Optimization of Automated and Manual Software Tests in Industrial Practice: A Survey and Historical Analysis
Context : Both automated and manual software testing are widely applied in practice. While being essential for project success and software quality, they are very resource-intensive, thus motivating the pursuit for optimization. Goal : We aim at understanding to what extent test optimization techniq...
Saved in:
Published in | IEEE transactions on software engineering Vol. 50; no. 8; pp. 2005 - 2020 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2024
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context : Both automated and manual software testing are widely applied in practice. While being essential for project success and software quality, they are very resource-intensive, thus motivating the pursuit for optimization. Goal : We aim at understanding to what extent test optimization techniques for automated testing from the field of test case selection, prioritization, and test suite minimization can be applied to manual testing processes in practice. Method : We have studied the automated and manual testing process of five industrial study subjects from five different domains with different technological backgrounds and assessed the costs and benefits of test optimization techniques in industrial practice. In particular, we have carried out a cost-benefit analysis of two language-agnostic optimization techniques (test impact analysis and Pareto testing a technique we introduce in this paper) on 2,622 real-world failures from our subject's histories. Results : Both techniques maintain most of the fault detection capability while significantly reducing the test runtime. For automated testing, optimized test suites detect, on average, 80% of failures, while saving 66% of execution time, as compared to 81% failure detection rate for manual test suites and an average time saving of 43%. We observe an average speedup of the time to first failure of around 49 compared to a random test ordering. Conclusion : Our results suggest that optimization techniques from automated testing can be transferred to manual testing in industrial practice, resulting in lower test execution time and much lower time-to-feedback, but coming with process-related limitations and requirements for a successful implementation. All study subjects implemented one of our test optimization techniques in their processes, which demonstrates the practical impact of our findings. |
---|---|
AbstractList | Context : Both automated and manual software testing are widely applied in practice. While being essential for project success and software quality, they are very resource-intensive, thus motivating the pursuit for optimization. Goal : We aim at understanding to what extent test optimization techniques for automated testing from the field of test case selection, prioritization, and test suite minimization can be applied to manual testing processes in practice. Method : We have studied the automated and manual testing process of five industrial study subjects from five different domains with different technological backgrounds and assessed the costs and benefits of test optimization techniques in industrial practice. In particular, we have carried out a cost–benefit analysis of two language-agnostic optimization techniques (test impact analysis and Pareto testing a technique we introduce in this paper) on 2,622 real-world failures from our subject's histories. Results : Both techniques maintain most of the fault detection capability while significantly reducing the test runtime. For automated testing, optimized test suites detect, on average, 80% of failures, while saving 66% of execution time, as compared to 81% failure detection rate for manual test suites and an average time saving of 43%. We observe an average speedup of the time to first failure of around 49 compared to a random test ordering. Conclusion : Our results suggest that optimization techniques from automated testing can be transferred to manual testing in industrial practice, resulting in lower test execution time and much lower time-to-feedback, but coming with process-related limitations and requirements for a successful implementation. All study subjects implemented one of our test optimization techniques in their processes, which demonstrates the practical impact of our findings. |
Author | Apel, Sven Nommer, Raphael Haas, Roman Juergens, Elmar |
Author_xml | – sequence: 1 givenname: Roman orcidid: 0000-0002-3248-3401 surname: Haas fullname: Haas, Roman email: haas@cqse.eu organization: Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany – sequence: 2 givenname: Raphael orcidid: 0000-0003-2864-3326 surname: Nommer fullname: Nommer, Raphael email: noemmer@cqse.eu organization: Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany – sequence: 3 givenname: Elmar orcidid: 0000-0003-1692-6839 surname: Juergens fullname: Juergens, Elmar organization: CQSE GmbH, 81249, Munich, Germany – sequence: 4 givenname: Sven orcidid: 0000-0003-3687-2233 surname: Apel fullname: Apel, Sven organization: Saarland University, Saarland Informatics Campus, 66123, Saarbrücken, Germany |
BookMark | eNp9kM9LwzAUgINMcJvePXgIeO58SZY28TbGdANlwua5pGkKGV0zk1SZf73dj4N48PQO7_sej2-Aeo1rDEK3BEaEgHxYr2YjCnQ8YmMiiCQXqE8kkwnjFHqoDyBFwrmQV2gQwgYAeJbxPqqXu2i39ltF6xrsKjxpo9uqaEqsmhK_qqZVNV65Kn4pb_DahBiwbfCiKdsQve2Wb17paLV5xBO8av2n2R_VuQ3Reas7YtKoeh9suEaXlaqDuTnPIXp_mq2n8-Rl-byYTl4STSWNiQSqq5RnplSCAWeUG6KETgko0BR0oTVkQmlKlC61AUOhqApZpsAKUWYVG6L7092ddx9t93K-ca3vngg5A0kl4SmIjkpPlPYuBG-qXNt47BC9snVOID-Uzbuy-aFsfi7bifBH3Hm7VX7_n3J3Uqwx5hfOUymFZD-LkYdB |
CODEN | IESEDJ |
CitedBy_id | crossref_primary_10_23940_ijpe_25_01_p1_19 |
Cites_doi | 10.1109/IEEESTD.2022.9698145 10.1145/2950290.2950361 10.1109/MS.2017.3571562 10.2197/ipsjjip.30.294 10.1109/ICST57152.2023.00044 10.1145/152388.152391 10.1109/ICSE-SEIP.2017.16 10.1109/32.910860 10.1109/ICST46399.2020.00012 10.1109/ICSE.2015.230 10.1145/3180155.3180210 10.1109/ICSME.2018.00033 10.1145/3460319.3464834 10.1145/3468264.3473922 10.1007/s10664-021-10066-6 10.1109/ISESE.2003.1237978 10.1016/j.infsof.2009.07.001 10.1109/ICMLA.2016.0065 10.1145/3460319.3464810 10.1109/ICST.2018.00038 10.1109/ICSE.1994.296780 10.1145/3395363.3397383 10.1109/ICST57152.2023.00038 10.1145/3213846.3213852 10.1145/2635868.2635910 10.1145/3524481.3527223 10.1109/ICSM.2012.6405252 10.1109/CSMR.2011.44 10.1145/347324.348910 10.1109/ICST.2017.44 10.1145/3213846.3213875 10.1109/TechDebt.2019.00016 10.1109/ICSE.2015.24 10.1109/ICSE48619.2023.00145 10.1109/TestVis57757.2022.00008 10.1145/2593501.2593506 10.1109/ICST.2008.47 10.1109/ISSREW.2019.00033 10.1109/ICSE-SEIP.2019.00018 10.1145/3057269 10.1007/978-3-030-99527-0_12 10.1007/978-3-031-19756-7_17 10.1109/ICST.2011.60 10.1109/TSE.2021.3070549 10.1007/s11219-012-9181-z 10.1109/TSE.2022.3184842 10.1109/ICST.2015.7102602 10.1145/2786805.2786878 10.1002/stvr.1572 10.1145/3241743 10.1109/ICSM.1999.792604 10.1016/j.infsof.2017.08.014 10.1109/ICSE.2019.00054 10.1002/stv.430 10.1145/3524481.3527230 10.1145/2393596.2393634 10.1007/s10664-019-09781-y 10.1109/ICST.2019.00052 10.1145/3106237.3106297 |
ContentType | Journal Article |
Copyright | Copyright IEEE Computer Society 2024 |
Copyright_xml | – notice: Copyright IEEE Computer Society 2024 |
DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
DOI | 10.1109/TSE.2024.3418191 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1939-3520 |
EndPage | 2020 |
ExternalDocumentID | 10_1109_TSE_2024_3418191 10569989 |
Genre | orig-research |
GrantInformation_xml | – fundername: German Federal Ministry of Education and Research (BMBF) grantid: Q-SOFT, 01IS22001A funderid: 10.13039/501100002347 – fundername: German Research Foundation (DFG) grantid: AP 206/14-1 funderid: 10.13039/501100001659 |
GroupedDBID | --Z -DZ -~X .4S .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 7WY 7X7 85S 88E 88I 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABJCF ABPPZ ABQJQ ABUWG ABVLG ACGFO ACGOD ACIWK ACNCT ADBBV AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ASUFR ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BKOMP BPEOZ BPHCQ BVXVI CCPQU CS3 DU5 DWQXO E.L EBS EDO EJD FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HMCUK HZ~ H~9 I-F IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M1P M1Q M2O M2P M43 M7S MS~ O9- OCL OHT P2P P62 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q2X RIA RIE RNI RNS RXW RZB S10 TAE TN5 TWZ UHB UKHRP UPT UQL VH1 WH7 XOL YYP YZZ ZCG AAYOK AAYXX ALIPV CITATION RIG JQ2 K9. |
ID | FETCH-LOGICAL-c292t-902cf657eda8305325e1a8c610a0c20cbcc078ac21acdce0e20bfb9d603b8d7f3 |
IEDL.DBID | RIE |
ISSN | 0098-5589 |
IngestDate | Mon Jun 30 10:56:12 EDT 2025 Tue Jul 01 01:53:22 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Wed Aug 27 02:28:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-902cf657eda8305325e1a8c610a0c20cbcc078ac21acdce0e20bfb9d603b8d7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3248-3401 0000-0003-1692-6839 0000-0003-2864-3326 0000-0003-3687-2233 |
PQID | 3092915608 |
PQPubID | 21418 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TSE_2024_3418191 crossref_primary_10_1109_TSE_2024_3418191 proquest_journals_3092915608 ieee_primary_10569989 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on software engineering |
PublicationTitleAbbrev | TSE |
PublicationYear | 2024 |
Publisher | IEEE IEEE Computer Society |
Publisher_xml | – name: IEEE – name: IEEE Computer Society |
References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref54 ref17 ref16 ref19 Marijan (ref57) 2018 ref18 Fowler (ref63) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 Noemmer (ref37) 2019 ref32 ref2 ref1 ref39 (ref10) 2001 ref38 ref24 ref23 ref26 ref25 ref64 ref22 ref21 ref65 (ref60) 2023 ref28 ref27 ref29 Juergens (ref20) 2018 ref62 ref61 |
References_xml | – ident: ref21 doi: 10.1109/IEEESTD.2022.9698145 – ident: ref15 doi: 10.1145/2950290.2950361 – ident: ref65 doi: 10.1109/MS.2017.3571562 – ident: ref52 doi: 10.2197/ipsjjip.30.294 – ident: ref59 doi: 10.1109/ICST57152.2023.00044 – ident: ref13 doi: 10.1145/152388.152391 – ident: ref58 doi: 10.1109/ICSE-SEIP.2017.16 – ident: ref14 doi: 10.1109/32.910860 – start-page: 153 volume-title: Proc. Int. Conf. Softw. Eng. year: 2018 ident: ref57 article-title: Practical selective regression testing with effective redundancy in interleaved tests – ident: ref51 doi: 10.1109/ICST46399.2020.00012 – ident: ref12 doi: 10.1109/ICSE.2015.230 – start-page: 329 volume-title: Proc. Int. Conf. Softw. Eng. year: 2001 ident: ref10 article-title: Incorporating varying test costs and fault severities into test case prioritization – year: 2019 ident: ref37 article-title: Conception and evaluation of test suite minimization techniques for regression testing in practice – ident: ref39 doi: 10.1145/3180155.3180210 – ident: ref61 doi: 10.1109/ICSME.2018.00033 – ident: ref24 doi: 10.1145/3460319.3464834 – ident: ref6 doi: 10.1145/3468264.3473922 – ident: ref18 doi: 10.1007/s10664-021-10066-6 – ident: ref31 doi: 10.1109/ISESE.2003.1237978 – ident: ref7 doi: 10.1016/j.infsof.2009.07.001 – ident: ref48 doi: 10.1109/ICMLA.2016.0065 – ident: ref55 doi: 10.1145/3460319.3464810 – ident: ref4 doi: 10.1109/ICST.2018.00038 – ident: ref32 doi: 10.1109/ICSE.1994.296780 – ident: ref54 doi: 10.1145/3395363.3397383 – year: 2023 ident: ref60 article-title: Microsoft Azure Devops server – ident: ref23 doi: 10.1109/ICST57152.2023.00038 – ident: ref49 doi: 10.1145/3213846.3213852 – ident: ref11 doi: 10.1145/2635868.2635910 – ident: ref38 doi: 10.1145/3524481.3527223 – ident: ref30 doi: 10.1109/ICSM.2012.6405252 – ident: ref42 doi: 10.1109/CSMR.2011.44 – ident: ref9 doi: 10.1145/347324.348910 – ident: ref41 doi: 10.1109/ICST.2017.44 – ident: ref53 doi: 10.1145/3213846.3213875 – ident: ref35 doi: 10.1109/TechDebt.2019.00016 – ident: ref64 doi: 10.1109/ICSE.2015.24 – ident: ref56 doi: 10.1109/ICSE48619.2023.00145 – ident: ref36 doi: 10.1109/TestVis57757.2022.00008 – ident: ref43 doi: 10.1145/2593501.2593506 – ident: ref1 doi: 10.1109/ICST.2008.47 – ident: ref45 doi: 10.1109/ISSREW.2019.00033 – ident: ref16 doi: 10.1109/ICSE-SEIP.2019.00018 – ident: ref27 doi: 10.1145/3057269 – ident: ref62 doi: 10.1007/978-3-030-99527-0_12 – ident: ref3 doi: 10.1007/978-3-031-19756-7_17 – ident: ref26 doi: 10.1109/ICST.2011.60 – ident: ref50 doi: 10.1109/TSE.2021.3070549 – ident: ref8 doi: 10.1007/s11219-012-9181-z – year: 2018 ident: ref20 article-title: Test impact analysis: Detecting errors early despite large, long-running test suites – ident: ref29 doi: 10.1109/TSE.2022.3184842 – ident: ref47 doi: 10.1109/ICST.2015.7102602 – ident: ref40 doi: 10.1145/2786805.2786878 – ident: ref44 doi: 10.1002/stvr.1572 – ident: ref19 doi: 10.1145/3241743 – ident: ref33 doi: 10.1109/ICSM.1999.792604 – ident: ref22 doi: 10.1016/j.infsof.2017.08.014 – ident: ref17 doi: 10.1109/ICSE.2019.00054 – ident: ref5 doi: 10.1002/stv.430 – ident: ref28 doi: 10.1145/3524481.3527230 – ident: ref2 doi: 10.1145/2393596.2393634 – ident: ref34 doi: 10.1007/s10664-019-09781-y – ident: ref46 doi: 10.1109/ICST.2019.00052 – ident: ref63 article-title: TestPyramid – ident: ref25 doi: 10.1145/3106237.3106297 |
SSID | ssj0005775 ssib053395008 |
Score | 2.4463367 |
Snippet | Context : Both automated and manual software testing are widely applied in practice. While being essential for project success and software quality, they are... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2005 |
SubjectTerms | Automation Codes Cost benefit analysis Failure detection Fault detection Impact analysis Industries manual testing Manuals Optimization Optimization techniques Software Software systems Software testing test optimization Testing |
Title | Optimization of Automated and Manual Software Tests in Industrial Practice: A Survey and Historical Analysis |
URI | https://ieeexplore.ieee.org/document/10569989 https://www.proquest.com/docview/3092915608 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJy_Oj4nTKTl48dAuS78Sb0M2huAUtsFuJU1TEGcrW6voX-9Lmzo_ULyUQpMS-CWvv9f33u8hdC78SMezqEU4XFzmupaQVFgOE34AbM6VVZbvxB_P3euFtzDF6mUtjFKqTD5Ttr4tY_lxJgv9q6ynu8SDe8AbqAGeW1WstcnnCAKvFsj0PMbrmCThvdl0CJ4gdW0w2dpB-fINKpuq_LDE5edl1EKTemFVVsmDXeSRLd--aTb-e-W7aMcQTTyodsYe2lLpPmrVTRywOdMHaHkLRuPRVGPiLMGDIs-AxqoYizTGN0JrluIpWOsXsVJ4Bmtf4_sUb3p-4DtTaXWJB3harJ7Vazl1o0CCa-mTNpqPhrOrsWVaMFiScppbnFCZ-F6gYsEc3UTCU33BJHAuQSQlMpISOAag2xcyloooSqIk4rFPnIjFQeIcomaapeoI4aQPzwMvUtQJXI8RITkTVIF7GSQ6ltdBvRqUUBp9ct0mYxmWfgrhIcAYahhDA2MHXXzMeKq0Of4Y29aofBpXAdJB3Rr40JzedegQII26xJwd_zLtBG3rt1eZgF3UzFeFOgV2kkdn5a58B3KT4Es |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5i5QCXMRho3brhA5cd0rpOnNjcKtSqQFsmtUjcIsdxJDSWTCXZBH_9nhNn3YZAu0SRYiuWPuf5e3k_PoATFSY2nsU8KvESiCDwlGbK84UKI2RzgW6yfBfh9Dq4uOE3rli9roUxxtTJZ6Zvb-tYflroyv4qG1iVeHQP5CvYxoOfD5tyrU1GRxTxtkUm50K2UUkqB6vlGH1BFvTRaFsX5a9TqJZVeWKL6wNmsgeLdmlNXsnXflUmff34T9fG_177G3jtqCYZNXtjH7ZMfgB7rYwDcV_1W7i7QrPxzdVjkiIjo6oskMialKg8JXNlu5aSJdrrn2ptyArXfk9uc7JR_SBfXK3VKRmRZbX-YR7qqZseJKRtfnII15Px6mzqOREGTzPJSk9SprOQRyZVwrcyEtwMldDIuhTVjOpEa2QZiO9Q6VQbahhNskSmIfUTkUaZfwSdvMjNOyDZEJ9HPDHMjwIuqNJSKGbQwYwyG83rwqAFJdauQ7kVyriLa0-FyhhhjC2MsYOxC59_z_jedOd4YeyhReWPcQ0gXei1wMfu-72PfYq00RaZi_fPTDuGnelqPotn54vLD7Br39TkBfagU64r8xG5Spl8qnfoL0xH45Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Automated+and+Manual+Software+Tests+in+Industrial+Practice%3A+A+Survey+and+Historical+Analysis&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Haas%2C+Roman&rft.au=N%C3%B6mmer%2C+Raphael&rft.au=Juergens%2C+Elmar&rft.au=Apel%2C+Sven&rft.date=2024-08-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=50&rft.issue=8&rft.spage=2005&rft.epage=2020&rft_id=info:doi/10.1109%2FTSE.2024.3418191&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2024_3418191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |