Multiple bias calibration for valid statistical inference under nonignorable nonresponse

Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 81; no. 2
Main Authors Cho, Seonghun, Kim, Jae Kwang, Qiu, Yumou
Format Journal Article
LanguageEnglish
Published England 02.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset.
AbstractList Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset.
Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset.Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset.
Author Qiu, Yumou
Cho, Seonghun
Kim, Jae Kwang
Author_xml – sequence: 1
  givenname: Seonghun
  surname: Cho
  fullname: Cho, Seonghun
– sequence: 2
  givenname: Jae Kwang
  orcidid: 0000-0002-0246-6029
  surname: Kim
  fullname: Kim, Jae Kwang
– sequence: 3
  givenname: Yumou
  orcidid: 0000-0003-4846-1263
  surname: Qiu
  fullname: Qiu, Yumou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40279119$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1LxDAQxYOsuB969Sg5eulukqZpc5TFL1jxorC3kqYTydImNWkF_3sju3qaeTM_Ho-3RDPnHSB0TcmaEplvGuv7UW-mgzKE8zO0oAWnGeGMzNCCECKynNP9HC1jPCQpC8Iu0JwTVkpK5QLtX6ZutEMHuLEqYq062wQ1Wu-w8QF_Jd3iOKZLHG36YusMBHAa8ORaCDjlsR_OB9UkjyQCxMG7CJfo3KguwtVprtD7w_3b9inbvT4-b-92mWaSjVkloOKypUrTvCKUioqYFI6VpajakhpdQKkZL5U0BSt1Qwqqcwktr2gFKu0rdHv0HYL_nCCOdW-jhq5TDvwU65xKLgpBhEjozQmdmh7aegi2V-G7_msjAesjoIOPMYD5Ryipf-uuj3XXp7rzH2Vsda0
Cites_doi 10.1093/biomet/63.3.581
10.1002/cjs.11340
10.1111/rssb.12027
10.1080/01621459.2015.1105808
10.1214/aos/1176347494
10.1111/j.1467-9868.2007.00640.x
10.1080/01621459.1994.10476818
10.1093/biomet/asaa026
10.1198/016214502753479338
10.1093/biomet/ass087
10.1214/21-AOS2070
10.1111/rssb.12129
10.1093/biomet/asn022
10.1093/biomet/asy008
10.1038/s41598-023-30527-w
10.1093/jrsssb/qkad047
10.1111/biom.13881
10.1080/01621459.2018.1458619
10.1093/biomet/asp033
10.1198/jasa.2010.tm09016
10.1111/1467-9868.00105
10.1093/pan/mpr025
10.1093/jrsssb/qkac006
10.1093/biomet/ass045
10.1080/01621459.2014.880058
10.1093/biomet/asw039
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biomtc/ujaf044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 40279119
10_1093_biomtc_ujaf044
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Agriculture
  grantid: NR203A750023C006
– fundername: National Research Foundation of Korea
– fundername: National Natural Science Foundation of China
  grantid: 92358303
– fundername: National Science Foundation
  grantid: 2242820
– fundername: MSIT
  grantid: RS-2023-00279733
GroupedDBID ---
-~X
.3N
.DC
.GA
05W
0R~
10A
1OC
23N
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AAUAY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXVV
ABYWD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUYR
AFBPY
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGORE
AGTJU
AHGBF
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
AJBYB
AJNCP
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAP
EBS
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HZI
HZ~
IX1
J0M
JAC
K48
KOP
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROX
RX1
RXW
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
ROL
7X8
H13
ID FETCH-LOGICAL-c292t-86e849d1ac138011680f02727768d71fc5e7c247a9f527cb051c39ed4818ea1c3
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 18:30:18 EDT 2025
Sat Apr 26 01:41:19 EDT 2025
Tue Jul 01 05:04:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords selection bias
missing not at random
empirical likelihood
calibration
multiply robust estimation
propensity score
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-86e849d1ac138011680f02727768d71fc5e7c247a9f527cb051c39ed4818ea1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0246-6029
0000-0003-4846-1263
OpenAccessLink https://academic.oup.com/biometrics/article-pdf/81/2/ujaf044/63010662/ujaf044.pdf
PMID 40279119
PQID 3194656066
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3194656066
pubmed_primary_40279119
crossref_primary_10_1093_biomtc_ujaf044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Apr-02
PublicationDateYYYYMMDD 2025-04-02
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-Apr-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2025
References Morikawa (2025042510243845000_bib21) 2021; 49
Firth (2025042510243845000_bib6) 1998; 60
Han (2025042510243845000_bib10) 2013; 100
Kott (2025042510243845000_bib13) 2010; 105
Miao (2025042510243845000_bib19) 2016; 111
Owen (2025042510243845000_bib23) 1990; 18
Chan (2025042510243845000_bib2) 2016; 78
Molenberghs (2025042510243845000_bib20) 2008; 70
Chang (2025042510243845000_bib3) 2008; 95
Wang (2025042510243845000_bib29) 2021; 31
Hainmueller (2025042510243845000_bib7) 2012; 20
Lesage (2025042510243845000_bib14) 2019; 114
Fang (2025042510243845000_bib5) 2016; 103
Qin (2025042510243845000_bib25) 2002; 97
Robins (2025042510243845000_bib26) 1994; 89
Pfeffermann (2025042510243845000_bib24) 2011; 27
Chen (2025042510243845000_bib4) 2017; 104
Han (2025042510243845000_bib8) 2014; 109
Morikawa (2025042510243845000_bib22) 2017; 45
Tang (2025042510243845000_bib28) 2012; 99
Han (2025042510243845000_bib9) 2018; 28
Li (2025042510243845000_bib16) 2020; 107
Cao (2025042510243845000_bib1) 2009; 96
Li (2025042510243845000_bib15) 2023; 79
Wang (2025042510243845000_bib30) 2014; 24
Yang (2025042510243845000_bib31) 2018; 105
Jeong (2025042510243845000_bib12) 2023; 13
Li (2025042510243845000_bib17) 2023; 85
Liu (2025042510243845000_bib18) 2023; 85
Imai (2025042510243845000_bib11) 2014; 76
Rubin (2025042510243845000_bib27) 1976; 63
References_xml – volume: 63
  start-page: 581
  year: 1976
  ident: 2025042510243845000_bib27
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 45
  start-page: 393
  year: 2017
  ident: 2025042510243845000_bib22
  article-title: Semiparametric maximum likelihood estimation with data missing not at random
  publication-title: Canadian Journal of Statistics
  doi: 10.1002/cjs.11340
– volume: 76
  start-page: 243
  year: 2014
  ident: 2025042510243845000_bib11
  article-title: Covariate balancing propensity score
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/rssb.12027
– volume: 111
  start-page: 1673
  year: 2016
  ident: 2025042510243845000_bib19
  article-title: Identifiability of normal and normal mixture models with nonignorable missing data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2015.1105808
– volume: 104
  start-page: 439
  year: 2017
  ident: 2025042510243845000_bib4
  article-title: Multiply robust imputation procedures for the treatment of item nonresponse in surveys
  publication-title: Biometrika
– volume: 18
  start-page: 90
  year: 1990
  ident: 2025042510243845000_bib23
  article-title: Empirical likelihood ratio confidence regions
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176347494
– volume: 70
  start-page: 371
  year: 2008
  ident: 2025042510243845000_bib20
  article-title: Every missingness not at random has a missingness at random counterpart with equal fit
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.1467-9868.2007.00640.x
– volume: 89
  start-page: 846
  year: 1994
  ident: 2025042510243845000_bib26
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: Journal of the American Satistical Association
  doi: 10.1080/01621459.1994.10476818
– volume: 107
  start-page: 919
  year: 2020
  ident: 2025042510243845000_bib16
  article-title: Demystifying a class of multiply robust estimators
  publication-title: Biometrika
  doi: 10.1093/biomet/asaa026
– volume: 97
  start-page: 193
  year: 2002
  ident: 2025042510243845000_bib25
  article-title: Estimation with survey data under nonignorable nonresponse or informative sampling
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502753479338
– volume: 100
  start-page: 417
  year: 2013
  ident: 2025042510243845000_bib10
  article-title: Estimation with missing data: beyond double robustness
  publication-title: Biometrika
  doi: 10.1093/biomet/ass087
– volume: 49
  start-page: 2991
  year: 2021
  ident: 2025042510243845000_bib21
  article-title: Semiparametric optimal estimation with nonignorable nonresponse data
  publication-title: Annals of Statistics
  doi: 10.1214/21-AOS2070
– volume: 78
  start-page: 673
  year: 2016
  ident: 2025042510243845000_bib2
  article-title: Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/rssb.12129
– volume: 95
  start-page: 555
  year: 2008
  ident: 2025042510243845000_bib3
  article-title: Using calibration weighting to adjust for nonresponse under a plausible model
  publication-title: Biometrika
  doi: 10.1093/biomet/asn022
– volume: 24
  start-page: 1097
  year: 2014
  ident: 2025042510243845000_bib30
  article-title: An instrumental variable approach for identification and estimation with nonignorable nonresponse
  publication-title: Statistical Science
– volume: 105
  start-page: 487
  year: 2018
  ident: 2025042510243845000_bib31
  article-title: Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores
  publication-title: Biometrika
  doi: 10.1093/biomet/asy008
– volume: 28
  start-page: 1725
  year: 2018
  ident: 2025042510243845000_bib9
  article-title: Calibration and multiple robustness when data are missing not at random
  publication-title: Statistica Sinica
– volume: 31
  start-page: 647
  year: 2021
  ident: 2025042510243845000_bib29
  article-title: Propensity model selection with nonignorable nonresponse and instrument variable
  publication-title: Statistical Science
– volume: 13
  start-page: 3472
  year: 2023
  ident: 2025042510243845000_bib12
  article-title: Different correlation of body mass index with body fatness and obesity-related biomarker according to age, sex and race-ethnicity
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-30527-w
– volume: 85
  start-page: 913
  year: 2023
  ident: 2025042510243845000_bib17
  article-title: Non-parametric inference about mean functionals of non-ignoable non-response data without identifying the joint distribution
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1093/jrsssb/qkad047
– volume: 79
  start-page: 3215
  year: 2023
  ident: 2025042510243845000_bib15
  article-title: Instability of inverse probability weighting methods and a remedy for nonignorable missing data
  publication-title: Biometrics
  doi: 10.1111/biom.13881
– volume: 114
  start-page: 906
  year: 2019
  ident: 2025042510243845000_bib14
  article-title: A cautionary tale on instrumental calibration for the treatment of nonignorable nonresponse in surveys
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2018.1458619
– volume: 96
  start-page: 723
  year: 2009
  ident: 2025042510243845000_bib1
  article-title: Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data
  publication-title: Biometrika
  doi: 10.1093/biomet/asp033
– volume: 105
  start-page: 1265
  year: 2010
  ident: 2025042510243845000_bib13
  article-title: Using calibration weighting to adjust for nonignorable unit nonresponse
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2010.tm09016
– volume: 27
  start-page: 181
  year: 2011
  ident: 2025042510243845000_bib24
  article-title: Imputation and estimation under nonignorable nonresponse in household surveys with missing covariate information
  publication-title: Journal of Official Statistics
– volume: 60
  start-page: 3
  year: 1998
  ident: 2025042510243845000_bib6
  article-title: Robust models in probability sampling
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/1467-9868.00105
– volume: 20
  start-page: 25
  year: 2012
  ident: 2025042510243845000_bib7
  article-title: Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies
  publication-title: Political Analysis
  doi: 10.1093/pan/mpr025
– volume: 85
  start-page: 67
  year: 2023
  ident: 2025042510243845000_bib18
  article-title: Biased-sample empirical likelihood weighting for missing data problems: an alternative to inverse probability weighting
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1093/jrsssb/qkac006
– volume: 99
  start-page: 1001
  year: 2012
  ident: 2025042510243845000_bib28
  article-title: An efficient empirical likelihood approach for estimating equations with missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/ass045
– volume: 109
  start-page: 1159
  year: 2014
  ident: 2025042510243845000_bib8
  article-title: Multiply robust estimation in regression analysis with missing data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2014.880058
– volume: 103
  start-page: 861
  year: 2016
  ident: 2025042510243845000_bib5
  article-title: Model selection with nonignorable nonresponse
  publication-title: Biometrika
  doi: 10.1093/biomet/asw039
SSID ssj0009502
Score 2.4444585
Snippet Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Bias
Biometry - methods
Calibration
Computer Simulation
Data Interpretation, Statistical
Humans
Likelihood Functions
Models, Statistical
Nutrition Surveys - statistics & numerical data
Propensity Score
Title Multiple bias calibration for valid statistical inference under nonignorable nonresponse
URI https://www.ncbi.nlm.nih.gov/pubmed/40279119
https://www.proquest.com/docview/3194656066
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-yjkH3ULrso-naocFgD8WrIsux_bZ-rJSN7GFtIW9Gls9tBk1GYjPWv74nyfaUkUG3F-MYSzK6X0530t3vAN6lmpciKWSQp2UUSFQySATKoEyQk7kfydhWiRh_HZ1fyc-TaNLrffSzS6r8g75bm1fyP1KlZyRXkyX7D5LtOqUHdE_ypStJmK4PkvG4jQbMp8qQTFvftwsepJGmhdkrqCwZs2XXaFllTerY4oBc_-n1jEBg0qfox8IFzK5EBx2b_HxD498Z3yc3dnv1Auez65vaO8V3CdcKD778VM2CaLZUp7XV8_XtvPb3GERkQ1PEit4cBbTeTdyq0ahKOaT3BPd1qSu_0mBGrFXRjr7KkAuYGu5n9XdVckcBucqG_ccq1cUOulPzMHM9ZE37R_BYkKNgalicfhMe7TJ3fPHN93e0neGha3_YtF81S_7ia1ib43IbthpngR05yT-DHs768MSVD_3Vh6fjjnN32YfNi1bSy-cwaaHBDDSYBw1G0GAWGsyDBuugwSw0mA8N5kHjBVydfbo8OQ-aIhqBFqmogmSEiUyLodLDMDGnbgkvuSCrlfzMIh6WOsJYCxkr-q-KWOekpHWYYiHJkkNF9y9hg0bBHWBxGSPGqSmIwGWIWoWcmpuuCimx4AN4385h9sNxpWTrpTWAt-0UZ6TOzBmVmuG8Xma0IhgGPzKEB_DKzX3Xl6TvprU53X3wOK9h8zec92CjWtS4T0Zklb-xOLkHQS14cg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+bias+calibration+for+valid+statistical+inference+under+nonignorable+nonresponse&rft.jtitle=Biometrics&rft.au=Cho%2C+Seonghun&rft.au=Kim%2C+Jae+Kwang&rft.au=Qiu%2C+Yumou&rft.date=2025-04-02&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=81&rft.issue=2&rft_id=info:doi/10.1093%2Fbiomtc%2Fujaf044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biomtc_ujaf044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon