Multiple bias calibration for valid statistical inference under nonignorable nonresponse
Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into...
Saved in:
Published in | Biometrics Vol. 81; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
02.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset. |
---|---|
AbstractList | Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset. Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset.Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset. |
Author | Qiu, Yumou Cho, Seonghun Kim, Jae Kwang |
Author_xml | – sequence: 1 givenname: Seonghun surname: Cho fullname: Cho, Seonghun – sequence: 2 givenname: Jae Kwang orcidid: 0000-0002-0246-6029 surname: Kim fullname: Kim, Jae Kwang – sequence: 3 givenname: Yumou orcidid: 0000-0003-4846-1263 surname: Qiu fullname: Qiu, Yumou |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40279119$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kM1LxDAQxYOsuB969Sg5eulukqZpc5TFL1jxorC3kqYTydImNWkF_3sju3qaeTM_Ho-3RDPnHSB0TcmaEplvGuv7UW-mgzKE8zO0oAWnGeGMzNCCECKynNP9HC1jPCQpC8Iu0JwTVkpK5QLtX6ZutEMHuLEqYq062wQ1Wu-w8QF_Jd3iOKZLHG36YusMBHAa8ORaCDjlsR_OB9UkjyQCxMG7CJfo3KguwtVprtD7w_3b9inbvT4-b-92mWaSjVkloOKypUrTvCKUioqYFI6VpajakhpdQKkZL5U0BSt1Qwqqcwktr2gFKu0rdHv0HYL_nCCOdW-jhq5TDvwU65xKLgpBhEjozQmdmh7aegi2V-G7_msjAesjoIOPMYD5Ryipf-uuj3XXp7rzH2Vsda0 |
Cites_doi | 10.1093/biomet/63.3.581 10.1002/cjs.11340 10.1111/rssb.12027 10.1080/01621459.2015.1105808 10.1214/aos/1176347494 10.1111/j.1467-9868.2007.00640.x 10.1080/01621459.1994.10476818 10.1093/biomet/asaa026 10.1198/016214502753479338 10.1093/biomet/ass087 10.1214/21-AOS2070 10.1111/rssb.12129 10.1093/biomet/asn022 10.1093/biomet/asy008 10.1038/s41598-023-30527-w 10.1093/jrsssb/qkad047 10.1111/biom.13881 10.1080/01621459.2018.1458619 10.1093/biomet/asp033 10.1198/jasa.2010.tm09016 10.1111/1467-9868.00105 10.1093/pan/mpr025 10.1093/jrsssb/qkac006 10.1093/biomet/ass045 10.1080/01621459.2014.880058 10.1093/biomet/asw039 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/biomtc/ujaf044 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
ExternalDocumentID | 40279119 10_1093_biomtc_ujaf044 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Agriculture grantid: NR203A750023C006 – fundername: National Research Foundation of Korea – fundername: National Natural Science Foundation of China grantid: 92358303 – fundername: National Science Foundation grantid: 2242820 – fundername: MSIT grantid: RS-2023-00279733 |
GroupedDBID | --- -~X .3N .DC .GA 05W 0R~ 10A 1OC 23N 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AAUAY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJNI ABLJU ABMNT ABPPZ ABPVW ABXVV ABYWD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXQS ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADOZA ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUYR AFBPY AFEBI AFGKR AFVYC AFWVQ AFZJQ AGORE AGTJU AHGBF AHMBA AIAGR AIURR AIWBW AJBDE AJBYB AJNCP AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DXH EAP EBS ESX F00 F01 F04 F5P FD6 G-S G.N GODZA GS5 H.T H.X HZI HZ~ IX1 J0M JAC K48 KOP LATKE LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OJZSN OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROX RX1 RXW SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM ROL 7X8 H13 |
ID | FETCH-LOGICAL-c292t-86e849d1ac138011680f02727768d71fc5e7c247a9f527cb051c39ed4818ea1c3 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Jul 11 18:30:18 EDT 2025 Sat Apr 26 01:41:19 EDT 2025 Tue Jul 01 05:04:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | selection bias missing not at random empirical likelihood calibration multiply robust estimation propensity score |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-86e849d1ac138011680f02727768d71fc5e7c247a9f527cb051c39ed4818ea1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0246-6029 0000-0003-4846-1263 |
OpenAccessLink | https://academic.oup.com/biometrics/article-pdf/81/2/ujaf044/63010662/ujaf044.pdf |
PMID | 40279119 |
PQID | 3194656066 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3194656066 pubmed_primary_40279119 crossref_primary_10_1093_biomtc_ujaf044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Apr-02 |
PublicationDateYYYYMMDD | 2025-04-02 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-Apr-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2025 |
References | Morikawa (2025042510243845000_bib21) 2021; 49 Firth (2025042510243845000_bib6) 1998; 60 Han (2025042510243845000_bib10) 2013; 100 Kott (2025042510243845000_bib13) 2010; 105 Miao (2025042510243845000_bib19) 2016; 111 Owen (2025042510243845000_bib23) 1990; 18 Chan (2025042510243845000_bib2) 2016; 78 Molenberghs (2025042510243845000_bib20) 2008; 70 Chang (2025042510243845000_bib3) 2008; 95 Wang (2025042510243845000_bib29) 2021; 31 Hainmueller (2025042510243845000_bib7) 2012; 20 Lesage (2025042510243845000_bib14) 2019; 114 Fang (2025042510243845000_bib5) 2016; 103 Qin (2025042510243845000_bib25) 2002; 97 Robins (2025042510243845000_bib26) 1994; 89 Pfeffermann (2025042510243845000_bib24) 2011; 27 Chen (2025042510243845000_bib4) 2017; 104 Han (2025042510243845000_bib8) 2014; 109 Morikawa (2025042510243845000_bib22) 2017; 45 Tang (2025042510243845000_bib28) 2012; 99 Han (2025042510243845000_bib9) 2018; 28 Li (2025042510243845000_bib16) 2020; 107 Cao (2025042510243845000_bib1) 2009; 96 Li (2025042510243845000_bib15) 2023; 79 Wang (2025042510243845000_bib30) 2014; 24 Yang (2025042510243845000_bib31) 2018; 105 Jeong (2025042510243845000_bib12) 2023; 13 Li (2025042510243845000_bib17) 2023; 85 Liu (2025042510243845000_bib18) 2023; 85 Imai (2025042510243845000_bib11) 2014; 76 Rubin (2025042510243845000_bib27) 1976; 63 |
References_xml | – volume: 63 start-page: 581 year: 1976 ident: 2025042510243845000_bib27 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 45 start-page: 393 year: 2017 ident: 2025042510243845000_bib22 article-title: Semiparametric maximum likelihood estimation with data missing not at random publication-title: Canadian Journal of Statistics doi: 10.1002/cjs.11340 – volume: 76 start-page: 243 year: 2014 ident: 2025042510243845000_bib11 article-title: Covariate balancing propensity score publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/rssb.12027 – volume: 111 start-page: 1673 year: 2016 ident: 2025042510243845000_bib19 article-title: Identifiability of normal and normal mixture models with nonignorable missing data publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2015.1105808 – volume: 104 start-page: 439 year: 2017 ident: 2025042510243845000_bib4 article-title: Multiply robust imputation procedures for the treatment of item nonresponse in surveys publication-title: Biometrika – volume: 18 start-page: 90 year: 1990 ident: 2025042510243845000_bib23 article-title: Empirical likelihood ratio confidence regions publication-title: Annals of Statistics doi: 10.1214/aos/1176347494 – volume: 70 start-page: 371 year: 2008 ident: 2025042510243845000_bib20 article-title: Every missingness not at random has a missingness at random counterpart with equal fit publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.1467-9868.2007.00640.x – volume: 89 start-page: 846 year: 1994 ident: 2025042510243845000_bib26 article-title: Estimation of regression coefficients when some regressors are not always observed publication-title: Journal of the American Satistical Association doi: 10.1080/01621459.1994.10476818 – volume: 107 start-page: 919 year: 2020 ident: 2025042510243845000_bib16 article-title: Demystifying a class of multiply robust estimators publication-title: Biometrika doi: 10.1093/biomet/asaa026 – volume: 97 start-page: 193 year: 2002 ident: 2025042510243845000_bib25 article-title: Estimation with survey data under nonignorable nonresponse or informative sampling publication-title: Journal of the American Statistical Association doi: 10.1198/016214502753479338 – volume: 100 start-page: 417 year: 2013 ident: 2025042510243845000_bib10 article-title: Estimation with missing data: beyond double robustness publication-title: Biometrika doi: 10.1093/biomet/ass087 – volume: 49 start-page: 2991 year: 2021 ident: 2025042510243845000_bib21 article-title: Semiparametric optimal estimation with nonignorable nonresponse data publication-title: Annals of Statistics doi: 10.1214/21-AOS2070 – volume: 78 start-page: 673 year: 2016 ident: 2025042510243845000_bib2 article-title: Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/rssb.12129 – volume: 95 start-page: 555 year: 2008 ident: 2025042510243845000_bib3 article-title: Using calibration weighting to adjust for nonresponse under a plausible model publication-title: Biometrika doi: 10.1093/biomet/asn022 – volume: 24 start-page: 1097 year: 2014 ident: 2025042510243845000_bib30 article-title: An instrumental variable approach for identification and estimation with nonignorable nonresponse publication-title: Statistical Science – volume: 105 start-page: 487 year: 2018 ident: 2025042510243845000_bib31 article-title: Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores publication-title: Biometrika doi: 10.1093/biomet/asy008 – volume: 28 start-page: 1725 year: 2018 ident: 2025042510243845000_bib9 article-title: Calibration and multiple robustness when data are missing not at random publication-title: Statistica Sinica – volume: 31 start-page: 647 year: 2021 ident: 2025042510243845000_bib29 article-title: Propensity model selection with nonignorable nonresponse and instrument variable publication-title: Statistical Science – volume: 13 start-page: 3472 year: 2023 ident: 2025042510243845000_bib12 article-title: Different correlation of body mass index with body fatness and obesity-related biomarker according to age, sex and race-ethnicity publication-title: Scientific Reports doi: 10.1038/s41598-023-30527-w – volume: 85 start-page: 913 year: 2023 ident: 2025042510243845000_bib17 article-title: Non-parametric inference about mean functionals of non-ignoable non-response data without identifying the joint distribution publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1093/jrsssb/qkad047 – volume: 79 start-page: 3215 year: 2023 ident: 2025042510243845000_bib15 article-title: Instability of inverse probability weighting methods and a remedy for nonignorable missing data publication-title: Biometrics doi: 10.1111/biom.13881 – volume: 114 start-page: 906 year: 2019 ident: 2025042510243845000_bib14 article-title: A cautionary tale on instrumental calibration for the treatment of nonignorable nonresponse in surveys publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2018.1458619 – volume: 96 start-page: 723 year: 2009 ident: 2025042510243845000_bib1 article-title: Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data publication-title: Biometrika doi: 10.1093/biomet/asp033 – volume: 105 start-page: 1265 year: 2010 ident: 2025042510243845000_bib13 article-title: Using calibration weighting to adjust for nonignorable unit nonresponse publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2010.tm09016 – volume: 27 start-page: 181 year: 2011 ident: 2025042510243845000_bib24 article-title: Imputation and estimation under nonignorable nonresponse in household surveys with missing covariate information publication-title: Journal of Official Statistics – volume: 60 start-page: 3 year: 1998 ident: 2025042510243845000_bib6 article-title: Robust models in probability sampling publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/1467-9868.00105 – volume: 20 start-page: 25 year: 2012 ident: 2025042510243845000_bib7 article-title: Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies publication-title: Political Analysis doi: 10.1093/pan/mpr025 – volume: 85 start-page: 67 year: 2023 ident: 2025042510243845000_bib18 article-title: Biased-sample empirical likelihood weighting for missing data problems: an alternative to inverse probability weighting publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1093/jrsssb/qkac006 – volume: 99 start-page: 1001 year: 2012 ident: 2025042510243845000_bib28 article-title: An efficient empirical likelihood approach for estimating equations with missing data publication-title: Biometrika doi: 10.1093/biomet/ass045 – volume: 109 start-page: 1159 year: 2014 ident: 2025042510243845000_bib8 article-title: Multiply robust estimation in regression analysis with missing data publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2014.880058 – volume: 103 start-page: 861 year: 2016 ident: 2025042510243845000_bib5 article-title: Model selection with nonignorable nonresponse publication-title: Biometrika doi: 10.1093/biomet/asw039 |
SSID | ssj0009502 |
Score | 2.4444585 |
Snippet | Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Bias Biometry - methods Calibration Computer Simulation Data Interpretation, Statistical Humans Likelihood Functions Models, Statistical Nutrition Surveys - statistics & numerical data Propensity Score |
Title | Multiple bias calibration for valid statistical inference under nonignorable nonresponse |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40279119 https://www.proquest.com/docview/3194656066 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-yjkH3ULrso-naocFgD8WrIsux_bZ-rJSN7GFtIW9Gls9tBk1GYjPWv74nyfaUkUG3F-MYSzK6X0530t3vAN6lmpciKWSQp2UUSFQySATKoEyQk7kfydhWiRh_HZ1fyc-TaNLrffSzS6r8g75bm1fyP1KlZyRXkyX7D5LtOqUHdE_ypStJmK4PkvG4jQbMp8qQTFvftwsepJGmhdkrqCwZs2XXaFllTerY4oBc_-n1jEBg0qfox8IFzK5EBx2b_HxD498Z3yc3dnv1Auez65vaO8V3CdcKD778VM2CaLZUp7XV8_XtvPb3GERkQ1PEit4cBbTeTdyq0ahKOaT3BPd1qSu_0mBGrFXRjr7KkAuYGu5n9XdVckcBucqG_ccq1cUOulPzMHM9ZE37R_BYkKNgalicfhMe7TJ3fPHN93e0neGha3_YtF81S_7ia1ib43IbthpngR05yT-DHs768MSVD_3Vh6fjjnN32YfNi1bSy-cwaaHBDDSYBw1G0GAWGsyDBuugwSw0mA8N5kHjBVydfbo8OQ-aIhqBFqmogmSEiUyLodLDMDGnbgkvuSCrlfzMIh6WOsJYCxkr-q-KWOekpHWYYiHJkkNF9y9hg0bBHWBxGSPGqSmIwGWIWoWcmpuuCimx4AN4385h9sNxpWTrpTWAt-0UZ6TOzBmVmuG8Xma0IhgGPzKEB_DKzX3Xl6TvprU53X3wOK9h8zec92CjWtS4T0Zklb-xOLkHQS14cg |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+bias+calibration+for+valid+statistical+inference+under+nonignorable+nonresponse&rft.jtitle=Biometrics&rft.au=Cho%2C+Seonghun&rft.au=Kim%2C+Jae+Kwang&rft.au=Qiu%2C+Yumou&rft.date=2025-04-02&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=81&rft.issue=2&rft_id=info:doi/10.1093%2Fbiomtc%2Fujaf044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biomtc_ujaf044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |