Towards Unbiased End-to-End Network Diagnosis
Internet fault diagnosis is extremely important for end-users, overlay network service providers (like Akamai ), and even Internet service providers (ISPs). However, because link-level properties cannot be uniquely determined from end-to-end measurements, the accuracy of existing statistical diagnos...
Saved in:
Published in | IEEE/ACM transactions on networking Vol. 17; no. 6; pp. 1724 - 1737 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6692 1558-2566 |
DOI | 10.1109/TNET.2009.2022158 |
Cover
Loading…
Abstract | Internet fault diagnosis is extremely important for end-users, overlay network service providers (like Akamai ), and even Internet service providers (ISPs). However, because link-level properties cannot be uniquely determined from end-to-end measurements, the accuracy of existing statistical diagnosis approaches is subject to uncertainty from statistical assumptions about the network. In this paper, we propose a novel least-biased end-to-end network diagnosis (in short, LEND) system for inferring link-level properties like loss rate. We define a minimal identifiable link sequence (MILS) as a link sequence of minimal length whose properties can be uniquely identified from end-to-end measurements. We also design efficient algorithms to find all the MILSs and infer their loss rates for diagnosis. Our LEND system works for any network topology and for both directed and undirected properties and incrementally adapts to network topology and property changes. It gives highly accurate estimates of the loss rates of MILSs, as indicated by both extensive simulations and Internet experiments. Furthermore, we demonstrate that such diagnosis can be achieved with fine granularity and in near real-time even for reasonably large overlay networks. Finally, LEND can supplement existing statistical inference approaches and provide smooth tradeoff between diagnosis accuracy and granularity. |
---|---|
AbstractList | Internet fault diagnosis is extremely important for end-users, overlay network service providers (like Akamai ), and even Internet service providers (ISPs). However, because link-level properties cannot be uniquely determined from end-to-end measurements, the accuracy of existing statistical diagnosis approaches is subject to uncertainty from statistical assumptions about the network. In this paper, we propose a novel least-biased end-to-end network diagnosis (in short, LEND) system for inferring link-level properties like loss rate. We define a minimal identifiable link sequence (MILS) as a link sequence of minimal length whose properties can be uniquely identified from end-to-end measurements. We also design efficient algorithms to find all the MILSs and infer their loss rates for diagnosis. Our LEND system works for any network topology and for both directed and undirected properties and incrementally adapts to network topology and property changes. It gives highly accurate estimates of the loss rates of MILSs, as indicated by both extensive simulations and Internet experiments. Furthermore, we demonstrate that such diagnosis can be achieved with fine granularity and in near real-time even for reasonably large overlay networks. Finally, LEND can supplement existing statistical inference approaches and provide smooth tradeoff between diagnosis accuracy and granularity. [...] LEND can supplement existing statistical inference approaches and provide smooth tradeoff between diagnosis accuracy and granularity. |
Author | Yan Chen Yao Zhao Bindel, D. |
Author_xml | – sequence: 1 surname: Yao Zhao fullname: Yao Zhao organization: Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA – sequence: 2 surname: Yan Chen fullname: Yan Chen organization: Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA – sequence: 3 givenname: D. surname: Bindel fullname: Bindel, D. organization: Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA |
BookMark | eNp9kD1PwzAQhi0EEm3hByCWiN3FdmLHHlEpH1JVlnS2HOeCXEpcbFcV_x5XrRgYWO694XnupHeMzgc_AEI3lEwpJeq-Wc6bKSNE5cEY5fIMjSjnEjMuxHneiSixEIpdonGMa0JoSZgYIdz4vQldLFZD60yErpgPHU4e5yiWkPY-fBSPzrwPPrp4hS56s4lwfcoJWj3Nm9kLXrw9v84eFtgyxRKWprWSmp4ZSiphoK5l1_LKsg4ICNNyK3vZgrSVVIwTWQvV90JCpwRvuaDlBN0d726D_9pBTHrtd2HIL7UUtMoYJxmqj5ANPsYAvbYumeT8kIJxG02JPlSjD9XoQzX6VE026R9zG9ynCd__OrdHxwHAL89ZzRhX5Q913W-- |
CODEN | IEANEP |
CitedBy_id | crossref_primary_10_1109_TPDS_2009_161 crossref_primary_10_1109_TNET_2019_2948818 crossref_primary_10_1155_2016_1863929 crossref_primary_10_3724_SP_J_1146_2010_01224 crossref_primary_10_1109_TNET_2010_2068058 crossref_primary_10_1002_itl2_11 crossref_primary_10_1109_TNET_2012_2227793 crossref_primary_10_1371_journal_pone_0163706 crossref_primary_10_1109_TNET_2011_2157975 crossref_primary_10_1016_j_mcm_2011_02_018 crossref_primary_10_1109_TIFS_2018_2815555 crossref_primary_10_1007_s10766_016_0469_7 crossref_primary_10_1109_TSP_2010_2089624 crossref_primary_10_1109_TNET_2012_2188905 |
Cites_doi | 10.1145/945445.945456 10.1109/18.796384 10.1137/S0895479892230067 10.1145/511334.511338 10.1109/90.649563 10.1109/INFCOM.2000.832534 10.1109/INFCOM.2003.1208667 10.1145/505680.505683 10.1145/948229.948232 10.1109/INFCOM.2004.1354573 10.1145/505202.505228 10.1109/INFCOM.2001.916283 10.1109/JSAC.2002.1003037 10.1145/1015467.1015475 10.1109/INFCOM.2003.1209232 10.1109/TNET.2002.1012369 10.1109/35.841840 10.1109/79.998081 10.1109/INFCOM.1999.749304 10.1137/1.9781611971408 10.1145/863969.863970 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNET.2009.2022158 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2566 |
EndPage | 1737 |
ExternalDocumentID | 2317910821 10_1109_TNET_2009_2022158 5272259 |
Genre | orig-research |
GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E 9M8 AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL AEBYY AEFXT AEJOY AENSD AETEA AETIX AFWIH AFWXC AGQYO AGSQL AHBIQ AI. AIBXA AIKLT AKJIK AKQYR AKRVB ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS EJD FEDTE GUFHI HF~ HGAVV HZ~ H~9 I07 ICLAB IEDLZ IES IFIPE IFJZH IPLJI JAVBF LAI LHSKQ M43 MVM O9- OCL P1C P2P PQQKQ RIA RIE RNS ROL TN5 UPT UQL VH1 XOL YR2 ZCA AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-8abc81af2a1046ae778db54c2de0e6ab5c8f8be8c4892508769ff68ed965b5613 |
IEDL.DBID | RIE |
ISSN | 1063-6692 |
IngestDate | Sun Jun 29 15:35:04 EDT 2025 Tue Jul 01 01:49:14 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Aug 26 16:39:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-8abc81af2a1046ae778db54c2de0e6ab5c8f8be8c4892508769ff68ed965b5613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 861496550 |
PQPubID | 32020 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TNET_2009_2022158 crossref_primary_10_1109_TNET_2009_2022158 proquest_journals_861496550 ieee_primary_5272259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-Dec. 2009-12-00 20091201 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-Dec. |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ACM transactions on networking |
PublicationTitleAbbrev | TNET |
PublicationYear | 2009 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref11 ref10 ref2 ref17 ref16 ref19 (ref1) 0 (ref28) 0 (ref26) 0 golub (ref15) 1989 ref24 shavitt (ref14) 2001 ref25 ref20 tang (ref18) 2003 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 govindan (ref23) 2002 |
References_xml | – ident: ref12 doi: 10.1145/945445.945456 – ident: ref16 doi: 10.1109/18.796384 – start-page: 268 year: 2003 ident: ref18 article-title: on the cost-quality tradeoff in topology-aware overlay path probing publication-title: Proc IEEE ICNP – ident: ref19 doi: 10.1137/S0895479892230067 – year: 1989 ident: ref15 publication-title: Matrix Computations – ident: ref4 doi: 10.1145/511334.511338 – start-page: 1 year: 2002 ident: ref23 article-title: estimating router icmp generation delays publication-title: Proc PAM – ident: ref22 doi: 10.1109/90.649563 – ident: ref9 doi: 10.1109/INFCOM.2000.832534 – year: 0 ident: ref28 publication-title: University of Oregon Route Views Archive Project – ident: ref5 doi: 10.1109/INFCOM.2003.1208667 – ident: ref24 doi: 10.1145/505680.505683 – ident: ref7 doi: 10.1145/948229.948232 – year: 0 ident: ref26 publication-title: Planetlab – ident: ref27 doi: 10.1109/INFCOM.2004.1354573 – ident: ref20 doi: 10.1145/505202.505228 – ident: ref11 doi: 10.1109/INFCOM.2001.916283 – year: 0 ident: ref1 publication-title: Technology Overview – ident: ref17 doi: 10.1109/JSAC.2002.1003037 – ident: ref8 doi: 10.1145/1015467.1015475 – ident: ref13 doi: 10.1109/INFCOM.2003.1209232 – ident: ref6 doi: 10.1109/TNET.2002.1012369 – ident: ref3 doi: 10.1109/35.841840 – ident: ref2 doi: 10.1109/79.998081 – ident: ref10 doi: 10.1109/INFCOM.1999.749304 – start-page: 1646 year: 2001 ident: ref14 article-title: computing the unmeasured: an algebraic approach to internet mapping publication-title: Proc IEEE InfoCom – ident: ref21 doi: 10.1137/1.9781611971408 – ident: ref25 doi: 10.1145/863969.863970 |
SSID | ssj0013026 |
Score | 2.0657883 |
Snippet | Internet fault diagnosis is extremely important for end-users, overlay network service providers (like Akamai ), and even Internet service providers (ISPs).... [...] LEND can supplement existing statistical inference approaches and provide smooth tradeoff between diagnosis accuracy and granularity. |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1724 |
SubjectTerms | Algorithm design and analysis Algorithms Councils Delay Fault diagnosis Internet diagnosis Internet service providers IP networks Length measurement Linear algebra network measurement Network topology Studies Tomography Web and internet services |
Title | Towards Unbiased End-to-End Network Diagnosis |
URI | https://ieeexplore.ieee.org/document/5272259 https://www.proquest.com/docview/861496550 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRClgDIwIdwmbuLYI4JWFRKdWqlb5KdUgVJE04Vfj-245SnElAy25Nyd75G7-w7gSiep4EIo5HQdSs2AIMY5RixLuUq0cBBYrtpiQsaz9GGezRtws-2F0Vr74jPdc68-l6-Wcu1-lfUznFvxY01o2sCt7tX6yBjEfrSajXAGiBCGQwYziVl_OhlOa2RKG-lbE0e_2CA_VOWHJvbmZbQPj5uD1VUlT711JXry7Rtm439PfgB7wc-MbmvBOISGLo9g9xP6YBvQ1JfMrqJZKRbWmKloWCpULZF9RJO6PDy6r0vxFqtjmI2G07sxCtMTkMQMV4hyIWnCDeYujct1nlMlslRipWNNuMgkNVRoKlPKrB9ktSIzhlCtGMmECytOoFUuS30KERbSGDZQueEkzTmj2qHcqThR2LguqA7EG3oWMkCLuwkXz4UPMWJWOBa4iZesCCzowPV2y0uNq_HX4rYj6XZhoGYHuhumFeHmrQpq_Q37BVl89vumLuzgMAIiTs6hVb2u9YX1Kypx6QXqHXW-x7c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4Io5ZGBCeGSuIljjwhaFWg7pVK3yE-pAqWIpgu_HjtJy1OIKRlsybk73yN39x3AhQ5CwYVQyOk6FJoOQYxzjFgUchVo4SCwXLXFiPTH4cMkmtTgatULo7Uuis90270WuXw1kwv3q-w6wrEVP7YG65Frxi27tT5yBn4xXM3GOB1ECMNVDjPw2XUy6iYlNqWN9a2Ro1-sUDFW5YcuLgxMbweGy6OVdSVP7UUu2vLtG2rjf8--C9uVp-ndlKKxBzWd7cPWJ_zBBqCkKJqde-NMTK05U143UyifIfvwRmWBuHdXFuNN5wcw7nWT2z6q5icgiRnOEeVC0oAbzF0il-s4pkpEocRK-5pwEUlqqNBUhpRZT8jqRWYMoVoxEgkXWBxCPZtl-gg8LKQxrKNiw0kYc0a1w7lTfqCwcX1QTfCX9ExlBS7uZlw8p0WQ4bPUscDNvGRpxYImXK62vJTIGn8tbjiSrhZW1GxCa8m0tLp785Raj8N-QeQf_77pHDb6yXCQDu5Hjy3YxNVACD84gXr-utCn1svIxVkhXO8ORMr_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Unbiased+End-to-End+Network+Diagnosis&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Yao+Zhao&rft.au=Yan+Chen&rft.au=Bindel%2C+D.&rft.date=2009-12-01&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=17&rft.issue=6&rft.spage=1724&rft.epage=1737&rft_id=info:doi/10.1109%2FTNET.2009.2022158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNET_2009_2022158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |