Semi-Supervised Domain-Adaptive Seizure Prediction via Feature Alignment and Consistency Regularization
The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied superv...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied supervised domain adaptation (SDA), utilizing limited labeled data from the target patient to calibrate the model. However, as the epileptic EEG representation even varies within one single patient, limited target data could hardly cover the data distribution, thus the model still shows poor generalization on the target patient. To this end, we introduce a novel semi-supervised domain adaptive seizure prediction model (SSDA-SPM), using limited labeled target data and extra unlabeled target data for adaptation. SSDA-SPM mainly consists of two unsupervised modules, namely feature alignment (FA) module and consistency regularization (CR) module. The FA module aims to transfer knowledge from existing patients to the target patient coarsely by globally aligning the data distribution between them. Then the CR module further enhances the discriminability on the target patient by pushing the decision boundary into the low-density area. Our proposed method achieves 88.8% sensitivity, 0.182/h false prediction rate (FPR) and 0.849 AUC on the CHB-MIT database and 75.7% sensitivity, 0.165/h FPR and 0.763 AUC on the Kaggle database. Experimental results demonstrate that our method has provided a promising solution to improve the cross-patient generalization for seizure prediction. |
---|---|
AbstractList | The interpatient variability still poses a great challenge for the real-world application of electroencephalogram (EEG)-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied supervised domain adaptation (SDA), utilizing limited labeled data from the target patient to calibrate the model. However, as the epileptic EEG representation even varies within one single patient, limited target data could hardly cover the data distribution, thus the model still shows poor generalization on the target patient. To this end, we introduce a novel semi-supervised domain adaptive seizure prediction model (SSDA-SPM), using limited labeled target data and extra unlabeled target data for adaptation. SSDA-SPM mainly consists of two unsupervised modules, namely feature alignment (FA) module and consistency regularization (CR) module. The FA module aims to transfer knowledge from existing patients to the target patient coarsely by globally aligning the data distribution between them. Then the CR module further enhances the discriminability on the target patient by pushing the decision boundary into the low-density area. Our proposed method achieves 88.8% sensitivity (Sens), 0.182/h false prediction rate (FPR), and 0.849 area under the receiver operating characteristic curve (AUC) on the CHB-MIT database and 75.7% Sens, 0.165/h FPR, and 0.763 AUC on the Kaggle database. Experimental results demonstrate that our method has provided a promising solution to improve the cross-patient generalization for seizure prediction. The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied supervised domain adaptation (SDA), utilizing limited labeled data from the target patient to calibrate the model. However, as the epileptic EEG representation even varies within one single patient, limited target data could hardly cover the data distribution, thus the model still shows poor generalization on the target patient. To this end, we introduce a novel semi-supervised domain adaptive seizure prediction model (SSDA-SPM), using limited labeled target data and extra unlabeled target data for adaptation. SSDA-SPM mainly consists of two unsupervised modules, namely feature alignment (FA) module and consistency regularization (CR) module. The FA module aims to transfer knowledge from existing patients to the target patient coarsely by globally aligning the data distribution between them. Then the CR module further enhances the discriminability on the target patient by pushing the decision boundary into the low-density area. Our proposed method achieves 88.8% sensitivity, 0.182/h false prediction rate (FPR) and 0.849 AUC on the CHB-MIT database and 75.7% sensitivity, 0.165/h FPR and 0.763 AUC on the Kaggle database. Experimental results demonstrate that our method has provided a promising solution to improve the cross-patient generalization for seizure prediction. |
Author | Gao, Yikai Qian, Ruobing Liu, Aiping Liang, Deng Chen, Xun Li, Chang |
Author_xml | – sequence: 1 givenname: Deng orcidid: 0000-0002-0342-2300 surname: Liang fullname: Liang, Deng organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Aiping orcidid: 0000-0001-8849-5228 surname: Liu fullname: Liu, Aiping organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Yikai orcidid: 0000-0003-1164-9529 surname: Gao fullname: Gao, Yikai organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Chang orcidid: 0000-0003-0195-1003 surname: Li fullname: Li, Chang organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, China – sequence: 5 givenname: Ruobing orcidid: 0000-0002-9559-1952 surname: Qian fullname: Qian, Ruobing organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China – sequence: 6 givenname: Xun orcidid: 0000-0002-4922-8116 surname: Chen fullname: Chen, Xun organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China |
BookMark | eNp9kE1PwkAQhjcGEwG9e_DQxHNxP9pu50hQlASjETw3SztLlsAWd7ck8OstwsF48DTJ5H3mzTw90rG1RUJuGR0wRuFhPnkdcMrFQPCMAYML0mVpKmPIMt4hXUpZHkOSZlek5_2KUiqzRHbJcoYbE8-aLbqd8VhFj_VGGRsPK7UNZofRDM2hcRi9O6xMGUxto51R0RhVOK6Ha7O0G7QhUraKRrX1xge05T76wGWzVs4c1BG6JpdarT3enGeffI6f5qOXePr2PBkNp3HJgYc4h5xjoqSWZY4S0kQvUIkEctCAsNCC6bJiCIngWqCWqGm-0AsokWeVAC765P50d-vqrwZ9KFZ142xbWXAJkoNIUtqm6ClVutp7h7rYOrNRbl8wWhx1Fq3O4qizOOtskewPUprw81pwyqz_A-9OoEHEXz00Zwlj4huS1IZn |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1109_JSEN_2023_3307223 crossref_primary_10_1109_TNSRE_2023_3321414 crossref_primary_10_1109_TIM_2024_3368421 crossref_primary_10_1109_TII_2023_3297323 crossref_primary_10_1109_TIM_2023_3334330 crossref_primary_10_1109_JBHI_2024_3438829 crossref_primary_10_1109_JIOT_2024_3373616 crossref_primary_10_1109_TIM_2024_3453330 |
Cites_doi | 10.1109/TIM.2021.3137159 10.1016/j.compbiomed.2018.05.019 10.1109/tcds.2022.3212019 10.1109/TIM.2022.3173270 10.1016/j.clinph.2014.05.022 10.1016/j.jneumeth.2022.109557 10.1038/s41582-018-0055-2 10.1088/1741-2552/ac73b3 10.1109/ICDM.2019.00088 10.1109/TBME.2018.2874716 10.1007/s10994-019-05855-6 10.1109/LSP.2020.2989663 10.1109/TNSRE.2022.3180155 10.1109/TIM.2022.3152325 10.1109/TCYB.2021.3071860 10.1109/JSEN.2021.3057076 10.1109/JBHI.2022.3210158 10.1109/TNSRE.2021.3103210 10.1109/CVPR.2016.90 10.3390/bios12040247 10.1109/TIM.2022.3217515 10.1109/JBHI.2021.3100297 10.1016/j.patcog.2022.108955 10.1109/TNSRE.2022.3217929 10.1161/01.CTR.101.23.e215 10.7551/mitpress/7503.003.0069 10.1093/bioinformatics/btl242 10.1093/brain/aww045 10.1016/j.knosys.2022.108856 10.1007/978-3-030-58568-6_35 10.1109/TNSRE.2013.2282153 10.1016/j.neunet.2018.04.018 10.1109/TIP.2021.3112012 10.1609/aaai.v33i01.33015989 10.3389/fnins.2021.825434 10.1109/TCDS.2021.3100270 10.1109/TBME.2016.2586475 10.1016/j.bspc.2022.103555 10.1109/TBME.2018.2809798 10.1016/j.physd.2004.02.013 10.1109/TIM.2018.2855518 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2023.3261919 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIM_2023_3261919 10081411 |
Genre | orig-research |
GrantInformation_xml | – fundername: University Synergy Innovation Program of Anhui Province grantid: GXXT-2019-025 – fundername: National Natural Science Foundation of China grantid: 32271431; 61922075; 82272070; 41901350 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2021YFF1200600 funderid: 10.13039/501100012166 – fundername: Research Project of Health Commission of Anhui Province grantid: AHWJ2022b004 – fundername: Fundamental Research Funds for the Central Universities grantid: KY2100000123 funderid: 10.13039/501100012226 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-8982e4a7f7c8e7954fbea34989f9e9bf31fcd1e9432f3ef7ef08bfb9ce26d3923 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:10:00 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 03:07:25 EDT 2025 Wed Aug 27 02:21:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-8982e4a7f7c8e7954fbea34989f9e9bf31fcd1e9432f3ef7ef08bfb9ce26d3923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8849-5228 0000-0003-0195-1003 0000-0002-0342-2300 0000-0002-9559-1952 0000-0003-1164-9529 0000-0002-4922-8116 |
PQID | 2797293450 |
PQPubID | 85462 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10081411 proquest_journals_2797293450 crossref_citationtrail_10_1109_TIM_2023_3261919 crossref_primary_10_1109_TIM_2023_3261919 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 Oliver (ref41); 31 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Tarvainen (ref43); 30 Long (ref45) Shoeb (ref34) 2009 ref24 ref46 ref23 ref26 ref25 ref47 ref20 ref42 ref22 ref44 ref21 (ref1) 2019 ref28 ref27 ref29 ref8 ref7 ref9 ref4 Tsai (ref33) ref3 ref6 ref5 ref40 |
References_xml | – ident: ref5 doi: 10.1109/TIM.2021.3137159 – ident: ref20 doi: 10.1016/j.compbiomed.2018.05.019 – ident: ref22 doi: 10.1109/tcds.2022.3212019 – ident: ref2 doi: 10.1109/TIM.2022.3173270 – ident: ref12 doi: 10.1016/j.clinph.2014.05.022 – ident: ref42 doi: 10.1016/j.jneumeth.2022.109557 – ident: ref10 doi: 10.1038/s41582-018-0055-2 – ident: ref25 doi: 10.1088/1741-2552/ac73b3 – ident: ref46 doi: 10.1109/ICDM.2019.00088 – volume: 30 start-page: 1195 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref43 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – ident: ref13 doi: 10.1109/TBME.2018.2874716 – ident: ref32 doi: 10.1007/s10994-019-05855-6 – ident: ref39 doi: 10.1109/LSP.2020.2989663 – ident: ref18 doi: 10.1109/TNSRE.2022.3180155 – ident: ref6 doi: 10.1109/TIM.2022.3152325 – volume-title: Application of machine learning to epileptic seizure onset detection and treatment, year: 2009 ident: ref34 – ident: ref21 doi: 10.1109/TCYB.2021.3071860 – ident: ref23 doi: 10.1109/JSEN.2021.3057076 – volume: 31 start-page: 3235 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Realistic evaluation of deep semi-supervised learning algorithms – ident: ref31 doi: 10.1109/JBHI.2022.3210158 – ident: ref17 doi: 10.1109/TNSRE.2021.3103210 – ident: ref37 doi: 10.1109/CVPR.2016.90 – ident: ref8 doi: 10.3390/bios12040247 – ident: ref7 doi: 10.1109/TIM.2022.3217515 – ident: ref24 doi: 10.1109/JBHI.2021.3100297 – start-page: 513 volume-title: Proc. Asian Conf. Mach. Learn. ident: ref33 article-title: Learning from label proportions with consistency regularization – volume-title: Epilepsy: A Public Health Imperative year: 2019 ident: ref1 – start-page: 97 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref45 article-title: Learning transferable features with deep adaptation networks – ident: ref47 doi: 10.1016/j.patcog.2022.108955 – ident: ref19 doi: 10.1109/TNSRE.2022.3217929 – ident: ref35 doi: 10.1161/01.CTR.101.23.e215 – ident: ref38 doi: 10.7551/mitpress/7503.003.0069 – ident: ref40 doi: 10.1093/bioinformatics/btl242 – ident: ref15 doi: 10.1093/brain/aww045 – ident: ref3 doi: 10.1016/j.knosys.2022.108856 – ident: ref29 doi: 10.1007/978-3-030-58568-6_35 – ident: ref11 doi: 10.1109/TNSRE.2013.2282153 – ident: ref16 doi: 10.1016/j.neunet.2018.04.018 – ident: ref30 doi: 10.1109/TIP.2021.3112012 – ident: ref36 doi: 10.1609/aaai.v33i01.33015989 – ident: ref27 doi: 10.3389/fnins.2021.825434 – ident: ref28 doi: 10.1109/TCDS.2021.3100270 – ident: ref14 doi: 10.1109/TBME.2016.2586475 – ident: ref26 doi: 10.1016/j.bspc.2022.103555 – ident: ref9 doi: 10.1109/TBME.2018.2809798 – ident: ref44 doi: 10.1016/j.physd.2004.02.013 – ident: ref4 doi: 10.1109/TIM.2018.2855518 |
SSID | ssj0007647 |
Score | 2.4873197 |
Snippet | The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could... The interpatient variability still poses a great challenge for the real-world application of electroencephalogram (EEG)-based seizure prediction, where most... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation Adaptation models Alignment Brain modeling Consistency consistency regularization Convulsions & seizures Data models Domains Electroencephalogram (EEG) Electroencephalography feature alignment Feature extraction Knowledge management Modules Prediction models Regularization seizure prediction semi-supervised domain adaptation Training |
Title | Semi-Supervised Domain-Adaptive Seizure Prediction via Feature Alignment and Consistency Regularization |
URI | https://ieeexplore.ieee.org/document/10081411 https://www.proquest.com/docview/2797293450 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS-QwEA6ncHD3oHfq4ap35OFefGi3bfoj87j4A-9AOVwF30qTTKSo3WV3K-hfbybtyuJxh9CHUpIS-JLJN8nMN4z9BKUQpBFBnhnnoAijA5VnECgDRgkjhU4oG_n8Ij-7Tn_fZDd9srrPhUFEH3yGIb36u3wz0S0dlQ1JiCZOKZN3zXluXbLWq9kt8rQTyIzdCna0YHknGcHw6td5SGXCQ0H-AonqrOxBvqjKX5bYby-nm-xiObAuquQubBcq1M9vNBvfPfIvbKMnmnzUzYyv7AM2W-zzivzgFvvowz_1fJvdjvGhDsbtlCzHHA0_njxUdROMTDUle8jHWD-3M-R_ZnSxQ2Dyx7riRCDp8-i-vvVhBbxqDPdFQOdExp_4pa91P-uzPXfY9enJ1dFZ0JdgCHQCySKQIBNMq8IWWmIBWWoVViIFCRYQlBWx1SZGSEViBdoCbSSVVaAxyY2jXuIbW28mDe4yTkpxjl9Ajs4Fg6qShWsH1srEuCeOBmy4BKXUvT45lcm4L72fEkHpYCwJxrKHccAOX3tMO22O_7TdIVRW2nWADNjBEviyX73zMinA-RwizaK9f3TbZ5_o791ZzAFbX8xa_O7YyUL98LPyBYAz4aE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQJgQ88GMMURjgB154SJrE-eF7rGBTB2uFaCftLYrt8xSxpVXbILG_fj4nnSomEFIeoshWLH32-Tv77jvGPoJSCNKIIM-Mc1CE0YHKMwiUAaOEkUInlI08mebj8_TrRXbRJ6v7XBhE9MFnGNKrv8s3C93SUdmQhGjilDJ5993GnyVdutad4S3ytJPIjN0adsRgeysZwXB-OgmpUHgoyGMgWZ2dXciXVblni_0Gc_KMTbdD6-JKfobtRoX65g_Vxv8e-3P2tKeafNTNjRfsATYH7MmOAOEBe-gDQPX6Jbuc4XUdzNol2Y41Gv5lcV3VTTAy1ZIsIp9hfdOukH9f0dUOwcl_1RUnCkmfR1f1pQ8s4FVjuC8DuiY6_pv_8NXuV32-5yE7Pzmefx4HfRGGQCeQbAIJMsG0KmyhJRaQpVZhJVKQYAFBWRFbbWKEVCRWoC3QRlJZBRqT3DjyJV6xvWbR4GvGSSvOMQzI0TlhUFWycO3AWpkY98TRgA23oJS6VyinQhlXpfdUIigdjCXBWPYwDtinux7LTp3jH20PCZWddh0gA3a0Bb7s1--6TApwXodIs-jNX7p9YI_G88lZeXY6_faWPaY_dSczR2xvs2rxneMqG_Xez9Bbb9Tk6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Domain-Adaptive+Seizure+Prediction+via+Feature+Alignment+and+Consistency+Regularization&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liang%2C+Deng&rft.au=Liu%2C+Aiping&rft.au=Gao%2C+Yikai&rft.au=Li%2C+Chang&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2023.3261919&rft.externalDocID=10081411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |