Reinforcement Learning-Based Event-Triggered FCS-MPC for Power Converters

This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture with the help of adaptive dynamic programming technique and event-triggered mechanis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 70; no. 12; pp. 11841 - 11852
Main Authors Liu, Xing, Qiu, Lin, Fang, Youtong, Rodriguez, Jose
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2023.3239865

Cover

Loading…
Abstract This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture with the help of adaptive dynamic programming technique and event-triggered mechanism subject to system uncertainties. Our development, endowed with the merits of reinforcement learning and event-triggered control as well as a predictive control solution, is able to alleviate the issues of parametric uncertainties and high switching frequency inherent in the existing scheme, while retaining the merits of the finite control-set model predictive control. Finally, this proposal is experimentally evaluated, where robust performance tests confirm the interest and applicability of the proposed control methodology.
AbstractList This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement learning event-triggered predictive control architecture with the help of adaptive dynamic programming technique and event-triggered mechanism subject to system uncertainties. Our development, endowed with the merits of reinforcement learning and event-triggered control as well as a predictive control solution, is able to alleviate the issues of parametric uncertainties and high switching frequency inherent in the existing scheme, while retaining the merits of the finite control-set model predictive control. Finally, this proposal is experimentally evaluated, where robust performance tests confirm the interest and applicability of the proposed control methodology.
Author Qiu, Lin
Liu, Xing
Fang, Youtong
Rodriguez, Jose
Author_xml – sequence: 1
  givenname: Xing
  orcidid: 0000-0001-9685-2862
  surname: Liu
  fullname: Liu, Xing
  email: xingldl@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0003-1236-2191
  surname: Qiu
  fullname: Qiu, Lin
  email: qiu_lin@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Youtong
  orcidid: 0000-0002-8521-4184
  surname: Fang
  fullname: Fang, Youtong
  email: youtong@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Jose
  orcidid: 0000-0002-1410-4121
  surname: Rodriguez
  fullname: Rodriguez, Jose
  email: jose.rodriguezp@uss.cl
  organization: Faculty of Engineering, Universidad San Sebastian Santiago, Santiago de Chile, Chile
BookMark eNp9kE1PwkAQhjcGEwG9e_DQxHNx9rs9agNKgpEonjfLdkpKYBe3FeO_twQOxoOnyTt5n5nkGZCeDx4JuaYwohTyu8V0PGLA-IgznmdKnpE-lVKneS6yHukD01kKINQFGTTNGoAKSWWfTF-x9lWIDrfo22SGNvrar9IH22CZjPfdMl3EerXC2OVJ8ZY-z4ukA5J5-MKYFMHvMbYYm0tyXtlNg1enOSTvk_GieEpnL4_T4n6WOpazNs0r5xjopVOlAkstwxIy69RSVVYBV1JJwFyjoJottWa8KqGiDDWTGRey4kNye7y7i-HjE5vWrMNn9N1LwzKmhJaZ1l1LHVsuhqaJWBlXt7atg2-jrTeGgjloM502c9BmTto6EP6Au1hvbfz-D7k5IjUi_qoDFyJT_Adp2Hio
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_ins_2023_119866
crossref_primary_10_1109_TPEL_2024_3416911
crossref_primary_10_1109_TPEL_2024_3464536
crossref_primary_10_1109_TIE_2023_3303626
crossref_primary_10_1109_TIE_2023_3303646
crossref_primary_10_3390_su15076114
crossref_primary_10_1109_TIA_2024_3435170
crossref_primary_10_1109_TPEL_2024_3510731
crossref_primary_10_1109_TPEL_2024_3416292
crossref_primary_10_1109_TIE_2024_3360630
crossref_primary_10_1109_TIE_2024_3436696
crossref_primary_10_1109_TPEL_2024_3401739
crossref_primary_10_1109_TTE_2023_3327744
crossref_primary_10_1002_tee_24278
crossref_primary_10_1109_TPEL_2024_3350181
Cites_doi 10.1109/TIE.2016.2625238
10.1109/TIE.2018.2875660
10.1109/TPEL.2022.3200857
10.1109/TSMC.2020.3042876
10.1109/TIE.2011.2157284
10.1109/MIE.2013.2290138
10.1109/TII.2019.2894282
10.1109/TII.2019.2896618
10.1109/TPEL.2022.3157847
10.1109/TIA.2015.2437351
10.1109/TIE.2020.3036214
10.1109/TPEL.2022.3194518
10.1109/TIE.2019.2962489
10.1109/TSMC.2020.3003224
10.1109/TIE.2022.3167135
10.1109/TAC.2016.2594204
10.1109/TIE.2017.2760840
10.1109/TII.2021.3082187
10.1109/TII.2013.2284558
10.1109/TIE.2022.3196337
10.1109/TPEL.2016.2619378
10.1109/TAC.2022.3191760
10.1109/TPEL.2022.3171100
10.1109/TAC.2022.3162550
10.1109/TIE.2021.3094447
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2023.3239865
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 11852
ExternalDocumentID 10_1109_TIE_2023_3239865
10034486
Genre orig-research
GrantInformation_xml – fundername: Agencia Nacional de Investigación y Desarrollo; ANID
  grantid: FB0008; 1210208; 1221293
  funderid: 10.13039/501100020884
– fundername: National Natural Science Foundation of China
  grantid: 51807177; 51827810
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFB4201600
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M681855
  funderid: 10.13039/501100002858
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY21E070004; LY22E070003
  funderid: 10.13039/501100004731
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c292t-9fcc207bc6d60a1a2ed08ac6b6fa60365650e97e4172b7723fd0f12e7258345f3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:16:26 EDT 2025
Tue Jul 01 00:16:54 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Wed Aug 27 02:25:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-9fcc207bc6d60a1a2ed08ac6b6fa60365650e97e4172b7723fd0f12e7258345f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1410-4121
0000-0003-1236-2191
0000-0001-9685-2862
0000-0002-8521-4184
PQID 2826475877
PQPubID 85464
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TIE_2023_3239865
ieee_primary_10034486
proquest_journals_2826475877
crossref_primary_10_1109_TIE_2023_3239865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
khalil (ref18) 2002
xia (ref25) 2014; 10
ref24
ref23
ref26
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TIE.2016.2625238
– ident: ref23
  doi: 10.1109/TIE.2018.2875660
– ident: ref15
  doi: 10.1109/TPEL.2022.3200857
– ident: ref19
  doi: 10.1109/TSMC.2020.3042876
– ident: ref26
  doi: 10.1109/TIE.2011.2157284
– ident: ref4
  doi: 10.1109/MIE.2013.2290138
– ident: ref22
  doi: 10.1109/TII.2019.2894282
– ident: ref10
  doi: 10.1109/TII.2019.2896618
– ident: ref11
  doi: 10.1109/TPEL.2022.3157847
– ident: ref1
  doi: 10.1109/TIA.2015.2437351
– ident: ref12
  doi: 10.1109/TIE.2020.3036214
– ident: ref14
  doi: 10.1109/TPEL.2022.3194518
– ident: ref5
  doi: 10.1109/TIE.2019.2962489
– ident: ref20
  doi: 10.1109/TSMC.2020.3003224
– ident: ref7
  doi: 10.1109/TIE.2022.3167135
– ident: ref17
  doi: 10.1109/TAC.2016.2594204
– year: 2002
  ident: ref18
  publication-title: Nonlinear Systems
– ident: ref16
  doi: 10.1109/TIE.2017.2760840
– ident: ref8
  doi: 10.1109/TII.2021.3082187
– volume: 10
  start-page: 991
  year: 2014
  ident: ref25
  article-title: A simplified finite-control-set model-predictive control for power converters
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2013.2284558
– ident: ref3
  doi: 10.1109/TIE.2022.3196337
– ident: ref24
  doi: 10.1109/TPEL.2016.2619378
– ident: ref9
  doi: 10.1109/TAC.2022.3191760
– ident: ref13
  doi: 10.1109/TPEL.2022.3171100
– ident: ref21
  doi: 10.1109/TAC.2022.3162550
– ident: ref6
  doi: 10.1109/TIE.2021.3094447
SSID ssj0014515
Score 2.53314
Snippet This article aims to first focus on an improvement of finite control-set model predictive control strategy for power converters that is based on reinforcement...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11841
SubjectTerms Adaptive control
Capacitors
Control methods
Control systems
Cost function
Dynamic programming
Event-triggered mechanism
finite control-set model predictive control
neural network
Performance tests
Power converters
Predictive control
reinforcement learning
Switches
Uncertainty
Voltage control
Title Reinforcement Learning-Based Event-Triggered FCS-MPC for Power Converters
URI https://ieeexplore.ieee.org/document/10034486
https://www.proquest.com/docview/2826475877
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ukx78iRFFs4MXDx1l67rtqAQCJhCikHBb1l8cNGBkXPzrfa8bhGg03nboa5q-dt977ev3EXLHNMJoLqiUPKawExMqtQyoUgDXitvQOjmf4Uj0p_xpFs2qx-ruLYwxxhWfGR8_3V2-Xqo1HpXBDkeCukTsk33I3MrHWtsrAx6VcgUBUsZC1re5k2RpazLo-igT7ofIdoc4soNBTlTlx5_YwUvvmIw2AyurSl79dSF99fmNs_HfIz8hR1Wg6T2UK-OU7JnFGTncoR88J4Nn43hTlTsi9Cqq1Tl9BGTTXhcrIekEsvc56nl6vc4LHY47Hhh4Y9RW8zpYsY4loas6mfa6k06fVtIKVAVpUNDUKhWwWCqhBcvbeWA0S3IlpLC5AFCDMI-ZNDYc4hsJAXhoNbPtwMRBlIQ8suEFqS2WC3NJvFBH1kRgyjTnkYxSBSFlInOZ2jxMmG6Q1mayM1XxjqP8xVvm8g-WZuCeDN2TVe5pkPutxXvJufFH2zrO9k67cqIbpLlxaFbtylUG6aXgkCDF8dUvZtfkAHsv61WapFZ8rM0NRB2FvHWr7QvBoNFI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b9swED207tB2SNLWRd06qYYsGagwEklJY2rYsBPbMBIbyCaIXxlaOEVsL_n1vaNkw2jRIJsGHkTwSL078e49gFNuCUYrxbQWGcOTmDNtdcKMQbg2wqc-yPlMpmq4EFd38q5pVg-9MM65UHzmYnoMd_n2wWzoVxmecCKoy9VreCOpG7du19pdGghZCxYkRBqLed_2VpIX5_NRPyah8DglvjtCkj0UCrIq_3yLA8AMDmG6nVpdV_Iz3qx1bJ7-Ym188dyP4KAJNaPLem98gFdu-RHe7xEQfoLRjQvMqSb8JIwastV79gOxzUZ9qoVkc8zf70nRMxr0btlk1ovQIJqRulrUo5p1KgpdtWEx6M97Q9aIKzCTFMmaFd6YhGfaKKt4dVElzvK8MkorXymENQz0uCsyJzDC0RiCp95yf5G4LJF5KqRPP0Nr-bB0XyBKrfROoim3QkgtC4NBZa4rXfgqzbntwPl2sUvTMI-TAMavMmQgvCjRPSW5p2zc04GzncXvmnXjmbFtWu29cfVCd6C7dWjZnMtViQmmEpgiZdnX_5h9h7fD-WRcjkfT62_wjt5UV690obV-3LhjjEHW-iTsvD_XttSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Event-Triggered+FCS-MPC+for+Power+Converters&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Liu%2C+Xing&rft.au=Qiu%2C+Lin&rft.au=Fang%2C+Youtong&rft.au=Rodriguez%2C+Jose&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=70&rft.issue=12&rft.spage=11841&rft_id=info:doi/10.1109%2FTIE.2023.3239865&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon