Multiple Reconfigurable Intelligent Surfaces Aided Vehicular Edge Computing Networks: A MAPPO-Based Approach

Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to its ability to change the wireless radio propagation environment. In this paper, we study multi-RIS-assisted VEC networks, where vehicle user...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 73; no. 11; pp. 17496 - 17509
Main Authors Ning, Xiangrui, Zeng, Ming, Hua, Meng, Fei, Zesong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to its ability to change the wireless radio propagation environment. In this paper, we study multi-RIS-assisted VEC networks, where vehicle user equipments (VUEs) can offload tasks to nearby base stations (BSs) which offer efficient computation edge services (ESs). Meanwhile, the individual virtual machine (VM), which is defined as a software clone of the VUE's service environment containing the profile and application to run the VUE's tasks, need to be migrated to the same ES for offloaded task completion. Accordingly, we formulate a throughput maximization problem for multi-RIS-assisted VEC networks via jointly optimizing the selected ESs, the deployment locations of RISs, and reflection matrices of RISs, subject to the maximum tolerable delay. To solve the non-convex mixed-integer nonlinear optimization problem, we propose an efficient algorithm based on multi-agent proximal policy optimization (MAPPO) with the centralized training and decentralized execution (CTDE) framework, where two types of heterogeneous agents are considered. In particular, several tricks such as reward normalization, orthogonal initialization, and learning rate decay are adopted to accelerate the convergence of the proposed algorithm. Numerical simulation results show that the throughput obtained by the proposed MAPPO-based scheme outperforms that obtained by the scheme without multi-RIS 26.41% and that obtained by the scheme without service migration 23.65%, respectively. Moreover, compared to other conventional multi-agent reinforcement learning (MARL) algorithms, the proposed algorithm converges faster.
AbstractList Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to its ability to change the wireless radio propagation environment. In this paper, we study multi-RIS-assisted VEC networks, where vehicle user equipments (VUEs) can offload tasks to nearby base stations (BSs) which offer efficient computation edge services (ESs). Meanwhile, the individual virtual machine (VM), which is defined as a software clone of the VUE's service environment containing the profile and application to run the VUE's tasks, need to be migrated to the same ES for offloaded task completion. Accordingly, we formulate a throughput maximization problem for multi-RIS-assisted VEC networks via jointly optimizing the selected ESs, the deployment locations of RISs, and reflection matrices of RISs, subject to the maximum tolerable delay. To solve the non-convex mixed-integer nonlinear optimization problem, we propose an efficient algorithm based on multi-agent proximal policy optimization (MAPPO) with the centralized training and decentralized execution (CTDE) framework, where two types of heterogeneous agents are considered. In particular, several tricks such as reward normalization, orthogonal initialization, and learning rate decay are adopted to accelerate the convergence of the proposed algorithm. Numerical simulation results show that the throughput obtained by the proposed MAPPO-based scheme outperforms that obtained by the scheme without multi-RIS 26.41% and that obtained by the scheme without service migration 23.65%, respectively. Moreover, compared to other conventional multi-agent reinforcement learning (MARL) algorithms, the proposed algorithm converges faster.
Author Hua, Meng
Ning, Xiangrui
Zeng, Ming
Fei, Zesong
Author_xml – sequence: 1
  givenname: Xiangrui
  surname: Ning
  fullname: Ning, Xiangrui
  organization: Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Ming
  orcidid: 0000-0002-7464-893X
  surname: Zeng
  fullname: Zeng, Ming
  email: mzengzm@163.com
  organization: Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Meng
  orcidid: 0000-0002-3121-6344
  surname: Hua
  fullname: Hua, Meng
  email: m.hua@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
– sequence: 4
  givenname: Zesong
  orcidid: 0000-0002-7576-625X
  surname: Fei
  fullname: Fei, Zesong
  organization: Beijing Institute of Technology, Beijing, China
BookMark eNp9kEtLxDAURoMoOI7uXbgIuO6YZ5u4q4MvGB_o4LakmdsxWtuapIj_3si4EBeuLt_lO_fC2UPbXd8BQoeUzCgl-mT5tJwxwsSMC6qlFFtoQjXXmeZSb6MJIVRlWgq5i_ZCeElRCE0nqL0Z2-iGFvAD2L5r3Hr0pk7xuovQtm4NXcSPo2-MhYBLt4IVfoJnZ8fWeHy-WgOe92_DGF23xrcQP3r_Gk5xiW_K-_u77MyEBJTD4Htjn_fRTmPaAAc_c4qWF-fL-VW2uLu8npeLzDLNYqYKVRQFa3JJLKlrKFZcGZMWJKdcSNIoDlqBILZWolassYLmWlipgSkBfIqON2fT1_cRQqxe-tF36WPFKcuJJqSQqZVvWtb3IXhoKuuiia7vojeurSipvsVWSWz1Lbb6EZtA8gccvHsz_vM_5GiDOAD4VZcFY5zxL4SXhR8
CODEN ITVTAB
CitedBy_id crossref_primary_10_3390_drones8110648
Cites_doi 10.1109/TPDS.2013.67
10.1109/TWC.2022.3188302
10.1109/TITS.2022.3152677
10.1109/JIOT.2021.3084509
10.1109/TVT.2022.3141935
10.1109/WoWMoM49955.2020.00025
10.1109/ACCESS.2022.3233028
10.1109/ANTS59832.2023.10469265
10.1109/VTCFall.2018.8690553
10.1109/TVT.2018.2867191
10.23919/JCC.2021.03.018
10.1109/TCCN.2021.3056707
10.1109/IWCMC55113.2022.9824117
10.1109/TVT.2019.2917890
10.1109/TVT.2020.2999617
10.1109/JIOT.2023.3240173
10.1109/GLOBECOM46510.2021.9685374
10.1109/TWC.2021.3070974
10.1109/LNET.2022.3187720
10.1109/TCOMM.2021.3066495
10.1109/TMC.2022.3197706
10.1109/TWC.2023.3280179
10.1109/ICCE-Taiwan55306.2022.9869286
10.1109/COMST.2022.3225859
10.1109/TWC.2022.3210532
10.23919/JCC.2021.06.006
10.1109/ICC42927.2021.9500445
10.1109/TVT.2022.3149937
10.1109/TCOMM.2023.3320700
10.1109/TVT.2022.3162044
10.1109/TCOMM.2021.3051897
10.1109/JSAC.2022.3192053
10.1109/TVT.2022.3222917
10.1109/TVT.2021.3116378
10.1109/ICCCWorkshops52231.2021.9538853
10.1109/LWC.2023.3320728
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2024.3419554
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 17509
ExternalDocumentID 10_1109_TVT_2024_3419554
10572232
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Natural Science Funds of China
  grantid: 62001028
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-8787772f650c0bbe7d38aa72f0613450f83e98e40cb84b82fc41694c59e284e3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:04:06 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 01:44:29 EDT 2025
Wed Aug 27 01:57:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8787772f650c0bbe7d38aa72f0613450f83e98e40cb84b82fc41694c59e284e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3121-6344
0000-0002-7464-893X
0000-0002-7576-625X
PQID 3126090075
PQPubID 85454
PageCount 14
ParticipantIDs proquest_journals_3126090075
ieee_primary_10572232
crossref_primary_10_1109_TVT_2024_3419554
crossref_citationtrail_10_1109_TVT_2024_3419554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Yu (ref35) 2021
ref9
ref4
Lowe (ref38) 2017
ref3
ref6
ref5
Fujimoto (ref39) 2018
References_xml – ident: ref34
  doi: 10.1109/TPDS.2013.67
– start-page: 6379
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref38
  article-title: Multiagent actor-critic for mixed cooperative-competitive environments
– ident: ref17
  doi: 10.1109/TWC.2022.3188302
– ident: ref26
  doi: 10.1109/TITS.2022.3152677
– ident: ref23
  doi: 10.1109/JIOT.2021.3084509
– ident: ref25
  doi: 10.1109/TVT.2022.3141935
– ident: ref27
  doi: 10.1109/WoWMoM49955.2020.00025
– ident: ref21
  doi: 10.1109/ACCESS.2022.3233028
– ident: ref29
  doi: 10.1109/ANTS59832.2023.10469265
– ident: ref30
  doi: 10.1109/VTCFall.2018.8690553
– ident: ref5
  doi: 10.1109/TVT.2018.2867191
– ident: ref4
  doi: 10.23919/JCC.2021.03.018
– ident: ref16
  doi: 10.1109/TCCN.2021.3056707
– ident: ref7
  doi: 10.1109/IWCMC55113.2022.9824117
– ident: ref15
  doi: 10.1109/TVT.2019.2917890
– ident: ref22
  doi: 10.1109/TVT.2020.2999617
– ident: ref36
  doi: 10.1109/JIOT.2023.3240173
– year: 2021
  ident: ref35
  article-title: The surprising effectiveness of PPO in cooperative, multi-agent games
– ident: ref19
  doi: 10.1109/GLOBECOM46510.2021.9685374
– ident: ref31
  doi: 10.1109/TWC.2021.3070974
– ident: ref2
  doi: 10.1109/LNET.2022.3187720
– ident: ref3
  doi: 10.1109/TCOMM.2021.3066495
– ident: ref33
  doi: 10.1109/TMC.2022.3197706
– ident: ref10
  doi: 10.1109/TWC.2023.3280179
– ident: ref28
  doi: 10.1109/ICCE-Taiwan55306.2022.9869286
– ident: ref6
  doi: 10.1109/COMST.2022.3225859
– ident: ref12
  doi: 10.1109/TWC.2022.3210532
– ident: ref13
  doi: 10.23919/JCC.2021.06.006
– ident: ref32
  doi: 10.1109/ICC42927.2021.9500445
– ident: ref14
  doi: 10.1109/TVT.2022.3149937
– ident: ref9
  doi: 10.1109/TCOMM.2023.3320700
– ident: ref18
  doi: 10.1109/TVT.2022.3162044
– ident: ref8
  doi: 10.1109/TCOMM.2021.3051897
– ident: ref37
  doi: 10.1109/JSAC.2022.3192053
– ident: ref1
  doi: 10.1109/TVT.2022.3222917
– ident: ref20
  doi: 10.1109/TVT.2021.3116378
– ident: ref24
  doi: 10.1109/ICCCWorkshops52231.2021.9538853
– ident: ref11
  doi: 10.1109/LWC.2023.3320728
– year: 2018
  ident: ref39
  article-title: Addressing function approximation error in actor-critic methods
SSID ssj0014491
Score 2.4900663
Snippet Reconfigurable intelligent surface (RIS) is envisioned as a new technology to improve the quality-of-service in vehicular edge computing (VEC) networks due to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17496
SubjectTerms Algorithms
Communication networks
Computation offloading
Delays
Edge computing
Machine learning
Mixed integer
multi-agent reinforcement learning
Multiagent systems
Optimization
Radio equipment
Radio transmission
Reconfigurable intelligent surfaces
Reinforcement learning
Resource management
service migration
Throughput
Vehicular ad hoc networks
Vehicular edge computing
Virtual environments
Wireless communication
Wireless networks
Title Multiple Reconfigurable Intelligent Surfaces Aided Vehicular Edge Computing Networks: A MAPPO-Based Approach
URI https://ieeexplore.ieee.org/document/10572232
https://www.proquest.com/docview/3126090075
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Ukx78iRFF04MXD4OxdWP1No0ETUASkXBb1vYNiWQY2C7-9b5uhaBG421Z2qbJ1_Z9r33ve4RcCWnHHhoyC82rYzEfmMWlH1vKVeAz1WqrRF_o9_p-94U9jr2xSVYvcmEAoAg-g4b-LN7y1Vzm-qqsqWvSojnDE3cbPbcyWWv9ZMCYKY_Xwh2MvGD1Jmnz5nA0RE_QYQ0tXuZ57IsNKoqq_DiJC_PS2Sf91cTKqJK3Rp6Jhvz4ptn475kfkD1DNGlYroxDsgXpEdndkB88JrOeiSak2glNk-kkX-hMKvqw1unM6HO-SHTYFg2nChQdweu0CF2l92oCtCwKgaPRfhlPvryhIe2Fg8GTdYsGUtHQiJZXybBzP7zrWqb6giUd7mR4TGqpQCdBCidtIaCt3CCO8YdmAMyzk8AFHgCzpQiYCJxEIrfjTHoc0OSBe0Iq6TyFU0IdV8uZ-9yRYDPlxyJGjhK3E1wLXCQirpHmCo5IGmVyXSBjFhUeis0jBDDSAEYGwBq5Xvd4L1U5_mhb1XhstCuhqJH6CvLI7Ntl5LbQv-OaR5390u2c7OjRy3TEOqlkixwukJdk4rJYj59qrt2d
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUQDMDAN6JQwAMLQ9o0cdKYLaBWBdqCREBsUWxfSkXVojZZ-PWcE7fiQyC2KLITS8_2u7Pv3hFyJqSdeEhkFtKrYzEfmMWln1jKVeAz1WiqVB_o9_p-55HdPHvPJlm9yIUBgCL4DGr6sbjLVxOZ66Oyuq5Ji3SGO-4KEr_XKNO1FpcGjJkCeQ1cw9hgfitp83r0FKEv6LCali_zPPaFhYqyKj_24oJg2pukPx9aGVfyWsszUZPv31Qb_z32LbJhTE0alnNjmyzBeIesfxIg3CWjnoknpNoNHafDQT7VuVT0eqHUmdGHfJrqwC0aDhUo-gQvwyJ4lbbUAGhZFgK_RvtlRPnsgoa0F97f31mXSJGKhka2fI9E7VZ01bFM_QVLOtzJcKPUYoFOikactIWApnKDJMEX2gZgnp0GLvAAmC1FwETgpBKtO86kxwFJD9x9sjyejOGAUMfVguY-dyTYTPmJSNBKSZopzgYuUpFUSH0ORyyNNrkukTGKCx_F5jECGGsAYwNghZwveryVuhx_tN3TeHxqV0JRIdU55LFZubPYbaCHx7UldfhLt1Oy2ol63bh73b89Imv6T2VyYpUsZ9McjtFKycRJMTc_ACPs4OY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Reconfigurable+Intelligent+Surfaces+Aided+Vehicular+Edge+Computing+Networks%3A+A+MAPPO-Based+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Xiangrui+Ning&rft.au=Zeng%2C+Ming&rft.au=Meng+Hua&rft.au=Zesong+Fei&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=73&rft.issue=11&rft.spage=17496&rft_id=info:doi/10.1109%2FTVT.2024.3419554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon