alu (c26) 2017 Chang, Jiang, Hua, Yang, Wen, Jiang, Li, Wang, Xiao (c34) 2014 Birnbaum, Boca, Miller, Boozer, Northup, Kimble (c1) 2005 Wang, Bai, Han, Liu, Zhang, Wang (c6) 2020 Zou, Zhang, Xu, Huang, Liao (c10) 2020 Snijders, Frey, Norman, Flayac, Savona, Gossard, Bowers, van Exter, Bouwmeester, Löffler (c23) 2018 Zhou, Zhang, Wu, Ye, Zhang, Zou, Shen, Yang (c9) 2020 Imamoḡlu, Schmidt, Woods, Deutsch (c16) 1997 Liew, Savona (c19) 2010 Huang, Kumar (c40) 2010 Huang, Lu, Liang, Tao, Liu (c30) 2021 Lü, Wu, Johansson, Jing, Zhang, Nori (c39) 2015 Bamba, Imamoğlu, Carusotto, Ciuti (c20) 2011 Shen, Wang, Wang, Yi (c38) 2020 Liang, Duan, Guo, Guan, Xie, Liu (c11) 2020 Huang, Kumar (c25) 2012 Shen, Zhang, Chen, Zou, Xiao, Zou, Sun, Guo, Dong (c32) 2016 Jiao, Zhang, Zhang, Miranowicz, Kuang, Jing (c44) 2020 Tang, Tang, Chen, Nori, Xiao, Xia (c41) 2022 Arbabi, Kang, Lu, Chow, Goddard (c45) 2011 Knill, Laflamme, Milburn (c13) 2001 Minganti, Miranowicz, Chhajlany, Nori (c46) 2019 Wang, Yang, Chen, Li, Shui, Li, Wu (c27) 2022 Huang, Miranowicz, Liao, Nori, Jing (c35) 2018 Dayan, Parkins, Aoki, Ostby, Vahala, Kimble (c17) 2008 Minganti, Miranowicz, Chhajlany, Arkhipov, Nori (c47) 2020 Cao, Wang, Dong, Jing, Liu, Chen, Ge, Gong, Xiao (c29) 2017 Deng, Li, Qin (c5) 2017 Zheng, Gauthier, Baranger (c18) 2011 Manipatruni, Robinson, Lipson (c31) 2009 Bin, Lü, Bin, Wu (c7) 2018 Flayac, Savona (c22) 2017 Liao, Nori (c4) 2013 Li, Huang, Xu, Miranowicz, Jing (c36) 2019 Werner, Imamoḡlu (c15) 1999 Huang, Wu, Si (c42) 2022 (2023080711053059200_c38) 2020; 101 (2023080711053059200_c4) 2013; 88 (2023080711053059200_c24) 2018; 121 (2023080711053059200_c39) 2015; 114 (2023080711053059200_c9) 2020; 102 (2023080711053059200_c46) 2019; 100 (2023080711053059200_c25) 2012; 108 (2023080711053059200_c31) 2009; 102 (2023080711053059200_c47) 2020; 101 (2023080711053059200_c16) 1997; 79 (2023080711053059200_c23) 2018; 121 (2023080711053059200_c6) 2020; 45 (2023080711053059200_c21) 2014; 90 (2023080711053059200_c28) 2018; 120 (2023080711053059200_c8) 2020; 101 (2023080711053059200_c18) 2011; 107 (2023080711053059200_c17) 2008; 319 (2023080711053059200_c15) 1999; 61 (2023080711053059200_c19) 2010; 104 (2023080711053059200_c26) 2017; 11 (2023080711053059200_c43) 2012; 85 (2023080711053059200_c20) 2011; 83 (2023080711053059200_c34) 2014; 8 (2023080711053059200_c12) 2011; 5 (2023080711053059200_c33) 2013; 110 (2023080711053059200_c32) 2016; 10 (2023080711053059200_c1) 2005; 436 (2023080711053059200_c2) 2011; 107 (2023080711053059200_c42) 2022; 47 (2023080711053059200_c5) 2017; 25 (2023080711053059200_c10) 2020; 102 (2023080711053059200_c29) 2017; 118 (2023080711053059200_c13) 2001; 409 (2023080711053059200_c36) 2019; 7 (2023080711053059200_c14) 2007; 79 (2023080711053059200_c37) 2019; 100 (2023080711053059200_c7) 2018; 98 (2023080711053059200_c40) 2010; 35 (2023080711053059200_c41) 2022; 128 (2023080711053059200_c27) 2022; 7 (2023080711053059200_c35) 2018; 121 (2023080711053059200_c3) 2011; 107 (2023080711053059200_c22) 2017; 96 (2023080711053059200_c30) 2021; 10 (2023080711053059200_c44) 2020; 125 (2023080711053059200_c11) 2020; 102 (2023080711053059200_c45) 2011; 99 |
References_xml | – start-page: 183601 year: 2010 ident: c19 article-title: Single photons from coupled quantum modes publication-title: Phys. Rev. Lett. – start-page: 3311 year: 2022 ident: c42 article-title: Parametric-amplification-induced nonreciprocal magnon laser publication-title: Opt. Lett. – start-page: 033901 year: 2017 ident: c29 article-title: Experimental demonstration of spontaneous chirality in a nonlinear microresonator publication-title: Phys. Rev. Lett. – start-page: 015025 year: 2022 ident: c27 article-title: Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide–cavity–emitter system beyond the chiral coupling publication-title: Quantum Sci. Technol. – start-page: 657 year: 2016 ident: c32 article-title: Experimental realization of optomechanically induced non-reciprocity publication-title: Nat. Photonics. – start-page: 062112 year: 2020 ident: c47 article-title: Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories publication-title: Phys. Rev. A – start-page: 043858 year: 2018 ident: c7 article-title: Two-photon blockade in a cascaded cavity-quantum-electrodynamics system publication-title: Phys. Rev. A – start-page: 043602 year: 2018 ident: c24 article-title: Observation of the unconventional photon blockade in the microwave domain publication-title: Phys. Rev. Lett. – start-page: 234101 year: 2013 ident: c33 article-title: Observation of asymmetric transport in structures with active nonlinearities publication-title: Phys. Rev. Lett. – start-page: 213903 year: 2009 ident: c31 article-title: Optical nonreciprocity in optomechanical structures publication-title: Phys. Rev. Lett. – start-page: 6767 year: 2017 ident: c5 article-title: Photon blockade via quantum interference in a strong coupling qubit-cavity system publication-title: Opt. Express – start-page: 143605 year: 2020 ident: c44 article-title: Nonreciprocal optomechanical entanglement against backscattering losses publication-title: Phys. Rev. Lett. – start-page: 091105 year: 2011 ident: c45 article-title: Realization of a narrowband single wavelength microring mirror publication-title: Appl. Phys. Lett. – start-page: 021802 year: 2011 ident: c20 article-title: Origin of strong photon antibunching in weakly nonlinear photonic molecules publication-title: Phys. Rev. A – start-page: 1467 year: 1997 ident: c16 article-title: Strongly interacting photons in a nonlinear cavity publication-title: Phys. Rev. Lett. – start-page: 043822 year: 2014 ident: c21 article-title: Tunable photon statistics in weakly nonlinear photonic molecules publication-title: Phys. Rev. A – start-page: 2376 year: 2010 ident: c40 article-title: Interaction-free all-optical switching in microdisks for quantum applications publication-title: Opt. Lett. – start-page: 774 year: 2017 ident: c26 article-title: Non-reciprocal photonics based on time modulation publication-title: Nat. Photonics. – start-page: 063601 year: 2011 ident: c3 article-title: Photon blockade effect in optomechanical systems publication-title: Phys. Rev. Lett. – start-page: 223601 year: 2011 ident: c18 article-title: Cavity-free photon blockade induced by many-body bound states publication-title: Phys. Rev. Lett. – start-page: 030502 year: 2012 ident: c25 article-title: Antibunched emission of photon pairs via quantum zeno blockade publication-title: Phys. Rev. Lett. – start-page: 053810 year: 2017 ident: c22 article-title: Unconventional photon blockade publication-title: Phys. Rev. A – start-page: 031805 year: 2012 ident: c43 article-title: Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator publication-title: Phys. Rev. A – start-page: 023853 year: 2013 ident: c4 article-title: Photon blockade in quadratically coupled optomechanical systems publication-title: Phys. Rev. A – start-page: 2604 year: 2020 ident: c6 article-title: Enhanced photon blockade in an optomechanical system with parametric amplification publication-title: Opt. Lett. – start-page: 46 year: 2001 ident: c13 article-title: A scheme for efficient quantum computation with linear optics publication-title: Nature – start-page: 043901 year: 2018 ident: c28 article-title: Nonreciprocal localization of photons publication-title: Phys. Rev. Lett. – start-page: 083604 year: 2022 ident: c41 article-title: Quantum squeezing induced optical nonreciprocity publication-title: Phys. Rev. Lett. – start-page: 1062 year: 2008 ident: c17 article-title: A photon turnstile dynamically regulated by one atom publication-title: Science – start-page: 222 year: 2011 ident: c12 article-title: Advances in quantum metrology publication-title: Nat. Photonics. – start-page: 011801 year: 1999 ident: c15 article-title: Photon-photon interactions in cavity electromagnetically induced transparency publication-title: Phys. Rev. A – start-page: 87 year: 2005 ident: c1 article-title: Photon blockade in an optical cavity with one trapped atom publication-title: Nature – start-page: 093602 year: 2015 ident: c39 article-title: Squeezed optomechanics with phase-matched amplification and dissipation publication-title: Phys. Rev. Lett. – start-page: 053713 year: 2020 ident: c11 article-title: Photon blockade in a bimode nonlinear nanocavity embedded with a quantum dot publication-title: Phys. Rev. A – start-page: 053832 year: 2019 ident: c37 article-title: Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity publication-title: Phys. Rev. A – start-page: 023805 year: 2020 ident: c8 article-title: Magnetically controllable photon blockade under a weak quantum-dot–cavity coupling condition publication-title: Phys. Rev. A – start-page: 043601 year: 2018 ident: c23 article-title: Observation of the unconventional photon blockade publication-title: Phys. Rev. Lett. – start-page: 033713 year: 2020 ident: c9 article-title: Conventional photon blockade with a three-wave mixing publication-title: Phys. Rev. A – start-page: 524 year: 2014 ident: c34 article-title: Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators publication-title: Nat. Photonics. – start-page: 153601 year: 2018 ident: c35 article-title: Nonreciprocal photon blockade publication-title: Phys. Rev. Lett. – start-page: 053602 year: 2011 ident: c2 article-title: Dispersive photon blockade in a superconducting circuit publication-title: Phys. Rev. Lett. – start-page: 053710 year: 2020 ident: c10 article-title: Multiphoton blockade in the two-photon Jaynes-Cummings model publication-title: Phys. Rev. A – start-page: 30 year: 2021 ident: c30 article-title: Loss-induced nonreciprocity publication-title: Light Sci. Appl. – start-page: 013826 year: 2020 ident: c38 article-title: Nonreciprocal unconventional photon blockade in a driven dissipative cavity with parametric amplification publication-title: Phys. Rev. A – start-page: 135 year: 2007 ident: c14 article-title: Linear optical quantum computing with photonic qubits publication-title: Rev. Mod. Phys. – start-page: 062131 year: 2019 ident: c46 article-title: Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps publication-title: Phys. Rev. A – start-page: 630 year: 2019 ident: c36 article-title: Nonreciprocal unconventional photon blockade in a spinning optomechanical system publication-title: Photonics Res. – volume: 83 start-page: 021802 year: 2011 ident: 2023080711053059200_c20 article-title: Origin of strong photon antibunching in weakly nonlinear photonic molecules publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.021802 – volume: 61 start-page: 011801 year: 1999 ident: 2023080711053059200_c15 article-title: Photon-photon interactions in cavity electromagnetically induced transparency publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.011801 – volume: 8 start-page: 524 year: 2014 ident: 2023080711053059200_c34 article-title: Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators publication-title: Nat. Photonics. doi: 10.1038/nphoton.2014.133 – volume: 102 start-page: 213903 year: 2009 ident: 2023080711053059200_c31 article-title: Optical nonreciprocity in optomechanical structures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.213903 – volume: 11 start-page: 774 year: 2017 ident: 2023080711053059200_c26 article-title: Non-reciprocal photonics based on time modulation publication-title: Nat. Photonics. doi: 10.1038/s41566-017-0051-x – volume: 7 start-page: 630 year: 2019 ident: 2023080711053059200_c36 article-title: Nonreciprocal unconventional photon blockade in a spinning optomechanical system publication-title: Photonics Res. doi: 10.1364/PRJ.7.000630 – volume: 45 start-page: 2604 year: 2020 ident: 2023080711053059200_c6 article-title: Enhanced photon blockade in an optomechanical system with parametric amplification publication-title: Opt. Lett. doi: 10.1364/OL.392514 – volume: 436 start-page: 87 year: 2005 ident: 2023080711053059200_c1 article-title: Photon blockade in an optical cavity with one trapped atom publication-title: Nature doi: 10.1038/nature03804 – volume: 101 start-page: 023805 year: 2020 ident: 2023080711053059200_c8 article-title: Magnetically controllable photon blockade under a weak quantum-dot–cavity coupling condition publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.023805 – volume: 47 start-page: 3311 year: 2022 ident: 2023080711053059200_c42 article-title: Parametric-amplification-induced nonreciprocal magnon laser publication-title: Opt. Lett. doi: 10.1364/OL.459917 – volume: 98 start-page: 043858 year: 2018 ident: 2023080711053059200_c7 article-title: Two-photon blockade in a cascaded cavity-quantum-electrodynamics system publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.043858 – volume: 7 start-page: 015025 year: 2022 ident: 2023080711053059200_c27 article-title: Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide–cavity–emitter system beyond the chiral coupling publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ac4425 – volume: 110 start-page: 234101 year: 2013 ident: 2023080711053059200_c33 article-title: Observation of asymmetric transport in structures with active nonlinearities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.234101 – volume: 121 start-page: 043602 year: 2018 ident: 2023080711053059200_c24 article-title: Observation of the unconventional photon blockade in the microwave domain publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.043602 – volume: 120 start-page: 043901 year: 2018 ident: 2023080711053059200_c28 article-title: Nonreciprocal localization of photons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.043901 – volume: 102 start-page: 053710 year: 2020 ident: 2023080711053059200_c10 article-title: Multiphoton blockade in the two-photon Jaynes-Cummings model publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.053710 – volume: 79 start-page: 135 year: 2007 ident: 2023080711053059200_c14 article-title: Linear optical quantum computing with photonic qubits publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.135 – volume: 90 start-page: 043822 year: 2014 ident: 2023080711053059200_c21 article-title: Tunable photon statistics in weakly nonlinear photonic molecules publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.043822 – volume: 35 start-page: 2376 year: 2010 ident: 2023080711053059200_c40 article-title: Interaction-free all-optical switching in χ(2) microdisks for quantum applications publication-title: Opt. Lett. doi: 10.1364/OL.35.002376 – volume: 85 start-page: 031805 year: 2012 ident: 2023080711053059200_c43 article-title: Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.031805 – volume: 88 start-page: 023853 year: 2013 ident: 2023080711053059200_c4 article-title: Photon blockade in quadratically coupled optomechanical systems publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.023853 – volume: 101 start-page: 013826 year: 2020 ident: 2023080711053059200_c38 article-title: Nonreciprocal unconventional photon blockade in a driven dissipative cavity with parametric amplification publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.013826 – volume: 118 start-page: 033901 year: 2017 ident: 2023080711053059200_c29 article-title: Experimental demonstration of spontaneous chirality in a nonlinear microresonator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.033901 – volume: 79 start-page: 1467 year: 1997 ident: 2023080711053059200_c16 article-title: Strongly interacting photons in a nonlinear cavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1467 – volume: 121 start-page: 153601 year: 2018 ident: 2023080711053059200_c35 article-title: Nonreciprocal photon blockade publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.153601 – volume: 102 start-page: 053713 year: 2020 ident: 2023080711053059200_c11 article-title: Photon blockade in a bimode nonlinear nanocavity embedded with a quantum dot publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.053713 – volume: 319 start-page: 1062 year: 2008 ident: 2023080711053059200_c17 article-title: A photon turnstile dynamically regulated by one atom publication-title: Science doi: 10.1126/science.1152261 – volume: 102 start-page: 033713 year: 2020 ident: 2023080711053059200_c9 article-title: Conventional photon blockade with a three-wave mixing publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.033713 – volume: 10 start-page: 657 year: 2016 ident: 2023080711053059200_c32 article-title: Experimental realization of optomechanically induced non-reciprocity publication-title: Nat. Photonics. doi: 10.1038/nphoton.2016.161 – volume: 96 start-page: 053810 year: 2017 ident: 2023080711053059200_c22 article-title: Unconventional photon blockade publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.053810 – volume: 107 start-page: 053602 year: 2011 ident: 2023080711053059200_c2 article-title: Dispersive photon blockade in a superconducting circuit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.053602 – volume: 121 start-page: 043601 year: 2018 ident: 2023080711053059200_c23 article-title: Observation of the unconventional photon blockade publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.043601 – volume: 108 start-page: 030502 year: 2012 ident: 2023080711053059200_c25 article-title: Antibunched emission of photon pairs via quantum zeno blockade publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.030502 – volume: 104 start-page: 183601 year: 2010 ident: 2023080711053059200_c19 article-title: Single photons from coupled quantum modes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.183601 – volume: 10 start-page: 30 year: 2021 ident: 2023080711053059200_c30 article-title: Loss-induced nonreciprocity publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00464-2 – volume: 99 start-page: 091105 year: 2011 ident: 2023080711053059200_c45 article-title: Realization of a narrowband single wavelength microring mirror publication-title: Appl. Phys. Lett. doi: 10.1063/1.3633111 – volume: 101 start-page: 062112 year: 2020 ident: 2023080711053059200_c47 article-title: Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.062112 – volume: 409 start-page: 46 year: 2001 ident: 2023080711053059200_c13 article-title: A scheme for efficient quantum computation with linear optics publication-title: Nature doi: 10.1038/35051009 – volume: 114 start-page: 093602 year: 2015 ident: 2023080711053059200_c39 article-title: Squeezed optomechanics with phase-matched amplification and dissipation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.093602 – volume: 100 start-page: 062131 year: 2019 ident: 2023080711053059200_c46 article-title: Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.062131 – volume: 25 start-page: 6767 year: 2017 ident: 2023080711053059200_c5 article-title: Photon blockade via quantum interference in a strong coupling qubit-cavity system publication-title: Opt. Express doi: 10.1364/OE.25.006767 – volume: 107 start-page: 063601 year: 2011 ident: 2023080711053059200_c3 article-title: Photon blockade effect in optomechanical systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.063601 – volume: 5 start-page: 222 year: 2011 ident: 2023080711053059200_c12 article-title: Advances in quantum metrology publication-title: Nat. Photonics. doi: 10.1038/nphoton.2011.35 – volume: 125 start-page: 143605 year: 2020 ident: 2023080711053059200_c44 article-title: Nonreciprocal optomechanical entanglement against backscattering losses publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.143605 – volume: 107 start-page: 223601 year: 2011 ident: 2023080711053059200_c18 article-title: Cavity-free photon blockade induced by many-body bound states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.223601 – volume: 100 start-page: 053832 year: 2019 ident: 2023080711053059200_c37 article-title: Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.053832 – volume: 128 start-page: 083604 year: 2022 ident: 2023080711053059200_c41 article-title: Quantum squeezing induced optical nonreciprocity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.083604 |
SSID | ssj0005233 |
Score | 2.5041008 |
Snippet | We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplification Applied physics Photons Quantum interference effects Resonators |
Title | Parametric amplification induced giant nonreciprocal unconventional photon blockade in a single microring resonator |
URI | http://dx.doi.org/10.1063/5.0158334 https://www.proquest.com/docview/2847099716 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJgQ8IBggChuygAekyCyJHad5nNhGhcqYRCv6FjmJAxWFTWsiTfvruYvtfEgFAS9RZSWW5fvV9-Hf3RHyGmuAJ-D8YPFBwQToEJYJrhmXWTnRIpbSsC3O5HQhPiyj5Wh03WMt1VX2Nr_ZmlfyP1KFMZArZsn-g2TbSWEAfoN84QkShudfyfhcIbUKa-x7CpnhpQ3AeeBo13ix_xWEX3ng4WMNC9RVIBBQZH2m-eW3C6yskYFS-66KpoSI8jCAsNbeD2TrNQQ9cMoxzH5x1TdmnQVroiMbb92kBvU61bMv2iRfr-r2YFcrNzqtlVWbqBTqRhmsuhH4iL130exVPzoR8oYbF3d4ctdOA-rDuVnW4FzmTCa29Kw2R7EfYwTVns7urDbJyRaUcqsOAKMLBIfVWDGjTHSKzl3un31KTxezWTo_Wc5vkd0QHAw40nePjj_OPvfoQZy7bou4MleVSvLDduqhLdM5KHfAejFEip6tMn9A7lsngx4ZxDwkI_1zj9zrlZ7cI7ft7jwimw5FdIAialFEGxTRAYroEEXUoIg6FMGnVFGDItqiiLYoekwWpyfzd1NmW3GwPEzCiqkg0HkYhTn4FyJXEXaKxc4KkzjJIoFF3qTSfqF8HSVRJvwSVIUsokmshJ8UAedPyA4sUz8ltMjjJNKB1mGZCZh94seqULJMJFiSnIdj8sZtauq2EdulrNOGLyF5GqV2_8fkZfvqpSnOsu2lfSeZ1P53NykaZZgzHsgxedVK6_eTPPvzJM_J3Q78-2Snuqr1ARirVfbC4uoXk6iYUw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+amplification+induced+giant+nonreciprocal+unconventional+photon+blockade+in+a+single+microring+resonator&rft.jtitle=Applied+physics+letters&rft.au=Da-Wei%2C+Liu&rft.au=Kai-Wei%2C+Huang&rft.au=Wu%2C+Ying&rft.au=Liu-Gang%2C+Si&rft.date=2023-08-07&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=6&rft_id=info:doi/10.1063%2F5.0158334&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |