Cross-Subject Seizure Detection by Joint-Probability-Discrepancy-Based Domain Adaptation

Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection methods are usually based on the basic assumption that the training and testing data are sampled from datasets with the same distribution. Ho...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 13
Main Authors Cui, Xiaonan, Wang, Tianlei, Lai, Xiaoping, Jiang, Tiejia, Gao, Feng, Cao, Jiuwen
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection methods are usually based on the basic assumption that the training and testing data are sampled from datasets with the same distribution. However, in the context of epilepsy diagnosis, the EEG data vary from subject to subject, and the generalization performance of a classifier trained on data of multiple subjects typically degrades when applied to new subjects. To address this issue, we propose a cross-subject transfer learning framework for epileptic seizure detection to improve the classification performance on new subjects with unlabeled EEG samples (target domain) by transferring useful information from multiple subjects with labeled EEGs (source domain). In detail, first, an adversarial strategy is used to identify a set of source-domain EEG samples that are most suitable for transfer learning and thus are selected as training samples for the follow-up domain adaptation. Second, a novel domain adaptation method, the joint-probability-discrepancy-based domain adaptation (JPDDA), is proposed to predict the labels associated with the target-domain samples. Specifically, joint probability distribution discrepancy that measures the transferability between domains and discriminability between classes is proposed to learn a domain-invariant classifier jointly with structural risk and manifold consistency. Third, the epileptic seizure detection framework based on JPDDA is validated on the Children's Hospital, Zhejiang University School of Medicine (CHZU) dataset. Experimental results show that the proposed JPDDA can achieve high cross-subject detection accuracy, which reveals the good transferability of JPDDA.
AbstractList Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection methods are usually based on the basic assumption that the training and testing data are sampled from datasets with the same distribution. However, in the context of epilepsy diagnosis, the EEG data vary from subject to subject, and the generalization performance of a classifier trained on data of multiple subjects typically degrades when applied to new subjects. To address this issue, we propose a cross-subject transfer learning framework for epileptic seizure detection to improve the classification performance on new subjects with unlabeled EEG samples (target domain) by transferring useful information from multiple subjects with labeled EEGs (source domain). In detail, first, an adversarial strategy is used to identify a set of source-domain EEG samples that are most suitable for transfer learning and thus are selected as training samples for the follow-up domain adaptation. Second, a novel domain adaptation method, the joint-probability-discrepancy-based domain adaptation (JPDDA), is proposed to predict the labels associated with the target-domain samples. Specifically, joint probability distribution discrepancy that measures the transferability between domains and discriminability between classes is proposed to learn a domain-invariant classifier jointly with structural risk and manifold consistency. Third, the epileptic seizure detection framework based on JPDDA is validated on the Children's Hospital, Zhejiang University School of Medicine (CHZU) dataset. Experimental results show that the proposed JPDDA can achieve high cross-subject detection accuracy, which reveals the good transferability of JPDDA.
Author Cui, Xiaonan
Gao, Feng
Wang, Tianlei
Jiang, Tiejia
Cao, Jiuwen
Lai, Xiaoping
Author_xml – sequence: 1
  givenname: Xiaonan
  orcidid: 0000-0003-2595-0451
  surname: Cui
  fullname: Cui, Xiaonan
  email: xncui@hdu.edu.cn
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Tianlei
  orcidid: 0000-0002-4498-4326
  surname: Wang
  fullname: Wang, Tianlei
  email: tianleiwang@hdu.edu.cn
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Xiaoping
  orcidid: 0000-0002-5878-5563
  surname: Lai
  fullname: Lai, Xiaoping
  email: laixp@hdu.edu.cn
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Tiejia
  orcidid: 0000-0003-3688-8366
  surname: Jiang
  fullname: Jiang, Tiejia
  email: jiangyouze@zju.edu.cn
  organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
– sequence: 5
  givenname: Feng
  orcidid: 0000-0003-4907-7212
  surname: Gao
  fullname: Gao, Feng
  email: epilepsy@zju.edu.cn
  organization: Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
– sequence: 6
  givenname: Jiuwen
  orcidid: 0000-0002-6480-5794
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Machine Learning and I-Health International Cooperation Base of Zhejiang Province and the Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
BookMark eNp9kDtPwzAURi1UJNrCzsAQidnFduw8xtLyKCoCqUVis_y4kVy1cXGSIfx6EqUDYmC6utJ37uNM0Kj0JSB0TcmMUpLfbVevM0ZYPIsZzyihZ2hMhUhxniRshMaE0AznXCQXaFJVO0JImvB0jD4XwVcV3jR6B6aONuC-mwDREuqudb6MdBu9eFfW-D14rbTbu7rFS1eZAEdVmhbfqwpstPQH5cpobtWxVj14ic4Lta_g6lSn6OPxYbt4xuu3p9VivsaG5azGmaYFcKBaFSKmqUkMs4JZpYVSmTCQ2UITZklsYsoKm_LuO2650cLmBeUQT9HtMPcY_FcDVS13vgllt1KyNONCkJjyLpUMKdO_G6CQxg131kG5vaRE9hZlZ1H2FuXJYgeSP-AxuIMK7X_IzYA4APgVJ4IImsU_E6-AMw
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1109_JBHI_2024_3513038
crossref_primary_10_1109_TII_2024_3441636
crossref_primary_10_1142_S0219519424400566
crossref_primary_10_1109_TIM_2024_3470047
Cites_doi 10.1109/TNSRE.2022.3223056
10.1109/TIM.2022.3149325
10.1016/j.neunet.2022.03.014
10.1016/j.measurement.2007.07.007
10.1145/3240508.3240512
10.1109/TIM.2022.3220287
10.1109/TCDS.2020.3009020
10.1609/aaai.v34i04.6091
10.1109/TKDE.2009.191
10.1016/j.bspc.2018.07.006
10.1109/TNN.2010.2091281
10.1109/TIM.2022.3173270
10.1109/TNSRE.2017.2748388
10.1109/TIP.2019.2924174
10.1109/TKDE.2013.111
10.1109/EMBC.2019.8857265
10.1016/j.bspc.2020.101930
10.1109/tcds.2022.3175636
10.1609/aaai.v30i1.10306
10.1109/TIM.2021.3137159
10.1109/ICCV.2013.274
10.1109/TCDS.2019.2936441
10.1109/JBHI.2019.2906400
10.1109/TNSRE.2018.2850308
10.1109/TCYB.2021.3071860
10.1109/JBHI.2018.2871678
10.1109/ICCV.2013.368
10.1109/TIM.2020.3019849
10.1016/j.yebeh.2004.05.005
10.1007/s00521-014-1786-7
10.1016/j.artmed.2014.10.002
10.1109/TBME.2013.2254486
10.1109/TSMC.2022.3195239
10.1109/TCSII.2020.3031399
10.1109/TNSRE.2022.3229066
10.1109/TIM.2022.3152325
10.1109/CVPR.2014.183
10.1109/JBHI.2020.2971610
10.1109/TCYB.2018.2821764
10.1109/TNSRE.2021.3107142
10.1109/CVPR.2017.547
10.1109/ACCESS.2018.2867642
10.1023/A:1007452223027
10.3389/fnins.2020.00837
10.1145/1645953.1646121
10.1109/IJCNN48605.2020.9207365
10.1109/TCDS.2021.3064228
10.1109/TCYB.2018.2820174
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3248101
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2023_3248101
10050518
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFE0100100
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: U1909209
  funderid: 10.13039/501100001809
– fundername: Research Funding of Education of Zhejiang Province
  grantid: GK228810299201
– fundername: University-Industry Collaborative Education Program
  grantid: 202002307010
– fundername: Natural Science Key Foundation of Zhejiang Province
  grantid: LZ22F030002
  funderid: 10.13039/501100004731
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-8b1fe4e1baf5317c6c2d52dab5aa85ce8dfb02d03c312fd742484d4cb5d9f14e3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:18:43 EDT 2025
Tue Jul 01 03:07:24 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Aug 27 02:18:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8b1fe4e1baf5317c6c2d52dab5aa85ce8dfb02d03c312fd742484d4cb5d9f14e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3688-8366
0000-0002-6480-5794
0000-0002-4498-4326
0000-0002-5878-5563
0000-0003-2595-0451
0000-0003-4907-7212
PQID 2784550314
PQPubID 85462
PageCount 13
ParticipantIDs ieee_primary_10050518
crossref_citationtrail_10_1109_TIM_2023_3248101
proquest_journals_2784550314
crossref_primary_10_1109_TIM_2023_3248101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Belkin (ref44) 2006; 7
Kubat (ref47) 1998; 30
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref21
  doi: 10.1109/TNSRE.2022.3223056
– ident: ref4
  doi: 10.1109/TIM.2022.3149325
– ident: ref7
  doi: 10.1016/j.neunet.2022.03.014
– ident: ref40
  doi: 10.1016/j.measurement.2007.07.007
– ident: ref37
  doi: 10.1145/3240508.3240512
– ident: ref20
  doi: 10.1109/TIM.2022.3220287
– ident: ref17
  doi: 10.1109/TCDS.2020.3009020
– ident: ref38
  doi: 10.1609/aaai.v34i04.6091
– ident: ref28
  doi: 10.1109/TKDE.2009.191
– ident: ref39
  doi: 10.1016/j.bspc.2018.07.006
– ident: ref48
  doi: 10.1109/TNN.2010.2091281
– ident: ref12
  doi: 10.1109/TIM.2022.3173270
– ident: ref24
  doi: 10.1109/TNSRE.2017.2748388
– ident: ref29
  doi: 10.1109/TIP.2019.2924174
– ident: ref36
  doi: 10.1109/TKDE.2013.111
– ident: ref42
  doi: 10.1109/EMBC.2019.8857265
– ident: ref2
  doi: 10.1016/j.bspc.2020.101930
– ident: ref9
  doi: 10.1109/tcds.2022.3175636
– ident: ref35
  doi: 10.1609/aaai.v30i1.10306
– ident: ref18
  doi: 10.1109/TIM.2021.3137159
– ident: ref33
  doi: 10.1109/ICCV.2013.274
– ident: ref14
  doi: 10.1109/TCDS.2019.2936441
– ident: ref8
  doi: 10.1109/JBHI.2019.2906400
– ident: ref25
  doi: 10.1109/TNSRE.2018.2850308
– ident: ref41
  doi: 10.1109/TCYB.2021.3071860
– volume: 7
  issue: 11
  year: 2006
  ident: ref44
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled example
  publication-title: J. Mach. Learn. Res.
– ident: ref19
  doi: 10.1109/JBHI.2018.2871678
– ident: ref31
  doi: 10.1109/ICCV.2013.368
– ident: ref5
  doi: 10.1109/TIM.2020.3019849
– ident: ref1
  doi: 10.1016/j.yebeh.2004.05.005
– ident: ref11
  doi: 10.1007/s00521-014-1786-7
– ident: ref23
  doi: 10.1016/j.artmed.2014.10.002
– ident: ref10
  doi: 10.1109/TBME.2013.2254486
– ident: ref32
  doi: 10.1109/TSMC.2022.3195239
– ident: ref16
  doi: 10.1109/TCSII.2020.3031399
– ident: ref3
  doi: 10.1109/TNSRE.2022.3229066
– ident: ref6
  doi: 10.1109/TIM.2022.3152325
– ident: ref49
  doi: 10.1109/CVPR.2014.183
– ident: ref27
  doi: 10.1109/JBHI.2020.2971610
– ident: ref26
  doi: 10.1109/TCYB.2018.2821764
– ident: ref22
  doi: 10.1109/TNSRE.2021.3107142
– ident: ref34
  doi: 10.1109/CVPR.2017.547
– ident: ref43
  doi: 10.1109/ACCESS.2018.2867642
– volume: 30
  start-page: 195
  issue: 2
  year: 1998
  ident: ref47
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007452223027
– ident: ref13
  doi: 10.3389/fnins.2020.00837
– ident: ref45
  doi: 10.1145/1645953.1646121
– ident: ref46
  doi: 10.1109/IJCNN48605.2020.9207365
– ident: ref15
  doi: 10.1109/TCDS.2021.3064228
– ident: ref30
  doi: 10.1109/TCYB.2018.2820174
SSID ssj0007647
Score 2.4278314
Snippet Detection of epileptic seizure from offline electroencephalogram (EEG) is of great significance in clinical diagnosis. Traditional epileptic seizure detection...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation
Brain modeling
Classifiers
Convulsions & seizures
Datasets
Diagnosis
Domain adaptation
Domains
Electroencephalography
Epilepsy
Feature extraction
Learning
Pediatrics
seizure detection
Seizures
Training
Transfer learning
Title Cross-Subject Seizure Detection by Joint-Probability-Discrepancy-Based Domain Adaptation
URI https://ieeexplore.ieee.org/document/10050518
https://www.proquest.com/docview/2784550314
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSxwxFH_UhUJ7UKsW1y_m0EsPGSczmTFzXF1FBaVQhb0NSd4bWNrOyjp70L_el8ysWKXFWw5JCPzeZ94XwLdSSZ2gcb6iJxeKSAtdGxKWUCaoJPvbPqJ7dV2c36rLST7pi9VDLQwRheQziv0yxPJx5hb-q4w53M9dk3oFVthz64q1nsXuUaG6BpmSOZjNgmVMMikPby6uYj8mPGbrwTe0-ksHhaEqbyRxUC9na3C9fFiXVfIrXrQ2do-veja---XrsNobmtGoo4wv8IGaDfj8ov3gBnwM6Z_ufhMmJ_6hgqWI_5aJftL0cTGnaExtyNRqIvsQXc6mTSt-zFkAhITaBzGessxhdcbyWRyzNsRoPPtjpk00QnPXhfi34Pbs9ObkXPQzF4RLy7QV2sqaFElraubOI1e4FPMUjc2N0bkjjbVNUkwyl8m0RnaslVaonM2xrKWi7CsMmllD2xCpwhXE4gRRM0UUumQiwIyvzDNTWrRDOFyiULm-Ibmfi_G7Co5JUlaMW-Vxq3rchvD9-cRd14zjP3u3PAwv9nUIDGFviXTVs-t95aOv7KplUu3849gufPK3d58vezBo5wvaZ3OktQeBDJ8AvBfbcQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-CIQQcBowhug3IgQsHZ3HiZM5xWzd1Y62Q6KTeItvvRaqAdOrSw_bX8-yk02ACccvBdiz93qffF8CnUkmdoHG-oicXikgLXRsSllAmqCT72z6iO54Uo0t1PstnfbF6qIUhopB8RrH_DLF8XLiVfypjDvdz16R-DE9Y8eeyK9e6E7wHhepaZErmYTYM1lHJpNyfno1jPyg8ZvvBt7T6TQuFsSoPZHFQMKcvYbK-WpdX8j1etTZ2t390bfzvu7-Czd7UjA472ngNj6jZghf3GhBuwdOQAOqu38Ds2F9UsBzxDzPRN5rfrpYUDakNuVpNZG-i88W8acXXJYuAkFJ7I4Zzljqs0FhCiyPWhxgNFz_NvIkO0Vx1Qf5tuDw9mR6PRD91Qbi0TFuhraxJkbSmZv48cIVLMU_R2NwYnTvSWNskxSRzmUxrZNdaaYXK2RzLWirK3sJGs2joHUSqcAWxQEHUTBOFLpkMMOMj88yUFu0A9tcoVK5vSe4nY_yogmuSlBXjVnncqh63AXy-23HVteP4x9ptD8O9dR0CA9hbI131DHtd-fgrO2uZVDt_2fYRno2m44vq4mzyZRee-z91TzF7sNEuV_SejZPWfggk-QtYCt66
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Subject+Seizure+Detection+by+Joint-Probability-Discrepancy-Based+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Cui%2C+Xiaonan&rft.au=Wang%2C+Tianlei&rft.au=Lai%2C+Xiaoping&rft.au=Jiang%2C+Tiejia&rft.date=2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2023.3248101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3248101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon