Reinforcement Learning-Based Event-Triggered FCS-MPC for Power Converters
This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture with the help of adaptive dynamic programming technique and event-triggered mechanis...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 70; no. 12; pp. 11841 - 11852 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0046 1557-9948 |
DOI | 10.1109/TIE.2023.3239865 |
Cover
Loading…
Abstract | This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture with the help of adaptive dynamic programming technique and event-triggered mechanism subject to system uncertainties. Our development, endowed with the merits of reinforcement learning and event-triggered control as well as a predictive control solution, is able to alleviate the issues of parametric uncertainties and high switching frequency inherent in the existing scheme, while retaining the merits of the finite control-set model predictive control. Finally, this proposal is experimentally evaluated, where robust performance tests confirm the interest and applicability of the proposed control methodology. |
---|---|
AbstractList | This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture with the help of adaptive dynamic programming technique and event-triggered mechanism subject to system uncertainties. Our development, endowed with the merits of reinforcement learning and event-triggered control as well as a predictive control solution, is able to alleviate the issues of parametric uncertainties and high switching frequency inherent in the existing scheme, while retaining the merits of the finite control-set model predictive control. Finally, this proposal is experimentally evaluated, where robust performance tests confirm the interest and applicability of the proposed control methodology. |
Author | Qiu, Lin Liu, Xing Fang, Youtong Rodriguez, Jose |
Author_xml | – sequence: 1 givenname: Xing orcidid: 0000-0001-9685-2862 surname: Liu fullname: Liu, Xing email: xingldl@zju.edu.cn organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Lin orcidid: 0000-0003-1236-2191 surname: Qiu fullname: Qiu, Lin email: qiu_lin@zju.edu.cn organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Youtong orcidid: 0000-0002-8521-4184 surname: Fang fullname: Fang, Youtong email: youtong@zju.edu.cn organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Jose orcidid: 0000-0002-1410-4121 surname: Rodriguez fullname: Rodriguez, Jose email: jose.rodriguezp@uss.cl organization: Faculty of Engineering, Universidad San Sebastian Santiago, Santiago de Chile, Chile |
BookMark | eNp9kE1PwkAQhjcGEwG9e_DQxHNx9rs9agNKgpEonjfLdkpKYBe3FeO_twQOxoOnyTt5n5nkGZCeDx4JuaYwohTyu8V0PGLA-IgznmdKnpE-lVKneS6yHukD01kKINQFGTTNGoAKSWWfTF-x9lWIDrfo22SGNvrar9IH22CZjPfdMl3EerXC2OVJ8ZY-z4ukA5J5-MKYFMHvMbYYm0tyXtlNg1enOSTvk_GieEpnL4_T4n6WOpazNs0r5xjopVOlAkstwxIy69RSVVYBV1JJwFyjoJottWa8KqGiDDWTGRey4kNye7y7i-HjE5vWrMNn9N1LwzKmhJaZ1l1LHVsuhqaJWBlXt7atg2-jrTeGgjloM502c9BmTto6EP6Au1hvbfz-D7k5IjUi_qoDFyJT_Adp2Hio |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_ins_2023_119866 crossref_primary_10_1109_TPEL_2024_3416911 crossref_primary_10_1109_TPEL_2024_3464536 crossref_primary_10_1109_TIE_2023_3303626 crossref_primary_10_1109_TIE_2023_3303646 crossref_primary_10_3390_su15076114 crossref_primary_10_1109_TIA_2024_3435170 crossref_primary_10_1109_TPEL_2024_3510731 crossref_primary_10_1109_TPEL_2024_3416292 crossref_primary_10_1109_TIE_2024_3360630 crossref_primary_10_1109_TIE_2024_3436696 crossref_primary_10_1109_TPEL_2024_3401739 crossref_primary_10_1109_TTE_2023_3327744 crossref_primary_10_1002_tee_24278 crossref_primary_10_1109_TPEL_2024_3350181 |
Cites_doi | 10.1109/TIE.2016.2625238 10.1109/TIE.2018.2875660 10.1109/TPEL.2022.3200857 10.1109/TSMC.2020.3042876 10.1109/TIE.2011.2157284 10.1109/MIE.2013.2290138 10.1109/TII.2019.2894282 10.1109/TII.2019.2896618 10.1109/TPEL.2022.3157847 10.1109/TIA.2015.2437351 10.1109/TIE.2020.3036214 10.1109/TPEL.2022.3194518 10.1109/TIE.2019.2962489 10.1109/TSMC.2020.3003224 10.1109/TIE.2022.3167135 10.1109/TAC.2016.2594204 10.1109/TIE.2017.2760840 10.1109/TII.2021.3082187 10.1109/TII.2013.2284558 10.1109/TIE.2022.3196337 10.1109/TPEL.2016.2619378 10.1109/TAC.2022.3191760 10.1109/TPEL.2022.3171100 10.1109/TAC.2022.3162550 10.1109/TIE.2021.3094447 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2023.3239865 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 11852 |
ExternalDocumentID | 10_1109_TIE_2023_3239865 10034486 |
Genre | orig-research |
GrantInformation_xml | – fundername: Agencia Nacional de Investigación y Desarrollo; ANID grantid: FB0008; 1210208; 1221293 funderid: 10.13039/501100020884 – fundername: National Natural Science Foundation of China grantid: 51807177; 51827810 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFB4201600 – fundername: China Postdoctoral Science Foundation grantid: 2020M681855 funderid: 10.13039/501100002858 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY21E070004; LY22E070003 funderid: 10.13039/501100004731 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c292t-9fcc207bc6d60a1a2ed08ac6b6fa60365650e97e4172b7723fd0f12e7258345f3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:16:26 EDT 2025 Tue Jul 01 00:16:54 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Wed Aug 27 02:25:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-9fcc207bc6d60a1a2ed08ac6b6fa60365650e97e4172b7723fd0f12e7258345f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1410-4121 0000-0003-1236-2191 0000-0001-9685-2862 0000-0002-8521-4184 |
PQID | 2826475877 |
PQPubID | 85464 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TIE_2023_3239865 ieee_primary_10034486 proquest_journals_2826475877 crossref_primary_10_1109_TIE_2023_3239865 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 khalil (ref18) 2002 xia (ref25) 2014; 10 ref24 ref23 ref26 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1109/TIE.2016.2625238 – ident: ref23 doi: 10.1109/TIE.2018.2875660 – ident: ref15 doi: 10.1109/TPEL.2022.3200857 – ident: ref19 doi: 10.1109/TSMC.2020.3042876 – ident: ref26 doi: 10.1109/TIE.2011.2157284 – ident: ref4 doi: 10.1109/MIE.2013.2290138 – ident: ref22 doi: 10.1109/TII.2019.2894282 – ident: ref10 doi: 10.1109/TII.2019.2896618 – ident: ref11 doi: 10.1109/TPEL.2022.3157847 – ident: ref1 doi: 10.1109/TIA.2015.2437351 – ident: ref12 doi: 10.1109/TIE.2020.3036214 – ident: ref14 doi: 10.1109/TPEL.2022.3194518 – ident: ref5 doi: 10.1109/TIE.2019.2962489 – ident: ref20 doi: 10.1109/TSMC.2020.3003224 – ident: ref7 doi: 10.1109/TIE.2022.3167135 – ident: ref17 doi: 10.1109/TAC.2016.2594204 – year: 2002 ident: ref18 publication-title: Nonlinear Systems – ident: ref16 doi: 10.1109/TIE.2017.2760840 – ident: ref8 doi: 10.1109/TII.2021.3082187 – volume: 10 start-page: 991 year: 2014 ident: ref25 article-title: A simplified finite-control-set model-predictive control for power converters publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2013.2284558 – ident: ref3 doi: 10.1109/TIE.2022.3196337 – ident: ref24 doi: 10.1109/TPEL.2016.2619378 – ident: ref9 doi: 10.1109/TAC.2022.3191760 – ident: ref13 doi: 10.1109/TPEL.2022.3171100 – ident: ref21 doi: 10.1109/TAC.2022.3162550 – ident: ref6 doi: 10.1109/TIE.2021.3094447 |
SSID | ssj0014515 |
Score | 2.53314 |
Snippet | This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11841 |
SubjectTerms | Adaptive control Capacitors Control methods Control systems Cost function Dynamic programming Event-triggered mechanism finite control-set model predictive control neural network Performance tests Power converters Predictive control reinforcement learning Switches Uncertainty Voltage control |
Title | Reinforcement Learning-Based Event-Triggered FCS-MPC for Power Converters |
URI | https://ieeexplore.ieee.org/document/10034486 https://www.proquest.com/docview/2826475877 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ukx78iRFFs4MXDx1l67rtqAQCJhCikHBb1l8cNGBkXPzrfa8bhGg03nboa5q-dt977ev3EXLHNMJoLqiUPKawExMqtQyoUgDXitvQOjmf4Uj0p_xpFs2qx-ruLYwxxhWfGR8_3V2-Xqo1HpXBDkeCukTsk33I3MrHWtsrAx6VcgUBUsZC1re5k2RpazLo-igT7ofIdoc4soNBTlTlx5_YwUvvmIw2AyurSl79dSF99fmNs_HfIz8hR1Wg6T2UK-OU7JnFGTncoR88J4Nn43hTlTsi9Cqq1Tl9BGTTXhcrIekEsvc56nl6vc4LHY47Hhh4Y9RW8zpYsY4loas6mfa6k06fVtIKVAVpUNDUKhWwWCqhBcvbeWA0S3IlpLC5AFCDMI-ZNDYc4hsJAXhoNbPtwMRBlIQ8suEFqS2WC3NJvFBH1kRgyjTnkYxSBSFlInOZ2jxMmG6Q1mayM1XxjqP8xVvm8g-WZuCeDN2TVe5pkPutxXvJufFH2zrO9k67cqIbpLlxaFbtylUG6aXgkCDF8dUvZtfkAHsv61WapFZ8rM0NRB2FvHWr7QvBoNFI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b9swED207tB2SNLWRd06qYYsGagwEklJY2rYsBPbMBIbyCaIXxlaOEVsL_n1vaNkw2jRIJsGHkTwSL078e49gFNuCUYrxbQWGcOTmDNtdcKMQbg2wqc-yPlMpmq4EFd38q5pVg-9MM65UHzmYnoMd_n2wWzoVxmecCKoy9VreCOpG7du19pdGghZCxYkRBqLed_2VpIX5_NRPyah8DglvjtCkj0UCrIq_3yLA8AMDmG6nVpdV_Iz3qx1bJ7-Ym188dyP4KAJNaPLem98gFdu-RHe7xEQfoLRjQvMqSb8JIwastV79gOxzUZ9qoVkc8zf70nRMxr0btlk1ovQIJqRulrUo5p1KgpdtWEx6M97Q9aIKzCTFMmaFd6YhGfaKKt4dVElzvK8MkorXymENQz0uCsyJzDC0RiCp95yf5G4LJF5KqRPP0Nr-bB0XyBKrfROoim3QkgtC4NBZa4rXfgqzbntwPl2sUvTMI-TAMavMmQgvCjRPSW5p2zc04GzncXvmnXjmbFtWu29cfVCd6C7dWjZnMtViQmmEpgiZdnX_5h9h7fD-WRcjkfT62_wjt5UV690obV-3LhjjEHW-iTsvD_XttSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Event-Triggered+FCS-MPC+for+Power+Converters&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Liu%2C+Xing&rft.au=Qiu%2C+Lin&rft.au=Fang%2C+Youtong&rft.au=Rodriguez%2C+Jose&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=70&rft.issue=12&rft.spage=11841&rft_id=info:doi/10.1109%2FTIE.2023.3239865&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |