Memristor-Based Operant Conditioning Neural Network With Blocking and Competition Effects
Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence. Although there are already some memristive neural circuits for operant conditioning, they can only process a single stimulus and cannot handle multi...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 20; no. 8; pp. 10209 - 10218 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1551-3203 1941-0050 |
DOI | 10.1109/TII.2024.3393975 |
Cover
Abstract | Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence. Although there are already some memristive neural circuits for operant conditioning, they can only process a single stimulus and cannot handle multiple inputs simultaneously. This article proposes a multi-input operant conditioning neural network that incorporates blocking and competing effects. This network can achieve the blocking and overshadowing effects in the presence of multiple inputs and learn efficiently in complex environments. In addition, it incorporates time differences between signals and excitations, random exploration, feedback learning, experience memory, decision-making based on experience, and adaptive learning in low-reward environments. Finally, the feasibility of the proposed circuit function is verified through PSPICE simulation. This work provides an implementation idea for the hardware implementation of artificial intelligence. |
---|---|
AbstractList | Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence. Although there are already some memristive neural circuits for operant conditioning, they can only process a single stimulus and cannot handle multiple inputs simultaneously. This article proposes a multi-input operant conditioning neural network that incorporates blocking and competing effects. This network can achieve the blocking and overshadowing effects in the presence of multiple inputs and learn efficiently in complex environments. In addition, it incorporates time differences between signals and excitations, random exploration, feedback learning, experience memory, decision-making based on experience, and adaptive learning in low-reward environments. Finally, the feasibility of the proposed circuit function is verified through PSPICE simulation. This work provides an implementation idea for the hardware implementation of artificial intelligence. |
Author | Yue, Yi Wang, Yanfeng Wang, Yingcong Sun, Junwei |
Author_xml | – sequence: 1 givenname: Junwei orcidid: 0000-0001-8518-5064 surname: Sun fullname: Sun, Junwei email: junweisun@yeah.net organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China – sequence: 2 givenname: Yi orcidid: 0009-0000-3064-3371 surname: Yue fullname: Yue, Yi email: yy1982808511@gmail.com organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China – sequence: 3 givenname: Yingcong orcidid: 0000-0002-5553-3117 surname: Wang fullname: Wang, Yingcong email: ying_cong_wang@163.com organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China – sequence: 4 givenname: Yanfeng orcidid: 0000-0002-8623-1111 surname: Wang fullname: Wang, Yanfeng email: yanfengwang@yeah.net organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China |
BookMark | eNp9kL1PwzAQxS1UJNrCzsAQiTnFH3VSj7QqUKnQpQgxWY5zBrdpHGxXiP-ehHZADEzvpPu9e7o3QL3a1YDQJcEjQrC4WS8WI4rpeMSYYCLnJ6hPxJikGHPca2fOScooZmdoEMIGY5ZjJvro9RF23obofDpVAcpk1YBXdUxmri5ttK629VvyBHuvqlbip_Pb5MXG92RaOb3tlqouW3rXQPzhk7kxoGM4R6dGVQEujjpEz3fz9ewhXa7uF7PbZaqpoDGdcF2q3ADjXGcZLTFnhhcTnpssLwpBSloYwAIUMKaYGZeiMJpQbTQnWAOwIbo-3G28-9hDiHLj9r5uIyXDEyFoRnPRUvhAae9C8GBk4-1O-S9JsOwKlG2BsitQHgtsLdkfi7ZRdS9Gr2z1n_HqYLQA8CuHU5LnGfsGniiA_g |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1038_s41598_024_80087_w crossref_primary_10_1109_JIOT_2024_3484396 crossref_primary_10_1109_TII_2024_3450081 crossref_primary_10_1016_j_apm_2024_115898 crossref_primary_10_1002_pssb_202400170 crossref_primary_10_1038_s41598_025_85725_5 crossref_primary_10_1038_s41598_024_80260_1 crossref_primary_10_1016_j_aeue_2025_155760 crossref_primary_10_1038_s41598_025_85602_1 crossref_primary_10_1109_TCSI_2024_3516325 crossref_primary_10_1038_s41598_024_82562_w crossref_primary_10_1088_1402_4896_ad6361 crossref_primary_10_1063_5_0229072 crossref_primary_10_3389_fnbot_2024_1422960 crossref_primary_10_1088_1402_4896_ad6640 crossref_primary_10_1038_s41598_024_82394_8 crossref_primary_10_1007_s11760_024_03697_x crossref_primary_10_1038_s41598_024_82785_x crossref_primary_10_1002_cta_4365 crossref_primary_10_1088_1402_4896_ad9d8d crossref_primary_10_1088_1402_4896_adb3d8 crossref_primary_10_1038_s41598_024_81857_2 |
Cites_doi | 10.1109/TII.2022.3181045 10.1109/TCSI.2023.3243773 10.1109/TCYB.2023.3267785 10.1109/TCT.1971.1083337 10.1007/978-3-030-43620-9_6 10.1109/TCYB.2022.3200751 10.1007/s11571-022-09866-3 10.1109/TCSI.2016.2570819 10.1038/nature06932 10.1109/TII.2022.3194659 10.1109/TCSII.2022.3218468 10.3389/fnbot.2014.00021 10.1155/2016/4296356 10.1109/TBCAS.2022.3204742 10.1002/aelm.201900060 10.1109/TNSE.2022.3223930 10.1109/TBCAS.2021.3108354 10.1109/TBCAS.2022.3216112 10.1109/TCSI.2023.3276983 10.1016/j.neunet.2018.03.015 10.1109/TIE.2023.3281687 10.1038/srep04906 10.1109/JIOT.2023.3267778 10.1109/TCSI.2022.3194364 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2024.3393975 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 10218 |
ExternalDocumentID | 10_1109_TII_2024_3393975 10521776 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62276239; 62272424 funderid: 10.13039/501100001809 – fundername: Zhongyuan Talents Program grantid: ZYYCYU202012154 – fundername: Scientific and Technological Innovation Team in University of Henan Province grantid: 24IRTSTHN023 – fundername: Henan Natural Science Foundation-Outstanding Youth Foundation grantid: 222300420095 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-85cda7fe355c662d053f5b857f67bb91d2bfe09eae33a3f4d9bfc12cfc510cee3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:16:58 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Tue Jul 01 03:00:29 EDT 2025 Wed Aug 27 02:02:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-85cda7fe355c662d053f5b857f67bb91d2bfe09eae33a3f4d9bfc12cfc510cee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-3064-3371 0000-0002-5553-3117 0000-0002-8623-1111 0000-0001-8518-5064 |
PQID | 3089926279 |
PQPubID | 85507 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TII_2024_3393975 proquest_journals_3089926279 crossref_citationtrail_10_1109_TII_2024_3393975 ieee_primary_10521776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1109/TII.2022.3181045 – ident: ref21 doi: 10.1109/TCSI.2023.3243773 – ident: ref1 doi: 10.1109/TCYB.2023.3267785 – ident: ref9 doi: 10.1109/TCT.1971.1083337 – ident: ref12 doi: 10.1007/978-3-030-43620-9_6 – ident: ref13 doi: 10.1109/TCYB.2022.3200751 – ident: ref8 doi: 10.1007/s11571-022-09866-3 – ident: ref11 doi: 10.1109/TCSI.2016.2570819 – ident: ref10 doi: 10.1038/nature06932 – ident: ref2 doi: 10.1109/TII.2022.3194659 – ident: ref6 doi: 10.1109/TCSII.2022.3218468 – ident: ref16 doi: 10.3389/fnbot.2014.00021 – ident: ref17 doi: 10.1155/2016/4296356 – ident: ref19 doi: 10.1109/TBCAS.2022.3204742 – ident: ref24 doi: 10.1002/aelm.201900060 – ident: ref5 doi: 10.1109/TNSE.2022.3223930 – ident: ref15 doi: 10.1109/TBCAS.2021.3108354 – ident: ref20 doi: 10.1109/TBCAS.2022.3216112 – ident: ref7 doi: 10.1109/TCSI.2023.3276983 – ident: ref22 doi: 10.1016/j.neunet.2018.03.015 – ident: ref4 doi: 10.1109/TIE.2023.3281687 – ident: ref23 doi: 10.1038/srep04906 – ident: ref14 doi: 10.1109/JIOT.2023.3267778 – ident: ref18 doi: 10.1109/TCSI.2022.3194364 |
SSID | ssj0037039 |
Score | 2.5455058 |
Snippet | Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10209 |
SubjectTerms | Artificial intelligence Biomimetics Bionic learning blocking effect Circuits Conditioning (learning) Logic gates Machine learning memristor Memristors Neural networks operating conditions overshadowing effect Threshold voltage Training Voltage control |
Title | Memristor-Based Operant Conditioning Neural Network With Blocking and Competition Effects |
URI | https://ieeexplore.ieee.org/document/10521776 https://www.proquest.com/docview/3089926279 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgECbqSQ--jaur4eDFQ9cWCl2OutGoietFo54aoEM06u5Guxd_vQO0xkc0XpoegBBmhm9gZj4I2dNOO8BzSVLIFJI8B53onONHMMMcK4wIoZiLoTy9zs9vxW1TrB5qYQAgJJ9Bz_-GWH41tlN_VYYWjmBTFHKWzKKexWKtdtvlqLoqkKOKLOEs5W1MMlUHV2dneBJkeY9zhfgrvmBQeFTlx04c4OVkiQzbicWsksfetDY9-_aNs_HfM18mi42jSQ-jZqyQGRitkoVP9INr5O4CngO1wEtyhGBW0csJIHTVdDD2gex4U0s9fQcONIz54vTmob6nRwiB_o6d6lFFB8H1Du1pJEN-XSfXJ8dXg9OkeWohsUyxOukLW-nCAXofVkpWoWk6YfqicLIwRmUVMw5SBRo419zllTLOZsw6izaNOMs3yNxoPIJNQo3NtJA-HukQIY3R0mVaCZZDZn3Mt0MO2sUvbcND7p_DeCrDeSRVJYqr9OIqG3F1yP5Hj0nk4Pij7bpf_U_t4sJ3SLcVcNlY6WvJfcyTSVaorV-6bZN5P3rM-OuSufplCjvohdRmN2jfO0EU2WY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BU9QwFH6DcFAOigrDKmIOXDx0aZMmJUfZgdkFdrksI546SfoyOuguA92Lv96XpHVQB8dLp4ekzeTl5XvJ9_IF4MB445HWJVmlcszKEk1mSkEPyS33vLIyUjHTmRpflWfX8ro7rB7PwiBiTD7DYXiNXH6zdKuwVUYeTmBTVeoJbBDwlzId1-onXkGDV0d5VFlkgueiZyVzfTifTGgtyMuhEJoQWP6GQvFalb_m4ggwpy9g1jct5ZXcDFetHboff6g2_nfbt-B5F2qyj2lsvIQ1XLyCzQcChK_h8xS_R3GBu-yY4Kxhl7dI4NWy0TJQ2WmvlgUBD_rQLGWMs09f2y_smEAw7LIzs2jYKAbfsTxLcsj323B1ejIfjbPusoXMcc3b7Ei6xlQeKf5wSvGGnNNLeyQrryprddFw6zHXaFAII3zZaOtdwZ135NWEtGIH1hfLBe4Cs64wUgVG0hNGWmuUL4yWvMTCBdZ3AId959euUyIPF2J8q-OKJNc1masO5qo7cw3gw68at0mF4x9lt0PvPyiXOn4Ae72B685P72sRWE-ueKXfPFLtPTwdz6cX9cVkdv4WnoU_pfy_PVhv71b4jmKS1u7HkfgTy6Dcsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memristor-Based+Operant+Conditioning+Neural+Network+With+Blocking+and+Competition+Effects&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Sun%2C+Junwei&rft.au=Yue%2C+Yi&rft.au=Wang%2C+Yingcong&rft.au=Wang%2C+Yanfeng&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=8&rft.spage=10209&rft.epage=10218&rft_id=info:doi/10.1109%2FTII.2024.3393975&rft.externalDocID=10521776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |