Semi-Supervised Domain-Adaptive Seizure Prediction via Feature Alignment and Consistency Regularization

The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied superv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 72; p. 1
Main Authors Liang, Deng, Liu, Aiping, Gao, Yikai, Li, Chang, Qian, Ruobing, Chen, Xun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied supervised domain adaptation (SDA), utilizing limited labeled data from the target patient to calibrate the model. However, as the epileptic EEG representation even varies within one single patient, limited target data could hardly cover the data distribution, thus the model still shows poor generalization on the target patient. To this end, we introduce a novel semi-supervised domain adaptive seizure prediction model (SSDA-SPM), using limited labeled target data and extra unlabeled target data for adaptation. SSDA-SPM mainly consists of two unsupervised modules, namely feature alignment (FA) module and consistency regularization (CR) module. The FA module aims to transfer knowledge from existing patients to the target patient coarsely by globally aligning the data distribution between them. Then the CR module further enhances the discriminability on the target patient by pushing the decision boundary into the low-density area. Our proposed method achieves 88.8% sensitivity, 0.182/h false prediction rate (FPR) and 0.849 AUC on the CHB-MIT database and 75.7% sensitivity, 0.165/h FPR and 0.763 AUC on the Kaggle database. Experimental results demonstrate that our method has provided a promising solution to improve the cross-patient generalization for seizure prediction.
AbstractList The interpatient variability still poses a great challenge for the real-world application of electroencephalogram (EEG)-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied supervised domain adaptation (SDA), utilizing limited labeled data from the target patient to calibrate the model. However, as the epileptic EEG representation even varies within one single patient, limited target data could hardly cover the data distribution, thus the model still shows poor generalization on the target patient. To this end, we introduce a novel semi-supervised domain adaptive seizure prediction model (SSDA-SPM), using limited labeled target data and extra unlabeled target data for adaptation. SSDA-SPM mainly consists of two unsupervised modules, namely feature alignment (FA) module and consistency regularization (CR) module. The FA module aims to transfer knowledge from existing patients to the target patient coarsely by globally aligning the data distribution between them. Then the CR module further enhances the discriminability on the target patient by pushing the decision boundary into the low-density area. Our proposed method achieves 88.8% sensitivity (Sens), 0.182/h false prediction rate (FPR), and 0.849 area under the receiver operating characteristic curve (AUC) on the CHB-MIT database and 75.7% Sens, 0.165/h FPR, and 0.763 AUC on the Kaggle database. Experimental results demonstrate that our method has provided a promising solution to improve the cross-patient generalization for seizure prediction.
The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could only work under the patient-specific fashion and fail to generalize across patients. To address this issue, some latest studies applied supervised domain adaptation (SDA), utilizing limited labeled data from the target patient to calibrate the model. However, as the epileptic EEG representation even varies within one single patient, limited target data could hardly cover the data distribution, thus the model still shows poor generalization on the target patient. To this end, we introduce a novel semi-supervised domain adaptive seizure prediction model (SSDA-SPM), using limited labeled target data and extra unlabeled target data for adaptation. SSDA-SPM mainly consists of two unsupervised modules, namely feature alignment (FA) module and consistency regularization (CR) module. The FA module aims to transfer knowledge from existing patients to the target patient coarsely by globally aligning the data distribution between them. Then the CR module further enhances the discriminability on the target patient by pushing the decision boundary into the low-density area. Our proposed method achieves 88.8% sensitivity, 0.182/h false prediction rate (FPR) and 0.849 AUC on the CHB-MIT database and 75.7% sensitivity, 0.165/h FPR and 0.763 AUC on the Kaggle database. Experimental results demonstrate that our method has provided a promising solution to improve the cross-patient generalization for seizure prediction.
Author Gao, Yikai
Qian, Ruobing
Liu, Aiping
Liang, Deng
Chen, Xun
Li, Chang
Author_xml – sequence: 1
  givenname: Deng
  orcidid: 0000-0002-0342-2300
  surname: Liang
  fullname: Liang, Deng
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Aiping
  orcidid: 0000-0001-8849-5228
  surname: Liu
  fullname: Liu, Aiping
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Yikai
  orcidid: 0000-0003-1164-9529
  surname: Gao
  fullname: Gao, Yikai
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Chang
  orcidid: 0000-0003-0195-1003
  surname: Li
  fullname: Li, Chang
  organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
– sequence: 5
  givenname: Ruobing
  orcidid: 0000-0002-9559-1952
  surname: Qian
  fullname: Qian, Ruobing
  organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
– sequence: 6
  givenname: Xun
  orcidid: 0000-0002-4922-8116
  surname: Chen
  fullname: Chen, Xun
  organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
BookMark eNp9kE1PwkAQhjcGEwG9e_DQxHNxP9pu50hQlASjETw3SztLlsAWd7ck8OstwsF48DTJ5H3mzTw90rG1RUJuGR0wRuFhPnkdcMrFQPCMAYML0mVpKmPIMt4hXUpZHkOSZlek5_2KUiqzRHbJcoYbE8-aLbqd8VhFj_VGGRsPK7UNZofRDM2hcRi9O6xMGUxto51R0RhVOK6Ha7O0G7QhUraKRrX1xge05T76wGWzVs4c1BG6JpdarT3enGeffI6f5qOXePr2PBkNp3HJgYc4h5xjoqSWZY4S0kQvUIkEctCAsNCC6bJiCIngWqCWqGm-0AsokWeVAC765P50d-vqrwZ9KFZ142xbWXAJkoNIUtqm6ClVutp7h7rYOrNRbl8wWhx1Fq3O4qizOOtskewPUprw81pwyqz_A-9OoEHEXz00Zwlj4huS1IZn
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1109_JSEN_2023_3307223
crossref_primary_10_1109_TNSRE_2023_3321414
crossref_primary_10_1109_TIM_2024_3368421
crossref_primary_10_1109_TII_2023_3297323
crossref_primary_10_1109_TIM_2023_3334330
crossref_primary_10_1109_JBHI_2024_3438829
crossref_primary_10_1109_JIOT_2024_3373616
crossref_primary_10_1109_TIM_2024_3453330
Cites_doi 10.1109/TIM.2021.3137159
10.1016/j.compbiomed.2018.05.019
10.1109/tcds.2022.3212019
10.1109/TIM.2022.3173270
10.1016/j.clinph.2014.05.022
10.1016/j.jneumeth.2022.109557
10.1038/s41582-018-0055-2
10.1088/1741-2552/ac73b3
10.1109/ICDM.2019.00088
10.1109/TBME.2018.2874716
10.1007/s10994-019-05855-6
10.1109/LSP.2020.2989663
10.1109/TNSRE.2022.3180155
10.1109/TIM.2022.3152325
10.1109/TCYB.2021.3071860
10.1109/JSEN.2021.3057076
10.1109/JBHI.2022.3210158
10.1109/TNSRE.2021.3103210
10.1109/CVPR.2016.90
10.3390/bios12040247
10.1109/TIM.2022.3217515
10.1109/JBHI.2021.3100297
10.1016/j.patcog.2022.108955
10.1109/TNSRE.2022.3217929
10.1161/01.CTR.101.23.e215
10.7551/mitpress/7503.003.0069
10.1093/bioinformatics/btl242
10.1093/brain/aww045
10.1016/j.knosys.2022.108856
10.1007/978-3-030-58568-6_35
10.1109/TNSRE.2013.2282153
10.1016/j.neunet.2018.04.018
10.1109/TIP.2021.3112012
10.1609/aaai.v33i01.33015989
10.3389/fnins.2021.825434
10.1109/TCDS.2021.3100270
10.1109/TBME.2016.2586475
10.1016/j.bspc.2022.103555
10.1109/TBME.2018.2809798
10.1016/j.physd.2004.02.013
10.1109/TIM.2018.2855518
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3261919
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2023_3261919
10081411
Genre orig-research
GrantInformation_xml – fundername: University Synergy Innovation Program of Anhui Province
  grantid: GXXT-2019-025
– fundername: National Natural Science Foundation of China
  grantid: 32271431; 61922075; 82272070; 41901350
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2021YFF1200600
  funderid: 10.13039/501100012166
– fundername: Research Project of Health Commission of Anhui Province
  grantid: AHWJ2022b004
– fundername: Fundamental Research Funds for the Central Universities
  grantid: KY2100000123
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-8982e4a7f7c8e7954fbea34989f9e9bf31fcd1e9432f3ef7ef08bfb9ce26d3923
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:10:00 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 03:07:25 EDT 2025
Wed Aug 27 02:21:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8982e4a7f7c8e7954fbea34989f9e9bf31fcd1e9432f3ef7ef08bfb9ce26d3923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8849-5228
0000-0003-0195-1003
0000-0002-0342-2300
0000-0002-9559-1952
0000-0003-1164-9529
0000-0002-4922-8116
PQID 2797293450
PQPubID 85462
PageCount 1
ParticipantIDs ieee_primary_10081411
proquest_journals_2797293450
crossref_citationtrail_10_1109_TIM_2023_3261919
crossref_primary_10_1109_TIM_2023_3261919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
Oliver (ref41); 31
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Tarvainen (ref43); 30
Long (ref45)
Shoeb (ref34) 2009
ref24
ref46
ref23
ref26
ref25
ref47
ref20
ref42
ref22
ref44
ref21
(ref1) 2019
ref28
ref27
ref29
ref8
ref7
ref9
ref4
Tsai (ref33)
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/TIM.2021.3137159
– ident: ref20
  doi: 10.1016/j.compbiomed.2018.05.019
– ident: ref22
  doi: 10.1109/tcds.2022.3212019
– ident: ref2
  doi: 10.1109/TIM.2022.3173270
– ident: ref12
  doi: 10.1016/j.clinph.2014.05.022
– ident: ref42
  doi: 10.1016/j.jneumeth.2022.109557
– ident: ref10
  doi: 10.1038/s41582-018-0055-2
– ident: ref25
  doi: 10.1088/1741-2552/ac73b3
– ident: ref46
  doi: 10.1109/ICDM.2019.00088
– volume: 30
  start-page: 1195
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– ident: ref13
  doi: 10.1109/TBME.2018.2874716
– ident: ref32
  doi: 10.1007/s10994-019-05855-6
– ident: ref39
  doi: 10.1109/LSP.2020.2989663
– ident: ref18
  doi: 10.1109/TNSRE.2022.3180155
– ident: ref6
  doi: 10.1109/TIM.2022.3152325
– volume-title: Application of machine learning to epileptic seizure onset detection and treatment,
  year: 2009
  ident: ref34
– ident: ref21
  doi: 10.1109/TCYB.2021.3071860
– ident: ref23
  doi: 10.1109/JSEN.2021.3057076
– volume: 31
  start-page: 3235
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Realistic evaluation of deep semi-supervised learning algorithms
– ident: ref31
  doi: 10.1109/JBHI.2022.3210158
– ident: ref17
  doi: 10.1109/TNSRE.2021.3103210
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref8
  doi: 10.3390/bios12040247
– ident: ref7
  doi: 10.1109/TIM.2022.3217515
– ident: ref24
  doi: 10.1109/JBHI.2021.3100297
– start-page: 513
  volume-title: Proc. Asian Conf. Mach. Learn.
  ident: ref33
  article-title: Learning from label proportions with consistency regularization
– volume-title: Epilepsy: A Public Health Imperative
  year: 2019
  ident: ref1
– start-page: 97
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref45
  article-title: Learning transferable features with deep adaptation networks
– ident: ref47
  doi: 10.1016/j.patcog.2022.108955
– ident: ref19
  doi: 10.1109/TNSRE.2022.3217929
– ident: ref35
  doi: 10.1161/01.CTR.101.23.e215
– ident: ref38
  doi: 10.7551/mitpress/7503.003.0069
– ident: ref40
  doi: 10.1093/bioinformatics/btl242
– ident: ref15
  doi: 10.1093/brain/aww045
– ident: ref3
  doi: 10.1016/j.knosys.2022.108856
– ident: ref29
  doi: 10.1007/978-3-030-58568-6_35
– ident: ref11
  doi: 10.1109/TNSRE.2013.2282153
– ident: ref16
  doi: 10.1016/j.neunet.2018.04.018
– ident: ref30
  doi: 10.1109/TIP.2021.3112012
– ident: ref36
  doi: 10.1609/aaai.v33i01.33015989
– ident: ref27
  doi: 10.3389/fnins.2021.825434
– ident: ref28
  doi: 10.1109/TCDS.2021.3100270
– ident: ref14
  doi: 10.1109/TBME.2016.2586475
– ident: ref26
  doi: 10.1016/j.bspc.2022.103555
– ident: ref9
  doi: 10.1109/TBME.2018.2809798
– ident: ref44
  doi: 10.1016/j.physd.2004.02.013
– ident: ref4
  doi: 10.1109/TIM.2018.2855518
SSID ssj0007647
Score 2.4873197
Snippet The inter-patient variability still poses a great challenge for the real-world application of EEG-based seizure prediction, where most previous methods could...
The interpatient variability still poses a great challenge for the real-world application of electroencephalogram (EEG)-based seizure prediction, where most...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation
Adaptation models
Alignment
Brain modeling
Consistency
consistency regularization
Convulsions & seizures
Data models
Domains
Electroencephalogram (EEG)
Electroencephalography
feature alignment
Feature extraction
Knowledge management
Modules
Prediction models
Regularization
seizure prediction
semi-supervised domain adaptation
Training
Title Semi-Supervised Domain-Adaptive Seizure Prediction via Feature Alignment and Consistency Regularization
URI https://ieeexplore.ieee.org/document/10081411
https://www.proquest.com/docview/2797293450
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS-QwEA6ncHD3oHfq4ap35OFefGi3bfoj87j4A-9AOVwF30qTTKSo3WV3K-hfbybtyuJxh9CHUpIS-JLJN8nMN4z9BKUQpBFBnhnnoAijA5VnECgDRgkjhU4oG_n8Ij-7Tn_fZDd9srrPhUFEH3yGIb36u3wz0S0dlQ1JiCZOKZN3zXluXbLWq9kt8rQTyIzdCna0YHknGcHw6td5SGXCQ0H-AonqrOxBvqjKX5bYby-nm-xiObAuquQubBcq1M9vNBvfPfIvbKMnmnzUzYyv7AM2W-zzivzgFvvowz_1fJvdjvGhDsbtlCzHHA0_njxUdROMTDUle8jHWD-3M-R_ZnSxQ2Dyx7riRCDp8-i-vvVhBbxqDPdFQOdExp_4pa91P-uzPXfY9enJ1dFZ0JdgCHQCySKQIBNMq8IWWmIBWWoVViIFCRYQlBWx1SZGSEViBdoCbSSVVaAxyY2jXuIbW28mDe4yTkpxjl9Ajs4Fg6qShWsH1srEuCeOBmy4BKXUvT45lcm4L72fEkHpYCwJxrKHccAOX3tMO22O_7TdIVRW2nWADNjBEviyX73zMinA-RwizaK9f3TbZ5_o791ZzAFbX8xa_O7YyUL98LPyBYAz4aE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbQJgQ88GMMURjgB154SJrE-eF7rGBTB2uFaCftLYrt8xSxpVXbILG_fj4nnSomEFIeoshWLH32-Tv77jvGPoJSCNKIIM-Mc1CE0YHKMwiUAaOEkUInlI08mebj8_TrRXbRJ6v7XBhE9MFnGNKrv8s3C93SUdmQhGjilDJ5993GnyVdutad4S3ytJPIjN0adsRgeysZwXB-OgmpUHgoyGMgWZ2dXciXVblni_0Gc_KMTbdD6-JKfobtRoX65g_Vxv8e-3P2tKeafNTNjRfsATYH7MmOAOEBe-gDQPX6Jbuc4XUdzNol2Y41Gv5lcV3VTTAy1ZIsIp9hfdOukH9f0dUOwcl_1RUnCkmfR1f1pQ8s4FVjuC8DuiY6_pv_8NXuV32-5yE7Pzmefx4HfRGGQCeQbAIJMsG0KmyhJRaQpVZhJVKQYAFBWRFbbWKEVCRWoC3QRlJZBRqT3DjyJV6xvWbR4GvGSSvOMQzI0TlhUFWycO3AWpkY98TRgA23oJS6VyinQhlXpfdUIigdjCXBWPYwDtinux7LTp3jH20PCZWddh0gA3a0Bb7s1--6TApwXodIs-jNX7p9YI_G88lZeXY6_faWPaY_dSczR2xvs2rxneMqG_Xez9Bbb9Tk6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Domain-Adaptive+Seizure+Prediction+via+Feature+Alignment+and+Consistency+Regularization&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Liang%2C+Deng&rft.au=Liu%2C+Aiping&rft.au=Gao%2C+Yikai&rft.au=Li%2C+Chang&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2023.3261919&rft.externalDocID=10081411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon