Parametric amplification induced giant nonreciprocal unconventional photon blockade in a single microring resonator

We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single m...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 123; no. 6
Main Authors Liu, Da-Wei, Huang, Kai-Wei, Wu, Ying, Si, Liu-Gang
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.08.2023
Subjects
Online AccessGet full text
ISSN0003-6951
1077-3118
DOI10.1063/5.0158334

Cover

Loading…
Abstract We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single microring χ 2-nonlinear resonator, UPB happens when the resonator is pumped to induce a parametric amplification nonlinear process in one direction but not the other. This originates from the induced nonreciprocal transmission for the driving mode's resonance by the unidirectionally pumping, leading to different quantum interference effects between distinct driven-dissipative excitation paths for the CW and CCW modes. We analytically give the optimal conditions for achieving the nonreciprocal UPB. Our work provides a way to achieve single quantum nonreciprocal devices without moving parts, which greatly simplifies its experimental implementation.
AbstractList We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single microring χ2-nonlinear resonator, UPB happens when the resonator is pumped to induce a parametric amplification nonlinear process in one direction but not the other. This originates from the induced nonreciprocal transmission for the driving mode's resonance by the unidirectionally pumping, leading to different quantum interference effects between distinct driven-dissipative excitation paths for the CW and CCW modes. We analytically give the optimal conditions for achieving the nonreciprocal UPB. Our work provides a way to achieve single quantum nonreciprocal devices without moving parts, which greatly simplifies its experimental implementation.
We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By considering the backscattering coupling between clockwise (CW) and counterclockwise (CCW) waves with the same frequency, we show that in the single microring χ 2-nonlinear resonator, UPB happens when the resonator is pumped to induce a parametric amplification nonlinear process in one direction but not the other. This originates from the induced nonreciprocal transmission for the driving mode's resonance by the unidirectionally pumping, leading to different quantum interference effects between distinct driven-dissipative excitation paths for the CW and CCW modes. We analytically give the optimal conditions for achieving the nonreciprocal UPB. Our work provides a way to achieve single quantum nonreciprocal devices without moving parts, which greatly simplifies its experimental implementation.
Author Wu, Ying
Huang, Kai-Wei
Liu, Da-Wei
Si, Liu-Gang
Author_xml – sequence: 1
  givenname: Da-Wei
  surname: Liu
  fullname: Liu, Da-Wei
  organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Kai-Wei
  surname: Huang
  fullname: Huang, Kai-Wei
  organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Liu-Gang
  surname: Si
  fullname: Si, Liu-Gang
  organization: School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kE9LAzEQxYNUsK0e_AYBTwrbTjab3eQoxX9Q0IOelzSbram7SU2ygt_e1NaLiKeZgd9783gTNLLOaoTOCcwIlHTOZkAYp7Q4QmMCVZVRQvgIjQGAZqVg5ARNQtikk-WUjlF4kl72OnqjsOy3nWmNktE4i41tBqUbvDbSRpzeeK3M1jslOzxY5eyHtjswndtXF5Ni1Tn1JhudpFjiYOy607g3yjufdux1SHR0_hQdt7IL-uwwp-jl9uZ5cZ8tH-8eFtfLTOUij5kkRKuc5YoDFEoyyktGWV7ySqxYUQlgpdTQSNBMsFUBLSW8bBivZAGiIZRO0cXeN6V-H3SI9cYNPgUOdc6LCoSoSJmoyz2VcobgdVtvveml_6wJ1LtOa1YfOk3s_BerTPyuK3ppuj8VV3tF-CH_sf8CgdWIhw
CODEN APPLAB
CitedBy_id crossref_primary_10_1002_qute_202400217
crossref_primary_10_1103_PhysRevA_108_063715
crossref_primary_10_1364_OE_534446
crossref_primary_10_1364_OE_512280
crossref_primary_10_1007_s11433_023_2340_7
crossref_primary_10_3389_fphy_2023_1332496
crossref_primary_10_1103_PhysRevApplied_22_064001
crossref_primary_10_1103_PhysRevA_110_063711
crossref_primary_10_1002_qute_202400089
crossref_primary_10_1103_PhysRevA_109_043712
crossref_primary_10_1038_s41534_024_00870_5
crossref_primary_10_1364_OE_519368
Cites_doi 10.1103/PhysRevA.83.021802
10.1103/PhysRevA.61.011801
10.1038/nphoton.2014.133
10.1103/PhysRevLett.102.213903
10.1038/s41566-017-0051-x
10.1364/PRJ.7.000630
10.1364/OL.392514
10.1038/nature03804
10.1103/PhysRevA.101.023805
10.1364/OL.459917
10.1103/PhysRevA.98.043858
10.1088/2058-9565/ac4425
10.1103/PhysRevLett.110.234101
10.1103/PhysRevLett.121.043602
10.1103/PhysRevLett.120.043901
10.1103/PhysRevA.102.053710
10.1103/RevModPhys.79.135
10.1103/PhysRevA.90.043822
10.1364/OL.35.002376
10.1103/PhysRevA.85.031805
10.1103/PhysRevA.88.023853
10.1103/PhysRevA.101.013826
10.1103/PhysRevLett.118.033901
10.1103/PhysRevLett.79.1467
10.1103/PhysRevLett.121.153601
10.1103/PhysRevA.102.053713
10.1126/science.1152261
10.1103/PhysRevA.102.033713
10.1038/nphoton.2016.161
10.1103/PhysRevA.96.053810
10.1103/PhysRevLett.107.053602
10.1103/PhysRevLett.121.043601
10.1103/PhysRevLett.108.030502
10.1103/PhysRevLett.104.183601
10.1038/s41377-021-00464-2
10.1063/1.3633111
10.1103/PhysRevA.101.062112
10.1038/35051009
10.1103/PhysRevLett.114.093602
10.1103/PhysRevA.100.062131
10.1364/OE.25.006767
10.1103/PhysRevLett.107.063601
10.1038/nphoton.2011.35
10.1103/PhysRevLett.125.143605
10.1103/PhysRevLett.107.223601
10.1103/PhysRevA.100.053832
10.1103/PhysRevLett.128.083604
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0158334
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0158334
apl
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11975103
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11875029
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFA1400702
  funderid: 10.13039/501100012166
GroupedDBID -DZ
-~X
.DC
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-a11ec252c8004ca538653526879b5479056ae0da0e595b40f3186d587a409d133
ISSN 0003-6951
IngestDate Mon Jun 30 07:13:48 EDT 2025
Tue Jul 01 01:08:33 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
Fri Jun 21 00:10:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-a11ec252c8004ca538653526879b5479056ae0da0e595b40f3186d587a409d133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-0510-7704
PQID 2847099716
PQPubID 2050678
PageCount 5
ParticipantIDs scitation_primary_10_1063_5_0158334
crossref_citationtrail_10_1063_5_0158334
proquest_journals_2847099716
crossref_primary_10_1063_5_0158334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230807
2023-08-07
PublicationDateYYYYMMDD 2023-08-07
PublicationDate_xml – month: 08
  year: 2023
  text: 20230807
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Shen, Li, Wu (c8) 2020
Xu, Li (c21) 2014
Vaneph, Morvan, Aiello, Féchant, Aprili, Gabelli, Estève (c24) 2018
Wang, Wu, Yu, Zhang (c37) 2019
Kok, Munro, Nemoto, Ralph, Dowling, Milburn (c14) 2007
Bender, Factor, Bodyfelt, Ramezani, Christodoulides, Ellis, Kottos (c33) 2013
Ramezani, Jha, Wang, Zhang (c28) 2018
Rabl (c3) 2011
Xiao, Liu, Li, Chen, Li, Gong (c43) 2012
Giovannetti, Lloyd, Maccone (c12) 2011
Hoffman, Srinivasan, Schmidt, Spietz, Aumentado, Türeci, Houck (c2) 2011
Sounas, Alu (c26) 2017
Chang, Jiang, Hua, Yang, Wen, Jiang, Li, Wang, Xiao (c34) 2014
Birnbaum, Boca, Miller, Boozer, Northup, Kimble (c1) 2005
Wang, Bai, Han, Liu, Zhang, Wang (c6) 2020
Zou, Zhang, Xu, Huang, Liao (c10) 2020
Snijders, Frey, Norman, Flayac, Savona, Gossard, Bowers, van Exter, Bouwmeester, Löffler (c23) 2018
Zhou, Zhang, Wu, Ye, Zhang, Zou, Shen, Yang (c9) 2020
Imamoḡlu, Schmidt, Woods, Deutsch (c16) 1997
Liew, Savona (c19) 2010
Huang, Kumar (c40) 2010
Huang, Lu, Liang, Tao, Liu (c30) 2021
Lü, Wu, Johansson, Jing, Zhang, Nori (c39) 2015
Bamba, Imamoğlu, Carusotto, Ciuti (c20) 2011
Shen, Wang, Wang, Yi (c38) 2020
Liang, Duan, Guo, Guan, Xie, Liu (c11) 2020
Huang, Kumar (c25) 2012
Shen, Zhang, Chen, Zou, Xiao, Zou, Sun, Guo, Dong (c32) 2016
Jiao, Zhang, Zhang, Miranowicz, Kuang, Jing (c44) 2020
Tang, Tang, Chen, Nori, Xiao, Xia (c41) 2022
Arbabi, Kang, Lu, Chow, Goddard (c45) 2011
Knill, Laflamme, Milburn (c13) 2001
Minganti, Miranowicz, Chhajlany, Nori (c46) 2019
Wang, Yang, Chen, Li, Shui, Li, Wu (c27) 2022
Huang, Miranowicz, Liao, Nori, Jing (c35) 2018
Dayan, Parkins, Aoki, Ostby, Vahala, Kimble (c17) 2008
Minganti, Miranowicz, Chhajlany, Arkhipov, Nori (c47) 2020
Cao, Wang, Dong, Jing, Liu, Chen, Ge, Gong, Xiao (c29) 2017
Deng, Li, Qin (c5) 2017
Zheng, Gauthier, Baranger (c18) 2011
Manipatruni, Robinson, Lipson (c31) 2009
Bin, Lü, Bin, Wu (c7) 2018
Flayac, Savona (c22) 2017
Liao, Nori (c4) 2013
Li, Huang, Xu, Miranowicz, Jing (c36) 2019
Werner, Imamoḡlu (c15) 1999
Huang, Wu, Si (c42) 2022
(2023080711053059200_c38) 2020; 101
(2023080711053059200_c4) 2013; 88
(2023080711053059200_c24) 2018; 121
(2023080711053059200_c39) 2015; 114
(2023080711053059200_c9) 2020; 102
(2023080711053059200_c46) 2019; 100
(2023080711053059200_c25) 2012; 108
(2023080711053059200_c31) 2009; 102
(2023080711053059200_c47) 2020; 101
(2023080711053059200_c16) 1997; 79
(2023080711053059200_c23) 2018; 121
(2023080711053059200_c6) 2020; 45
(2023080711053059200_c21) 2014; 90
(2023080711053059200_c28) 2018; 120
(2023080711053059200_c8) 2020; 101
(2023080711053059200_c18) 2011; 107
(2023080711053059200_c17) 2008; 319
(2023080711053059200_c15) 1999; 61
(2023080711053059200_c19) 2010; 104
(2023080711053059200_c26) 2017; 11
(2023080711053059200_c43) 2012; 85
(2023080711053059200_c20) 2011; 83
(2023080711053059200_c34) 2014; 8
(2023080711053059200_c12) 2011; 5
(2023080711053059200_c33) 2013; 110
(2023080711053059200_c32) 2016; 10
(2023080711053059200_c1) 2005; 436
(2023080711053059200_c2) 2011; 107
(2023080711053059200_c42) 2022; 47
(2023080711053059200_c5) 2017; 25
(2023080711053059200_c10) 2020; 102
(2023080711053059200_c29) 2017; 118
(2023080711053059200_c13) 2001; 409
(2023080711053059200_c36) 2019; 7
(2023080711053059200_c14) 2007; 79
(2023080711053059200_c37) 2019; 100
(2023080711053059200_c7) 2018; 98
(2023080711053059200_c40) 2010; 35
(2023080711053059200_c41) 2022; 128
(2023080711053059200_c27) 2022; 7
(2023080711053059200_c35) 2018; 121
(2023080711053059200_c3) 2011; 107
(2023080711053059200_c22) 2017; 96
(2023080711053059200_c30) 2021; 10
(2023080711053059200_c44) 2020; 125
(2023080711053059200_c11) 2020; 102
(2023080711053059200_c45) 2011; 99
References_xml – start-page: 183601
  year: 2010
  ident: c19
  article-title: Single photons from coupled quantum modes
  publication-title: Phys. Rev. Lett.
– start-page: 3311
  year: 2022
  ident: c42
  article-title: Parametric-amplification-induced nonreciprocal magnon laser
  publication-title: Opt. Lett.
– start-page: 033901
  year: 2017
  ident: c29
  article-title: Experimental demonstration of spontaneous chirality in a nonlinear microresonator
  publication-title: Phys. Rev. Lett.
– start-page: 015025
  year: 2022
  ident: c27
  article-title: Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide–cavity–emitter system beyond the chiral coupling
  publication-title: Quantum Sci. Technol.
– start-page: 657
  year: 2016
  ident: c32
  article-title: Experimental realization of optomechanically induced non-reciprocity
  publication-title: Nat. Photonics.
– start-page: 062112
  year: 2020
  ident: c47
  article-title: Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories
  publication-title: Phys. Rev. A
– start-page: 043858
  year: 2018
  ident: c7
  article-title: Two-photon blockade in a cascaded cavity-quantum-electrodynamics system
  publication-title: Phys. Rev. A
– start-page: 043602
  year: 2018
  ident: c24
  article-title: Observation of the unconventional photon blockade in the microwave domain
  publication-title: Phys. Rev. Lett.
– start-page: 234101
  year: 2013
  ident: c33
  article-title: Observation of asymmetric transport in structures with active nonlinearities
  publication-title: Phys. Rev. Lett.
– start-page: 213903
  year: 2009
  ident: c31
  article-title: Optical nonreciprocity in optomechanical structures
  publication-title: Phys. Rev. Lett.
– start-page: 6767
  year: 2017
  ident: c5
  article-title: Photon blockade via quantum interference in a strong coupling qubit-cavity system
  publication-title: Opt. Express
– start-page: 143605
  year: 2020
  ident: c44
  article-title: Nonreciprocal optomechanical entanglement against backscattering losses
  publication-title: Phys. Rev. Lett.
– start-page: 091105
  year: 2011
  ident: c45
  article-title: Realization of a narrowband single wavelength microring mirror
  publication-title: Appl. Phys. Lett.
– start-page: 021802
  year: 2011
  ident: c20
  article-title: Origin of strong photon antibunching in weakly nonlinear photonic molecules
  publication-title: Phys. Rev. A
– start-page: 1467
  year: 1997
  ident: c16
  article-title: Strongly interacting photons in a nonlinear cavity
  publication-title: Phys. Rev. Lett.
– start-page: 043822
  year: 2014
  ident: c21
  article-title: Tunable photon statistics in weakly nonlinear photonic molecules
  publication-title: Phys. Rev. A
– start-page: 2376
  year: 2010
  ident: c40
  article-title: Interaction-free all-optical switching in microdisks for quantum applications
  publication-title: Opt. Lett.
– start-page: 774
  year: 2017
  ident: c26
  article-title: Non-reciprocal photonics based on time modulation
  publication-title: Nat. Photonics.
– start-page: 063601
  year: 2011
  ident: c3
  article-title: Photon blockade effect in optomechanical systems
  publication-title: Phys. Rev. Lett.
– start-page: 223601
  year: 2011
  ident: c18
  article-title: Cavity-free photon blockade induced by many-body bound states
  publication-title: Phys. Rev. Lett.
– start-page: 030502
  year: 2012
  ident: c25
  article-title: Antibunched emission of photon pairs via quantum zeno blockade
  publication-title: Phys. Rev. Lett.
– start-page: 053810
  year: 2017
  ident: c22
  article-title: Unconventional photon blockade
  publication-title: Phys. Rev. A
– start-page: 031805
  year: 2012
  ident: c43
  article-title: Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator
  publication-title: Phys. Rev. A
– start-page: 023853
  year: 2013
  ident: c4
  article-title: Photon blockade in quadratically coupled optomechanical systems
  publication-title: Phys. Rev. A
– start-page: 2604
  year: 2020
  ident: c6
  article-title: Enhanced photon blockade in an optomechanical system with parametric amplification
  publication-title: Opt. Lett.
– start-page: 46
  year: 2001
  ident: c13
  article-title: A scheme for efficient quantum computation with linear optics
  publication-title: Nature
– start-page: 043901
  year: 2018
  ident: c28
  article-title: Nonreciprocal localization of photons
  publication-title: Phys. Rev. Lett.
– start-page: 083604
  year: 2022
  ident: c41
  article-title: Quantum squeezing induced optical nonreciprocity
  publication-title: Phys. Rev. Lett.
– start-page: 1062
  year: 2008
  ident: c17
  article-title: A photon turnstile dynamically regulated by one atom
  publication-title: Science
– start-page: 222
  year: 2011
  ident: c12
  article-title: Advances in quantum metrology
  publication-title: Nat. Photonics.
– start-page: 011801
  year: 1999
  ident: c15
  article-title: Photon-photon interactions in cavity electromagnetically induced transparency
  publication-title: Phys. Rev. A
– start-page: 87
  year: 2005
  ident: c1
  article-title: Photon blockade in an optical cavity with one trapped atom
  publication-title: Nature
– start-page: 093602
  year: 2015
  ident: c39
  article-title: Squeezed optomechanics with phase-matched amplification and dissipation
  publication-title: Phys. Rev. Lett.
– start-page: 053713
  year: 2020
  ident: c11
  article-title: Photon blockade in a bimode nonlinear nanocavity embedded with a quantum dot
  publication-title: Phys. Rev. A
– start-page: 053832
  year: 2019
  ident: c37
  article-title: Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity
  publication-title: Phys. Rev. A
– start-page: 023805
  year: 2020
  ident: c8
  article-title: Magnetically controllable photon blockade under a weak quantum-dot–cavity coupling condition
  publication-title: Phys. Rev. A
– start-page: 043601
  year: 2018
  ident: c23
  article-title: Observation of the unconventional photon blockade
  publication-title: Phys. Rev. Lett.
– start-page: 033713
  year: 2020
  ident: c9
  article-title: Conventional photon blockade with a three-wave mixing
  publication-title: Phys. Rev. A
– start-page: 524
  year: 2014
  ident: c34
  article-title: Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators
  publication-title: Nat. Photonics.
– start-page: 153601
  year: 2018
  ident: c35
  article-title: Nonreciprocal photon blockade
  publication-title: Phys. Rev. Lett.
– start-page: 053602
  year: 2011
  ident: c2
  article-title: Dispersive photon blockade in a superconducting circuit
  publication-title: Phys. Rev. Lett.
– start-page: 053710
  year: 2020
  ident: c10
  article-title: Multiphoton blockade in the two-photon Jaynes-Cummings model
  publication-title: Phys. Rev. A
– start-page: 30
  year: 2021
  ident: c30
  article-title: Loss-induced nonreciprocity
  publication-title: Light Sci. Appl.
– start-page: 013826
  year: 2020
  ident: c38
  article-title: Nonreciprocal unconventional photon blockade in a driven dissipative cavity with parametric amplification
  publication-title: Phys. Rev. A
– start-page: 135
  year: 2007
  ident: c14
  article-title: Linear optical quantum computing with photonic qubits
  publication-title: Rev. Mod. Phys.
– start-page: 062131
  year: 2019
  ident: c46
  article-title: Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps
  publication-title: Phys. Rev. A
– start-page: 630
  year: 2019
  ident: c36
  article-title: Nonreciprocal unconventional photon blockade in a spinning optomechanical system
  publication-title: Photonics Res.
– volume: 83
  start-page: 021802
  year: 2011
  ident: 2023080711053059200_c20
  article-title: Origin of strong photon antibunching in weakly nonlinear photonic molecules
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.021802
– volume: 61
  start-page: 011801
  year: 1999
  ident: 2023080711053059200_c15
  article-title: Photon-photon interactions in cavity electromagnetically induced transparency
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.011801
– volume: 8
  start-page: 524
  year: 2014
  ident: 2023080711053059200_c34
  article-title: Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators
  publication-title: Nat. Photonics.
  doi: 10.1038/nphoton.2014.133
– volume: 102
  start-page: 213903
  year: 2009
  ident: 2023080711053059200_c31
  article-title: Optical nonreciprocity in optomechanical structures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.213903
– volume: 11
  start-page: 774
  year: 2017
  ident: 2023080711053059200_c26
  article-title: Non-reciprocal photonics based on time modulation
  publication-title: Nat. Photonics.
  doi: 10.1038/s41566-017-0051-x
– volume: 7
  start-page: 630
  year: 2019
  ident: 2023080711053059200_c36
  article-title: Nonreciprocal unconventional photon blockade in a spinning optomechanical system
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.7.000630
– volume: 45
  start-page: 2604
  year: 2020
  ident: 2023080711053059200_c6
  article-title: Enhanced photon blockade in an optomechanical system with parametric amplification
  publication-title: Opt. Lett.
  doi: 10.1364/OL.392514
– volume: 436
  start-page: 87
  year: 2005
  ident: 2023080711053059200_c1
  article-title: Photon blockade in an optical cavity with one trapped atom
  publication-title: Nature
  doi: 10.1038/nature03804
– volume: 101
  start-page: 023805
  year: 2020
  ident: 2023080711053059200_c8
  article-title: Magnetically controllable photon blockade under a weak quantum-dot–cavity coupling condition
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.023805
– volume: 47
  start-page: 3311
  year: 2022
  ident: 2023080711053059200_c42
  article-title: Parametric-amplification-induced nonreciprocal magnon laser
  publication-title: Opt. Lett.
  doi: 10.1364/OL.459917
– volume: 98
  start-page: 043858
  year: 2018
  ident: 2023080711053059200_c7
  article-title: Two-photon blockade in a cascaded cavity-quantum-electrodynamics system
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.043858
– volume: 7
  start-page: 015025
  year: 2022
  ident: 2023080711053059200_c27
  article-title: Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide–cavity–emitter system beyond the chiral coupling
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ac4425
– volume: 110
  start-page: 234101
  year: 2013
  ident: 2023080711053059200_c33
  article-title: Observation of asymmetric transport in structures with active nonlinearities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.234101
– volume: 121
  start-page: 043602
  year: 2018
  ident: 2023080711053059200_c24
  article-title: Observation of the unconventional photon blockade in the microwave domain
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.043602
– volume: 120
  start-page: 043901
  year: 2018
  ident: 2023080711053059200_c28
  article-title: Nonreciprocal localization of photons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.043901
– volume: 102
  start-page: 053710
  year: 2020
  ident: 2023080711053059200_c10
  article-title: Multiphoton blockade in the two-photon Jaynes-Cummings model
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.053710
– volume: 79
  start-page: 135
  year: 2007
  ident: 2023080711053059200_c14
  article-title: Linear optical quantum computing with photonic qubits
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.135
– volume: 90
  start-page: 043822
  year: 2014
  ident: 2023080711053059200_c21
  article-title: Tunable photon statistics in weakly nonlinear photonic molecules
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.043822
– volume: 35
  start-page: 2376
  year: 2010
  ident: 2023080711053059200_c40
  article-title: Interaction-free all-optical switching in χ(2) microdisks for quantum applications
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.002376
– volume: 85
  start-page: 031805
  year: 2012
  ident: 2023080711053059200_c43
  article-title: Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.031805
– volume: 88
  start-page: 023853
  year: 2013
  ident: 2023080711053059200_c4
  article-title: Photon blockade in quadratically coupled optomechanical systems
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.023853
– volume: 101
  start-page: 013826
  year: 2020
  ident: 2023080711053059200_c38
  article-title: Nonreciprocal unconventional photon blockade in a driven dissipative cavity with parametric amplification
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.013826
– volume: 118
  start-page: 033901
  year: 2017
  ident: 2023080711053059200_c29
  article-title: Experimental demonstration of spontaneous chirality in a nonlinear microresonator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.033901
– volume: 79
  start-page: 1467
  year: 1997
  ident: 2023080711053059200_c16
  article-title: Strongly interacting photons in a nonlinear cavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1467
– volume: 121
  start-page: 153601
  year: 2018
  ident: 2023080711053059200_c35
  article-title: Nonreciprocal photon blockade
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.153601
– volume: 102
  start-page: 053713
  year: 2020
  ident: 2023080711053059200_c11
  article-title: Photon blockade in a bimode nonlinear nanocavity embedded with a quantum dot
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.053713
– volume: 319
  start-page: 1062
  year: 2008
  ident: 2023080711053059200_c17
  article-title: A photon turnstile dynamically regulated by one atom
  publication-title: Science
  doi: 10.1126/science.1152261
– volume: 102
  start-page: 033713
  year: 2020
  ident: 2023080711053059200_c9
  article-title: Conventional photon blockade with a three-wave mixing
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.102.033713
– volume: 10
  start-page: 657
  year: 2016
  ident: 2023080711053059200_c32
  article-title: Experimental realization of optomechanically induced non-reciprocity
  publication-title: Nat. Photonics.
  doi: 10.1038/nphoton.2016.161
– volume: 96
  start-page: 053810
  year: 2017
  ident: 2023080711053059200_c22
  article-title: Unconventional photon blockade
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.053810
– volume: 107
  start-page: 053602
  year: 2011
  ident: 2023080711053059200_c2
  article-title: Dispersive photon blockade in a superconducting circuit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.053602
– volume: 121
  start-page: 043601
  year: 2018
  ident: 2023080711053059200_c23
  article-title: Observation of the unconventional photon blockade
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.043601
– volume: 108
  start-page: 030502
  year: 2012
  ident: 2023080711053059200_c25
  article-title: Antibunched emission of photon pairs via quantum zeno blockade
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.030502
– volume: 104
  start-page: 183601
  year: 2010
  ident: 2023080711053059200_c19
  article-title: Single photons from coupled quantum modes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.183601
– volume: 10
  start-page: 30
  year: 2021
  ident: 2023080711053059200_c30
  article-title: Loss-induced nonreciprocity
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00464-2
– volume: 99
  start-page: 091105
  year: 2011
  ident: 2023080711053059200_c45
  article-title: Realization of a narrowband single wavelength microring mirror
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3633111
– volume: 101
  start-page: 062112
  year: 2020
  ident: 2023080711053059200_c47
  article-title: Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.062112
– volume: 409
  start-page: 46
  year: 2001
  ident: 2023080711053059200_c13
  article-title: A scheme for efficient quantum computation with linear optics
  publication-title: Nature
  doi: 10.1038/35051009
– volume: 114
  start-page: 093602
  year: 2015
  ident: 2023080711053059200_c39
  article-title: Squeezed optomechanics with phase-matched amplification and dissipation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.093602
– volume: 100
  start-page: 062131
  year: 2019
  ident: 2023080711053059200_c46
  article-title: Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.062131
– volume: 25
  start-page: 6767
  year: 2017
  ident: 2023080711053059200_c5
  article-title: Photon blockade via quantum interference in a strong coupling qubit-cavity system
  publication-title: Opt. Express
  doi: 10.1364/OE.25.006767
– volume: 107
  start-page: 063601
  year: 2011
  ident: 2023080711053059200_c3
  article-title: Photon blockade effect in optomechanical systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.063601
– volume: 5
  start-page: 222
  year: 2011
  ident: 2023080711053059200_c12
  article-title: Advances in quantum metrology
  publication-title: Nat. Photonics.
  doi: 10.1038/nphoton.2011.35
– volume: 125
  start-page: 143605
  year: 2020
  ident: 2023080711053059200_c44
  article-title: Nonreciprocal optomechanical entanglement against backscattering losses
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.143605
– volume: 107
  start-page: 223601
  year: 2011
  ident: 2023080711053059200_c18
  article-title: Cavity-free photon blockade induced by many-body bound states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.223601
– volume: 100
  start-page: 053832
  year: 2019
  ident: 2023080711053059200_c37
  article-title: Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.053832
– volume: 128
  start-page: 083604
  year: 2022
  ident: 2023080711053059200_c41
  article-title: Quantum squeezing induced optical nonreciprocity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.083604
SSID ssj0005233
Score 2.5041008
Snippet We theoretically propose an all-optical scheme to implement a giant nonreciprocal unconventional photon blockade (UPB) in a single photonic device. By...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplification
Applied physics
Photons
Quantum interference effects
Resonators
Title Parametric amplification induced giant nonreciprocal unconventional photon blockade in a single microring resonator
URI http://dx.doi.org/10.1063/5.0158334
https://www.proquest.com/docview/2847099716
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKJgQ8IBggChuygAekyCyJHad5nNhGhcqYRCv6FjmJAxWFTWsiTfvruYvtfEgFAS9RZSWW5fvV9-Hf3RHyGmuAJ-D8YPFBwQToEJYJrhmXWTnRIpbSsC3O5HQhPiyj5Wh03WMt1VX2Nr_ZmlfyP1KFMZArZsn-g2TbSWEAfoN84QkShudfyfhcIbUKa-x7CpnhpQ3AeeBo13ix_xWEX3ng4WMNC9RVIBBQZH2m-eW3C6yskYFS-66KpoSI8jCAsNbeD2TrNQQ9cMoxzH5x1TdmnQVroiMbb92kBvU61bMv2iRfr-r2YFcrNzqtlVWbqBTqRhmsuhH4iL130exVPzoR8oYbF3d4ctdOA-rDuVnW4FzmTCa29Kw2R7EfYwTVns7urDbJyRaUcqsOAKMLBIfVWDGjTHSKzl3un31KTxezWTo_Wc5vkd0QHAw40nePjj_OPvfoQZy7bou4MleVSvLDduqhLdM5KHfAejFEip6tMn9A7lsngx4ZxDwkI_1zj9zrlZ7cI7ft7jwimw5FdIAialFEGxTRAYroEEXUoIg6FMGnVFGDItqiiLYoekwWpyfzd1NmW3GwPEzCiqkg0HkYhTn4FyJXEXaKxc4KkzjJIoFF3qTSfqF8HSVRJvwSVIUsokmshJ8UAedPyA4sUz8ltMjjJNKB1mGZCZh94seqULJMJFiSnIdj8sZtauq2EdulrNOGLyF5GqV2_8fkZfvqpSnOsu2lfSeZ1P53NykaZZgzHsgxedVK6_eTPPvzJM_J3Q78-2Snuqr1ARirVfbC4uoXk6iYUw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+amplification+induced+giant+nonreciprocal+unconventional+photon+blockade+in+a+single+microring+resonator&rft.jtitle=Applied+physics+letters&rft.au=Da-Wei%2C+Liu&rft.au=Kai-Wei%2C+Huang&rft.au=Wu%2C+Ying&rft.au=Liu-Gang%2C+Si&rft.date=2023-08-07&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=6&rft_id=info:doi/10.1063%2F5.0158334&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon