Multiple Reconfigurable Intelligent Surfaces Aided Vehicular Edge Computing Networks: A MAPPO-Based Approach
Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to its ability to change the wireless radio propagation environment. In this paper, we study multi-RIS-assisted VEC networks, where vehicle user...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 73; no. 11; pp. 17496 - 17509 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to its ability to change the wireless radio propagation environment. In this paper, we study multi-RIS-assisted VEC networks, where vehicle user equipments (VUEs) can offload tasks to nearby base stations (BSs) which offer efficient computation edge services (ESs). Meanwhile, the individual virtual machine (VM), which is defined as a software clone of the VUE's service environment containing the profile and application to run the VUE's tasks, need to be migrated to the same ES for offloaded task completion. Accordingly, we formulate a throughput maximization problem for multi-RIS-assisted VEC networks via jointly optimizing the selected ESs, the deployment locations of RISs, and reflection matrices of RISs, subject to the maximum tolerable delay. To solve the non-convex mixed-integer nonlinear optimization problem, we propose an efficient algorithm based on multi-agent proximal policy optimization (MAPPO) with the centralized training and decentralized execution (CTDE) framework, where two types of heterogeneous agents are considered. In particular, several tricks such as reward normalization, orthogonal initialization, and learning rate decay are adopted to accelerate the convergence of the proposed algorithm. Numerical simulation results show that the throughput obtained by the proposed MAPPO-based scheme outperforms that obtained by the scheme without multi-RIS 26.41% and that obtained by the scheme without service migration 23.65%, respectively. Moreover, compared to other conventional multi-agent reinforcement learning (MARL) algorithms, the proposed algorithm converges faster. |
---|---|
AbstractList | Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to its ability to change the wireless radio propagation environment. In this paper, we study multi-RIS-assisted VEC networks, where vehicle user equipments (VUEs) can offload tasks to nearby base stations (BSs) which offer efficient computation edge services (ESs). Meanwhile, the individual virtual machine (VM), which is defined as a software clone of the VUE's service environment containing the profile and application to run the VUE's tasks, need to be migrated to the same ES for offloaded task completion. Accordingly, we formulate a throughput maximization problem for multi-RIS-assisted VEC networks via jointly optimizing the selected ESs, the deployment locations of RISs, and reflection matrices of RISs, subject to the maximum tolerable delay. To solve the non-convex mixed-integer nonlinear optimization problem, we propose an efficient algorithm based on multi-agent proximal policy optimization (MAPPO) with the centralized training and decentralized execution (CTDE) framework, where two types of heterogeneous agents are considered. In particular, several tricks such as reward normalization, orthogonal initialization, and learning rate decay are adopted to accelerate the convergence of the proposed algorithm. Numerical simulation results show that the throughput obtained by the proposed MAPPO-based scheme outperforms that obtained by the scheme without multi-RIS 26.41% and that obtained by the scheme without service migration 23.65%, respectively. Moreover, compared to other conventional multi-agent reinforcement learning (MARL) algorithms, the proposed algorithm converges faster. |
Author | Hua, Meng Ning, Xiangrui Zeng, Ming Fei, Zesong |
Author_xml | – sequence: 1 givenname: Xiangrui surname: Ning fullname: Ning, Xiangrui organization: Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Ming orcidid: 0000-0002-7464-893X surname: Zeng fullname: Zeng, Ming email: mzengzm@163.com organization: Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Meng orcidid: 0000-0002-3121-6344 surname: Hua fullname: Hua, Meng email: m.hua@imperial.ac.uk organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K – sequence: 4 givenname: Zesong orcidid: 0000-0002-7576-625X surname: Fei fullname: Fei, Zesong organization: Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kEtLxDAURoMoOI7uXbgIuO6YZ5u4q4MvGB_o4LakmdsxWtuapIj_3si4EBeuLt_lO_fC2UPbXd8BQoeUzCgl-mT5tJwxwsSMC6qlFFtoQjXXmeZSb6MJIVRlWgq5i_ZCeElRCE0nqL0Z2-iGFvAD2L5r3Hr0pk7xuovQtm4NXcSPo2-MhYBLt4IVfoJnZ8fWeHy-WgOe92_DGF23xrcQP3r_Gk5xiW_K-_u77MyEBJTD4Htjn_fRTmPaAAc_c4qWF-fL-VW2uLu8npeLzDLNYqYKVRQFa3JJLKlrKFZcGZMWJKdcSNIoDlqBILZWolassYLmWlipgSkBfIqON2fT1_cRQqxe-tF36WPFKcuJJqSQqZVvWtb3IXhoKuuiia7vojeurSipvsVWSWz1Lbb6EZtA8gccvHsz_vM_5GiDOAD4VZcFY5zxL4SXhR8 |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_3390_drones8110648 |
Cites_doi | 10.1109/TPDS.2013.67 10.1109/TWC.2022.3188302 10.1109/TITS.2022.3152677 10.1109/JIOT.2021.3084509 10.1109/TVT.2022.3141935 10.1109/WoWMoM49955.2020.00025 10.1109/ACCESS.2022.3233028 10.1109/ANTS59832.2023.10469265 10.1109/VTCFall.2018.8690553 10.1109/TVT.2018.2867191 10.23919/JCC.2021.03.018 10.1109/TCCN.2021.3056707 10.1109/IWCMC55113.2022.9824117 10.1109/TVT.2019.2917890 10.1109/TVT.2020.2999617 10.1109/JIOT.2023.3240173 10.1109/GLOBECOM46510.2021.9685374 10.1109/TWC.2021.3070974 10.1109/LNET.2022.3187720 10.1109/TCOMM.2021.3066495 10.1109/TMC.2022.3197706 10.1109/TWC.2023.3280179 10.1109/ICCE-Taiwan55306.2022.9869286 10.1109/COMST.2022.3225859 10.1109/TWC.2022.3210532 10.23919/JCC.2021.06.006 10.1109/ICC42927.2021.9500445 10.1109/TVT.2022.3149937 10.1109/TCOMM.2023.3320700 10.1109/TVT.2022.3162044 10.1109/TCOMM.2021.3051897 10.1109/JSAC.2022.3192053 10.1109/TVT.2022.3222917 10.1109/TVT.2021.3116378 10.1109/ICCCWorkshops52231.2021.9538853 10.1109/LWC.2023.3320728 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2024.3419554 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 17509 |
ExternalDocumentID | 10_1109_TVT_2024_3419554 10572232 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Natural Science Funds of China grantid: 62001028 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c292t-8787772f650c0bbe7d38aa72f0613450f83e98e40cb84b82fc41694c59e284e3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:04:06 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 01:44:29 EDT 2025 Wed Aug 27 01:57:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-8787772f650c0bbe7d38aa72f0613450f83e98e40cb84b82fc41694c59e284e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3121-6344 0000-0002-7464-893X 0000-0002-7576-625X |
PQID | 3126090075 |
PQPubID | 85454 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3126090075 ieee_primary_10572232 crossref_primary_10_1109_TVT_2024_3419554 crossref_citationtrail_10_1109_TVT_2024_3419554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Yu (ref35) 2021 ref9 ref4 Lowe (ref38) 2017 ref3 ref6 ref5 Fujimoto (ref39) 2018 |
References_xml | – ident: ref34 doi: 10.1109/TPDS.2013.67 – start-page: 6379 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref38 article-title: Multiagent actor-critic for mixed cooperative-competitive environments – ident: ref17 doi: 10.1109/TWC.2022.3188302 – ident: ref26 doi: 10.1109/TITS.2022.3152677 – ident: ref23 doi: 10.1109/JIOT.2021.3084509 – ident: ref25 doi: 10.1109/TVT.2022.3141935 – ident: ref27 doi: 10.1109/WoWMoM49955.2020.00025 – ident: ref21 doi: 10.1109/ACCESS.2022.3233028 – ident: ref29 doi: 10.1109/ANTS59832.2023.10469265 – ident: ref30 doi: 10.1109/VTCFall.2018.8690553 – ident: ref5 doi: 10.1109/TVT.2018.2867191 – ident: ref4 doi: 10.23919/JCC.2021.03.018 – ident: ref16 doi: 10.1109/TCCN.2021.3056707 – ident: ref7 doi: 10.1109/IWCMC55113.2022.9824117 – ident: ref15 doi: 10.1109/TVT.2019.2917890 – ident: ref22 doi: 10.1109/TVT.2020.2999617 – ident: ref36 doi: 10.1109/JIOT.2023.3240173 – year: 2021 ident: ref35 article-title: The surprising effectiveness of PPO in cooperative, multi-agent games – ident: ref19 doi: 10.1109/GLOBECOM46510.2021.9685374 – ident: ref31 doi: 10.1109/TWC.2021.3070974 – ident: ref2 doi: 10.1109/LNET.2022.3187720 – ident: ref3 doi: 10.1109/TCOMM.2021.3066495 – ident: ref33 doi: 10.1109/TMC.2022.3197706 – ident: ref10 doi: 10.1109/TWC.2023.3280179 – ident: ref28 doi: 10.1109/ICCE-Taiwan55306.2022.9869286 – ident: ref6 doi: 10.1109/COMST.2022.3225859 – ident: ref12 doi: 10.1109/TWC.2022.3210532 – ident: ref13 doi: 10.23919/JCC.2021.06.006 – ident: ref32 doi: 10.1109/ICC42927.2021.9500445 – ident: ref14 doi: 10.1109/TVT.2022.3149937 – ident: ref9 doi: 10.1109/TCOMM.2023.3320700 – ident: ref18 doi: 10.1109/TVT.2022.3162044 – ident: ref8 doi: 10.1109/TCOMM.2021.3051897 – ident: ref37 doi: 10.1109/JSAC.2022.3192053 – ident: ref1 doi: 10.1109/TVT.2022.3222917 – ident: ref20 doi: 10.1109/TVT.2021.3116378 – ident: ref24 doi: 10.1109/ICCCWorkshops52231.2021.9538853 – ident: ref11 doi: 10.1109/LWC.2023.3320728 – year: 2018 ident: ref39 article-title: Addressing function approximation error in actor-critic methods |
SSID | ssj0014491 |
Score | 2.4900663 |
Snippet | Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17496 |
SubjectTerms | Algorithms Communication networks Computation offloading Delays Edge computing Machine learning Mixed integer multi-agent reinforcement learning Multiagent systems Optimization Radio equipment Radio transmission Reconfigurable intelligent surfaces Reinforcement learning Resource management service migration Throughput Vehicular ad hoc networks Vehicular edge computing Virtual environments Wireless communication Wireless networks |
Title | Multiple Reconfigurable Intelligent Surfaces Aided Vehicular Edge Computing Networks: A MAPPO-Based Approach |
URI | https://ieeexplore.ieee.org/document/10572232 https://www.proquest.com/docview/3126090075 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ukx78iRFF04MXD4OxdWP1No0ETUASkXBb1vYNiWQY2C7-9b5uhaBG421Z2qbJ1_Z9r33ve4RcCWnHHhoyC82rYzEfmMWlH1vKVeAz1WqrRF_o9_p-94U9jr2xSVYvcmEAoAg-g4b-LN7y1Vzm-qqsqWvSojnDE3cbPbcyWWv9ZMCYKY_Xwh2MvGD1Jmnz5nA0RE_QYQ0tXuZ57IsNKoqq_DiJC_PS2Sf91cTKqJK3Rp6Jhvz4ptn475kfkD1DNGlYroxDsgXpEdndkB88JrOeiSak2glNk-kkX-hMKvqw1unM6HO-SHTYFg2nChQdweu0CF2l92oCtCwKgaPRfhlPvryhIe2Fg8GTdYsGUtHQiJZXybBzP7zrWqb6giUd7mR4TGqpQCdBCidtIaCt3CCO8YdmAMyzk8AFHgCzpQiYCJxEIrfjTHoc0OSBe0Iq6TyFU0IdV8uZ-9yRYDPlxyJGjhK3E1wLXCQirpHmCo5IGmVyXSBjFhUeis0jBDDSAEYGwBq5Xvd4L1U5_mhb1XhstCuhqJH6CvLI7Ntl5LbQv-OaR5390u2c7OjRy3TEOqlkixwukJdk4rJYj59qrt2d |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUQDMDAN6JQwAMLQ9o0cdKYLaBWBdqCREBsUWxfSkXVojZZ-PWcE7fiQyC2KLITS8_2u7Pv3hFyJqSdeEhkFtKrYzEfmMWln1jKVeAz1WiqVB_o9_p-55HdPHvPJlm9yIUBgCL4DGr6sbjLVxOZ66Oyuq5Ji3SGO-4KEr_XKNO1FpcGjJkCeQ1cw9hgfitp83r0FKEv6LCali_zPPaFhYqyKj_24oJg2pukPx9aGVfyWsszUZPv31Qb_z32LbJhTE0alnNjmyzBeIesfxIg3CWjnoknpNoNHafDQT7VuVT0eqHUmdGHfJrqwC0aDhUo-gQvwyJ4lbbUAGhZFgK_RvtlRPnsgoa0F97f31mXSJGKhka2fI9E7VZ01bFM_QVLOtzJcKPUYoFOikactIWApnKDJMEX2gZgnp0GLvAAmC1FwETgpBKtO86kxwFJD9x9sjyejOGAUMfVguY-dyTYTPmJSNBKSZopzgYuUpFUSH0ORyyNNrkukTGKCx_F5jECGGsAYwNghZwveryVuhx_tN3TeHxqV0JRIdU55LFZubPYbaCHx7UldfhLt1Oy2ol63bh73b89Imv6T2VyYpUsZ9McjtFKycRJMTc_ACPs4OY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Reconfigurable+Intelligent+Surfaces+Aided+Vehicular+Edge+Computing+Networks%3A+A+MAPPO-Based+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Xiangrui+Ning&rft.au=Zeng%2C+Ming&rft.au=Meng+Hua&rft.au=Zesong+Fei&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=73&rft.issue=11&rft.spage=17496&rft_id=info:doi/10.1109%2FTVT.2024.3419554&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |