Cross-Subject Seizure Detection by Joint-Probability-Discrepancy-Based Domain Adaptation
Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection methods are usually based on the basic assumption that the training and testing data are sampled from datasets with the same distribution. Ho...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection methods are usually based on the basic assumption that the training and testing data are sampled from datasets with the same distribution. However, in the context of epilepsy diagnosis, the EEG data vary from subject to subject, and the generalization performance of a classifier trained on data of multiple subjects typically degrades when applied to new subjects. To address this issue, we propose a cross-subject transfer learning framework for epileptic seizure detection to improve the classification performance on new subjects with unlabeled EEG samples (target domain) by transferring useful information from multiple subjects with labeled EEGs (source domain). In detail, first, an adversarial strategy is used to identify a set of source-domain EEG samples that are most suitable for transfer learning and thus are selected as training samples for the follow-up domain adaptation. Second, a novel domain adaptation method, the joint-probability-discrepancy-based domain adaptation (JPDDA), is proposed to predict the labels associated with the target-domain samples. Specifically, joint probability distribution discrepancy that measures the transferability between domains and discriminability between classes is proposed to learn a domain-invariant classifier jointly with structural risk and manifold consistency. Third, the epileptic seizure detection framework based on JPDDA is validated on the Children's Hospital, Zhejiang University School of Medicine (CHZU) dataset. Experimental results show that the proposed JPDDA can achieve high cross-subject detection accuracy, which reveals the good transferability of JPDDA. |
---|---|
AbstractList | Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection methods are usually based on the basic assumption that the training and testing data are sampled from datasets with the same distribution. However, in the context of epilepsy diagnosis, the EEG data vary from subject to subject, and the generalization performance of a classifier trained on data of multiple subjects typically degrades when applied to new subjects. To address this issue, we propose a cross-subject transfer learning framework for epileptic seizure detection to improve the classification performance on new subjects with unlabeled EEG samples (target domain) by transferring useful information from multiple subjects with labeled EEGs (source domain). In detail, first, an adversarial strategy is used to identify a set of source-domain EEG samples that are most suitable for transfer learning and thus are selected as training samples for the follow-up domain adaptation. Second, a novel domain adaptation method, the joint-probability-discrepancy-based domain adaptation (JPDDA), is proposed to predict the labels associated with the target-domain samples. Specifically, joint probability distribution discrepancy that measures the transferability between domains and discriminability between classes is proposed to learn a domain-invariant classifier jointly with structural risk and manifold consistency. Third, the epileptic seizure detection framework based on JPDDA is validated on the Children's Hospital, Zhejiang University School of Medicine (CHZU) dataset. Experimental results show that the proposed JPDDA can achieve high cross-subject detection accuracy, which reveals the good transferability of JPDDA. |
Author | Cui, Xiaonan Gao, Feng Wang, Tianlei Jiang, Tiejia Cao, Jiuwen Lai, Xiaoping |
Author_xml | – sequence: 1 givenname: Xiaonan orcidid: 0000-0003-2595-0451 surname: Cui fullname: Cui, Xiaonan email: xncui@hdu.edu.cn organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Tianlei orcidid: 0000-0002-4498-4326 surname: Wang fullname: Wang, Tianlei email: tianleiwang@hdu.edu.cn organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Xiaoping orcidid: 0000-0002-5878-5563 surname: Lai fullname: Lai, Xiaoping email: laixp@hdu.edu.cn organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Tiejia orcidid: 0000-0003-3688-8366 surname: Jiang fullname: Jiang, Tiejia email: jiangyouze@zju.edu.cn organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China – sequence: 5 givenname: Feng orcidid: 0000-0003-4907-7212 surname: Gao fullname: Gao, Feng email: epilepsy@zju.edu.cn organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China – sequence: 6 givenname: Jiuwen orcidid: 0000-0002-6480-5794 surname: Cao fullname: Cao, Jiuwen email: jwcao@hdu.edu.cn organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China |
BookMark | eNp9kDtPwzAURi1UJNrCzsAQidnFduw8xtLyKCoCqUVis_y4kVy1cXGSIfx6EqUDYmC6utJ37uNM0Kj0JSB0TcmMUpLfbVevM0ZYPIsZzyihZ2hMhUhxniRshMaE0AznXCQXaFJVO0JImvB0jD4XwVcV3jR6B6aONuC-mwDREuqudb6MdBu9eFfW-D14rbTbu7rFS1eZAEdVmhbfqwpstPQH5cpobtWxVj14ic4Lta_g6lSn6OPxYbt4xuu3p9VivsaG5azGmaYFcKBaFSKmqUkMs4JZpYVSmTCQ2UITZklsYsoKm_LuO2650cLmBeUQT9HtMPcY_FcDVS13vgllt1KyNONCkJjyLpUMKdO_G6CQxg131kG5vaRE9hZlZ1H2FuXJYgeSP-AxuIMK7X_IzYA4APgVJ4IImsU_E6-AMw |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1109_JBHI_2024_3513038 crossref_primary_10_1109_TII_2024_3441636 crossref_primary_10_1142_S0219519424400566 crossref_primary_10_1109_TIM_2024_3470047 |
Cites_doi | 10.1109/TNSRE.2022.3223056 10.1109/TIM.2022.3149325 10.1016/j.neunet.2022.03.014 10.1016/j.measurement.2007.07.007 10.1145/3240508.3240512 10.1109/TIM.2022.3220287 10.1109/TCDS.2020.3009020 10.1609/aaai.v34i04.6091 10.1109/TKDE.2009.191 10.1016/j.bspc.2018.07.006 10.1109/TNN.2010.2091281 10.1109/TIM.2022.3173270 10.1109/TNSRE.2017.2748388 10.1109/TIP.2019.2924174 10.1109/TKDE.2013.111 10.1109/EMBC.2019.8857265 10.1016/j.bspc.2020.101930 10.1109/tcds.2022.3175636 10.1609/aaai.v30i1.10306 10.1109/TIM.2021.3137159 10.1109/ICCV.2013.274 10.1109/TCDS.2019.2936441 10.1109/JBHI.2019.2906400 10.1109/TNSRE.2018.2850308 10.1109/TCYB.2021.3071860 10.1109/JBHI.2018.2871678 10.1109/ICCV.2013.368 10.1109/TIM.2020.3019849 10.1016/j.yebeh.2004.05.005 10.1007/s00521-014-1786-7 10.1016/j.artmed.2014.10.002 10.1109/TBME.2013.2254486 10.1109/TSMC.2022.3195239 10.1109/TCSII.2020.3031399 10.1109/TNSRE.2022.3229066 10.1109/TIM.2022.3152325 10.1109/CVPR.2014.183 10.1109/JBHI.2020.2971610 10.1109/TCYB.2018.2821764 10.1109/TNSRE.2021.3107142 10.1109/CVPR.2017.547 10.1109/ACCESS.2018.2867642 10.1023/A:1007452223027 10.3389/fnins.2020.00837 10.1145/1645953.1646121 10.1109/IJCNN48605.2020.9207365 10.1109/TCDS.2021.3064228 10.1109/TCYB.2018.2820174 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2023.3248101 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TIM_2023_3248101 10050518 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFE0100100 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: U1909209 funderid: 10.13039/501100001809 – fundername: Research Funding of Education of Zhejiang Province grantid: GK228810299201 – fundername: University-Industry Collaborative Education Program grantid: 202002307010 – fundername: Natural Science Key Foundation of Zhejiang Province grantid: LZ22F030002 funderid: 10.13039/501100004731 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-8b1fe4e1baf5317c6c2d52dab5aa85ce8dfb02d03c312fd742484d4cb5d9f14e3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:18:43 EDT 2025 Tue Jul 01 03:07:24 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Aug 27 02:18:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-8b1fe4e1baf5317c6c2d52dab5aa85ce8dfb02d03c312fd742484d4cb5d9f14e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3688-8366 0000-0002-6480-5794 0000-0002-4498-4326 0000-0002-5878-5563 0000-0003-2595-0451 0000-0003-4907-7212 |
PQID | 2784550314 |
PQPubID | 85462 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10050518 crossref_citationtrail_10_1109_TIM_2023_3248101 proquest_journals_2784550314 crossref_primary_10_1109_TIM_2023_3248101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Belkin (ref44) 2006; 7 Kubat (ref47) 1998; 30 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref21 doi: 10.1109/TNSRE.2022.3223056 – ident: ref4 doi: 10.1109/TIM.2022.3149325 – ident: ref7 doi: 10.1016/j.neunet.2022.03.014 – ident: ref40 doi: 10.1016/j.measurement.2007.07.007 – ident: ref37 doi: 10.1145/3240508.3240512 – ident: ref20 doi: 10.1109/TIM.2022.3220287 – ident: ref17 doi: 10.1109/TCDS.2020.3009020 – ident: ref38 doi: 10.1609/aaai.v34i04.6091 – ident: ref28 doi: 10.1109/TKDE.2009.191 – ident: ref39 doi: 10.1016/j.bspc.2018.07.006 – ident: ref48 doi: 10.1109/TNN.2010.2091281 – ident: ref12 doi: 10.1109/TIM.2022.3173270 – ident: ref24 doi: 10.1109/TNSRE.2017.2748388 – ident: ref29 doi: 10.1109/TIP.2019.2924174 – ident: ref36 doi: 10.1109/TKDE.2013.111 – ident: ref42 doi: 10.1109/EMBC.2019.8857265 – ident: ref2 doi: 10.1016/j.bspc.2020.101930 – ident: ref9 doi: 10.1109/tcds.2022.3175636 – ident: ref35 doi: 10.1609/aaai.v30i1.10306 – ident: ref18 doi: 10.1109/TIM.2021.3137159 – ident: ref33 doi: 10.1109/ICCV.2013.274 – ident: ref14 doi: 10.1109/TCDS.2019.2936441 – ident: ref8 doi: 10.1109/JBHI.2019.2906400 – ident: ref25 doi: 10.1109/TNSRE.2018.2850308 – ident: ref41 doi: 10.1109/TCYB.2021.3071860 – volume: 7 issue: 11 year: 2006 ident: ref44 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled example publication-title: J. Mach. Learn. Res. – ident: ref19 doi: 10.1109/JBHI.2018.2871678 – ident: ref31 doi: 10.1109/ICCV.2013.368 – ident: ref5 doi: 10.1109/TIM.2020.3019849 – ident: ref1 doi: 10.1016/j.yebeh.2004.05.005 – ident: ref11 doi: 10.1007/s00521-014-1786-7 – ident: ref23 doi: 10.1016/j.artmed.2014.10.002 – ident: ref10 doi: 10.1109/TBME.2013.2254486 – ident: ref32 doi: 10.1109/TSMC.2022.3195239 – ident: ref16 doi: 10.1109/TCSII.2020.3031399 – ident: ref3 doi: 10.1109/TNSRE.2022.3229066 – ident: ref6 doi: 10.1109/TIM.2022.3152325 – ident: ref49 doi: 10.1109/CVPR.2014.183 – ident: ref27 doi: 10.1109/JBHI.2020.2971610 – ident: ref26 doi: 10.1109/TCYB.2018.2821764 – ident: ref22 doi: 10.1109/TNSRE.2021.3107142 – ident: ref34 doi: 10.1109/CVPR.2017.547 – ident: ref43 doi: 10.1109/ACCESS.2018.2867642 – volume: 30 start-page: 195 issue: 2 year: 1998 ident: ref47 article-title: Machine learning for the detection of oil spills in satellite radar images publication-title: Mach. Learn. doi: 10.1023/A:1007452223027 – ident: ref13 doi: 10.3389/fnins.2020.00837 – ident: ref45 doi: 10.1145/1645953.1646121 – ident: ref46 doi: 10.1109/IJCNN48605.2020.9207365 – ident: ref15 doi: 10.1109/TCDS.2021.3064228 – ident: ref30 doi: 10.1109/TCYB.2018.2820174 |
SSID | ssj0007647 |
Score | 2.4278314 |
Snippet | Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation Brain modeling Classifiers Convulsions & seizures Datasets Diagnosis Domain adaptation Domains Electroencephalography Epilepsy Feature extraction Learning Pediatrics seizure detection Seizures Training Transfer learning |
Title | Cross-Subject Seizure Detection by Joint-Probability-Discrepancy-Based Domain Adaptation |
URI | https://ieeexplore.ieee.org/document/10050518 https://www.proquest.com/docview/2784550314 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSxwxFH_UhUJ7UKsW1y_m0EsPGSczmTFzXF1FBaVQhb0NSd4bWNrOyjp70L_el8ysWKXFWw5JCPzeZ94XwLdSSZ2gcb6iJxeKSAtdGxKWUCaoJPvbPqJ7dV2c36rLST7pi9VDLQwRheQziv0yxPJx5hb-q4w53M9dk3oFVthz64q1nsXuUaG6BpmSOZjNgmVMMikPby6uYj8mPGbrwTe0-ksHhaEqbyRxUC9na3C9fFiXVfIrXrQ2do-veja---XrsNobmtGoo4wv8IGaDfj8ov3gBnwM6Z_ufhMmJ_6hgqWI_5aJftL0cTGnaExtyNRqIvsQXc6mTSt-zFkAhITaBzGessxhdcbyWRyzNsRoPPtjpk00QnPXhfi34Pbs9ObkXPQzF4RLy7QV2sqaFElraubOI1e4FPMUjc2N0bkjjbVNUkwyl8m0RnaslVaonM2xrKWi7CsMmllD2xCpwhXE4gRRM0UUumQiwIyvzDNTWrRDOFyiULm-Ibmfi_G7Co5JUlaMW-Vxq3rchvD9-cRd14zjP3u3PAwv9nUIDGFviXTVs-t95aOv7KplUu3849gufPK3d58vezBo5wvaZ3OktQeBDJ8AvBfbcQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-CIQQcBowhug3IgQsHZ3HiZM5xWzd1Y62Q6KTeItvvRaqAdOrSw_bX8-yk02ACccvBdiz93qffF8CnUkmdoHG-oicXikgLXRsSllAmqCT72z6iO54Uo0t1PstnfbF6qIUhopB8RrH_DLF8XLiVfypjDvdz16R-DE9Y8eeyK9e6E7wHhepaZErmYTYM1lHJpNyfno1jPyg8ZvvBt7T6TQuFsSoPZHFQMKcvYbK-WpdX8j1etTZ2t390bfzvu7-Czd7UjA472ngNj6jZghf3GhBuwdOQAOqu38Ds2F9UsBzxDzPRN5rfrpYUDakNuVpNZG-i88W8acXXJYuAkFJ7I4Zzljqs0FhCiyPWhxgNFz_NvIkO0Vx1Qf5tuDw9mR6PRD91Qbi0TFuhraxJkbSmZv48cIVLMU_R2NwYnTvSWNskxSRzmUxrZNdaaYXK2RzLWirK3sJGs2joHUSqcAWxQEHUTBOFLpkMMOMj88yUFu0A9tcoVK5vSe4nY_yogmuSlBXjVnncqh63AXy-23HVteP4x9ptD8O9dR0CA9hbI131DHtd-fgrO2uZVDt_2fYRno2m44vq4mzyZRee-z91TzF7sNEuV_SejZPWfggk-QtYCt66 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Subject+Seizure+Detection+by+Joint-Probability-Discrepancy-Based+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Cui%2C+Xiaonan&rft.au=Wang%2C+Tianlei&rft.au=Lai%2C+Xiaoping&rft.au=Jiang%2C+Tiejia&rft.date=2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2023.3248101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3248101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |