Memristor-Based Operant Conditioning Neural Network With Blocking and Competition Effects

Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence. Although there are already some memristive neural circuits for operant conditioning, they can only process a single stimulus and cannot handle multi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 20; no. 8; pp. 10209 - 10218
Main Authors Sun, Junwei, Yue, Yi, Wang, Yingcong, Wang, Yanfeng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2024.3393975

Cover

Abstract Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence. Although there are already some memristive neural circuits for operant conditioning, they can only process a single stimulus and cannot handle multiple inputs simultaneously. This article proposes a multi-input operant conditioning neural network that incorporates blocking and competing effects. This network can achieve the blocking and overshadowing effects in the presence of multiple inputs and learn efficiently in complex environments. In addition, it incorporates time differences between signals and excitations, random exploration, feedback learning, experience memory, decision-making based on experience, and adaptive learning in low-reward environments. Finally, the feasibility of the proposed circuit function is verified through PSPICE simulation. This work provides an implementation idea for the hardware implementation of artificial intelligence.
AbstractList Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence. Although there are already some memristive neural circuits for operant conditioning, they can only process a single stimulus and cannot handle multiple inputs simultaneously. This article proposes a multi-input operant conditioning neural network that incorporates blocking and competing effects. This network can achieve the blocking and overshadowing effects in the presence of multiple inputs and learn efficiently in complex environments. In addition, it incorporates time differences between signals and excitations, random exploration, feedback learning, experience memory, decision-making based on experience, and adaptive learning in low-reward environments. Finally, the feasibility of the proposed circuit function is verified through PSPICE simulation. This work provides an implementation idea for the hardware implementation of artificial intelligence.
Author Yue, Yi
Wang, Yanfeng
Wang, Yingcong
Sun, Junwei
Author_xml – sequence: 1
  givenname: Junwei
  orcidid: 0000-0001-8518-5064
  surname: Sun
  fullname: Sun, Junwei
  email: junweisun@yeah.net
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
– sequence: 2
  givenname: Yi
  orcidid: 0009-0000-3064-3371
  surname: Yue
  fullname: Yue, Yi
  email: yy1982808511@gmail.com
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
– sequence: 3
  givenname: Yingcong
  orcidid: 0000-0002-5553-3117
  surname: Wang
  fullname: Wang, Yingcong
  email: ying_cong_wang@163.com
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
– sequence: 4
  givenname: Yanfeng
  orcidid: 0000-0002-8623-1111
  surname: Wang
  fullname: Wang, Yanfeng
  email: yanfengwang@yeah.net
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
BookMark eNp9kL1PwzAQxS1UJNrCzsAQiTnFH3VSj7QqUKnQpQgxWY5zBrdpHGxXiP-ehHZADEzvpPu9e7o3QL3a1YDQJcEjQrC4WS8WI4rpeMSYYCLnJ6hPxJikGHPca2fOScooZmdoEMIGY5ZjJvro9RF23obofDpVAcpk1YBXdUxmri5ttK629VvyBHuvqlbip_Pb5MXG92RaOb3tlqouW3rXQPzhk7kxoGM4R6dGVQEujjpEz3fz9ewhXa7uF7PbZaqpoDGdcF2q3ADjXGcZLTFnhhcTnpssLwpBSloYwAIUMKaYGZeiMJpQbTQnWAOwIbo-3G28-9hDiHLj9r5uIyXDEyFoRnPRUvhAae9C8GBk4-1O-S9JsOwKlG2BsitQHgtsLdkfi7ZRdS9Gr2z1n_HqYLQA8CuHU5LnGfsGniiA_g
CODEN ITIICH
CitedBy_id crossref_primary_10_1038_s41598_024_80087_w
crossref_primary_10_1109_JIOT_2024_3484396
crossref_primary_10_1109_TII_2024_3450081
crossref_primary_10_1016_j_apm_2024_115898
crossref_primary_10_1002_pssb_202400170
crossref_primary_10_1038_s41598_025_85725_5
crossref_primary_10_1038_s41598_024_80260_1
crossref_primary_10_1016_j_aeue_2025_155760
crossref_primary_10_1038_s41598_025_85602_1
crossref_primary_10_1109_TCSI_2024_3516325
crossref_primary_10_1038_s41598_024_82562_w
crossref_primary_10_1088_1402_4896_ad6361
crossref_primary_10_1063_5_0229072
crossref_primary_10_3389_fnbot_2024_1422960
crossref_primary_10_1088_1402_4896_ad6640
crossref_primary_10_1038_s41598_024_82394_8
crossref_primary_10_1007_s11760_024_03697_x
crossref_primary_10_1038_s41598_024_82785_x
crossref_primary_10_1002_cta_4365
crossref_primary_10_1088_1402_4896_ad9d8d
crossref_primary_10_1088_1402_4896_adb3d8
crossref_primary_10_1038_s41598_024_81857_2
Cites_doi 10.1109/TII.2022.3181045
10.1109/TCSI.2023.3243773
10.1109/TCYB.2023.3267785
10.1109/TCT.1971.1083337
10.1007/978-3-030-43620-9_6
10.1109/TCYB.2022.3200751
10.1007/s11571-022-09866-3
10.1109/TCSI.2016.2570819
10.1038/nature06932
10.1109/TII.2022.3194659
10.1109/TCSII.2022.3218468
10.3389/fnbot.2014.00021
10.1155/2016/4296356
10.1109/TBCAS.2022.3204742
10.1002/aelm.201900060
10.1109/TNSE.2022.3223930
10.1109/TBCAS.2021.3108354
10.1109/TBCAS.2022.3216112
10.1109/TCSI.2023.3276983
10.1016/j.neunet.2018.03.015
10.1109/TIE.2023.3281687
10.1038/srep04906
10.1109/JIOT.2023.3267778
10.1109/TCSI.2022.3194364
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2024.3393975
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 10218
ExternalDocumentID 10_1109_TII_2024_3393975
10521776
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62276239; 62272424
  funderid: 10.13039/501100001809
– fundername: Zhongyuan Talents Program
  grantid: ZYYCYU202012154
– fundername: Scientific and Technological Innovation Team in University of Henan Province
  grantid: 24IRTSTHN023
– fundername: Henan Natural Science Foundation-Outstanding Youth Foundation
  grantid: 222300420095
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-85cda7fe355c662d053f5b857f67bb91d2bfe09eae33a3f4d9bfc12cfc510cee3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:16:58 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Tue Jul 01 03:00:29 EDT 2025
Wed Aug 27 02:02:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-85cda7fe355c662d053f5b857f67bb91d2bfe09eae33a3f4d9bfc12cfc510cee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-3064-3371
0000-0002-5553-3117
0000-0002-8623-1111
0000-0001-8518-5064
PQID 3089926279
PQPubID 85507
PageCount 10
ParticipantIDs crossref_primary_10_1109_TII_2024_3393975
proquest_journals_3089926279
crossref_citationtrail_10_1109_TII_2024_3393975
ieee_primary_10521776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TII.2022.3181045
– ident: ref21
  doi: 10.1109/TCSI.2023.3243773
– ident: ref1
  doi: 10.1109/TCYB.2023.3267785
– ident: ref9
  doi: 10.1109/TCT.1971.1083337
– ident: ref12
  doi: 10.1007/978-3-030-43620-9_6
– ident: ref13
  doi: 10.1109/TCYB.2022.3200751
– ident: ref8
  doi: 10.1007/s11571-022-09866-3
– ident: ref11
  doi: 10.1109/TCSI.2016.2570819
– ident: ref10
  doi: 10.1038/nature06932
– ident: ref2
  doi: 10.1109/TII.2022.3194659
– ident: ref6
  doi: 10.1109/TCSII.2022.3218468
– ident: ref16
  doi: 10.3389/fnbot.2014.00021
– ident: ref17
  doi: 10.1155/2016/4296356
– ident: ref19
  doi: 10.1109/TBCAS.2022.3204742
– ident: ref24
  doi: 10.1002/aelm.201900060
– ident: ref5
  doi: 10.1109/TNSE.2022.3223930
– ident: ref15
  doi: 10.1109/TBCAS.2021.3108354
– ident: ref20
  doi: 10.1109/TBCAS.2022.3216112
– ident: ref7
  doi: 10.1109/TCSI.2023.3276983
– ident: ref22
  doi: 10.1016/j.neunet.2018.03.015
– ident: ref4
  doi: 10.1109/TIE.2023.3281687
– ident: ref23
  doi: 10.1038/srep04906
– ident: ref14
  doi: 10.1109/JIOT.2023.3267778
– ident: ref18
  doi: 10.1109/TCSI.2022.3194364
SSID ssj0037039
Score 2.5455058
Snippet Operant conditioning is an important learning mechanism for organisms, as well as a basic theory for reinforcement learning in artificial intelligence....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10209
SubjectTerms Artificial intelligence
Biomimetics
Bionic learning
blocking effect
Circuits
Conditioning (learning)
Logic gates
Machine learning
memristor
Memristors
Neural networks
operating conditions
overshadowing effect
Threshold voltage
Training
Voltage control
Title Memristor-Based Operant Conditioning Neural Network With Blocking and Competition Effects
URI https://ieeexplore.ieee.org/document/10521776
https://www.proquest.com/docview/3089926279
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgECbqSQ--jaur4eDFQ9cWCl2OutGoietFo54aoEM06u5Guxd_vQO0xkc0XpoegBBmhm9gZj4I2dNOO8BzSVLIFJI8B53onONHMMMcK4wIoZiLoTy9zs9vxW1TrB5qYQAgJJ9Bz_-GWH41tlN_VYYWjmBTFHKWzKKexWKtdtvlqLoqkKOKLOEs5W1MMlUHV2dneBJkeY9zhfgrvmBQeFTlx04c4OVkiQzbicWsksfetDY9-_aNs_HfM18mi42jSQ-jZqyQGRitkoVP9INr5O4CngO1wEtyhGBW0csJIHTVdDD2gex4U0s9fQcONIz54vTmob6nRwiB_o6d6lFFB8H1Du1pJEN-XSfXJ8dXg9OkeWohsUyxOukLW-nCAXofVkpWoWk6YfqicLIwRmUVMw5SBRo419zllTLOZsw6izaNOMs3yNxoPIJNQo3NtJA-HukQIY3R0mVaCZZDZn3Mt0MO2sUvbcND7p_DeCrDeSRVJYqr9OIqG3F1yP5Hj0nk4Pij7bpf_U_t4sJ3SLcVcNlY6WvJfcyTSVaorV-6bZN5P3rM-OuSufplCjvohdRmN2jfO0EU2WY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BU9QwFH6DcFAOigrDKmIOXDx0aZMmJUfZgdkFdrksI546SfoyOuguA92Lv96XpHVQB8dLp4ekzeTl5XvJ9_IF4MB445HWJVmlcszKEk1mSkEPyS33vLIyUjHTmRpflWfX8ro7rB7PwiBiTD7DYXiNXH6zdKuwVUYeTmBTVeoJbBDwlzId1-onXkGDV0d5VFlkgueiZyVzfTifTGgtyMuhEJoQWP6GQvFalb_m4ggwpy9g1jct5ZXcDFetHboff6g2_nfbt-B5F2qyj2lsvIQ1XLyCzQcChK_h8xS_R3GBu-yY4Kxhl7dI4NWy0TJQ2WmvlgUBD_rQLGWMs09f2y_smEAw7LIzs2jYKAbfsTxLcsj323B1ejIfjbPusoXMcc3b7Ei6xlQeKf5wSvGGnNNLeyQrryprddFw6zHXaFAII3zZaOtdwZ135NWEtGIH1hfLBe4Cs64wUgVG0hNGWmuUL4yWvMTCBdZ3AId959euUyIPF2J8q-OKJNc1masO5qo7cw3gw68at0mF4x9lt0PvPyiXOn4Ae72B685P72sRWE-ueKXfPFLtPTwdz6cX9cVkdv4WnoU_pfy_PVhv71b4jmKS1u7HkfgTy6Dcsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memristor-Based+Operant+Conditioning+Neural+Network+With+Blocking+and+Competition+Effects&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Sun%2C+Junwei&rft.au=Yue%2C+Yi&rft.au=Wang%2C+Yingcong&rft.au=Wang%2C+Yanfeng&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=20&rft.issue=8&rft.spage=10209&rft.epage=10218&rft_id=info:doi/10.1109%2FTII.2024.3393975&rft.externalDocID=10521776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon