Low-Coherence Measurement Methods for Industrial Parts With Large Surface Reflectance Variations
High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence measurement methods offer advantages, including high precision, relatively large measuring range, and nondestructive nature. These measuremen...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence measurement methods offer advantages, including high precision, relatively large measuring range, and nondestructive nature. These measurement methods have shown great potential for applications in the field of industrial measurement. However, most of the current industrial low-coherence measurement methods assume that the surface reflectance of parts is constant or has little variability, resulting in poor adaptability and limited application range of these methods. To address this issue, this article proposes a low-coherence measurement method for measuring key parameters of industrial parts, which can be applied to a variety of parts with significant surface reflectance variations. To be more specific, we first establish an industrial low-coherence model that theoretically proves its feasibility in adapting to surfaces with varying reflectance levels. Based on the derived measurement model, we design a simple yet effective optical path that ensures the adaptability of the proposed system to different surfaces. Finally, we build an industrial low-coherence system to verify the effectiveness of the proposed method. We measure key parameters of a standard step and various industrial parts with different reflection conditions, and measurement results show that the proposed method achieves an optimal measurement accuracy of 0.0017 mm and a maximum range exceeding 29.0 mm. The proposed method is also demonstrated to be adaptable to industrial parts with a variety of reflection conditions, including diffuse reflection, specular reflection, and mirror-like reflection. |
---|---|
AbstractList | High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence measurement methods offer advantages, including high precision, relatively large measuring range, and nondestructive nature. These measurement methods have shown great potential for applications in the field of industrial measurement. However, most of the current industrial low-coherence measurement methods assume that the surface reflectance of parts is constant or has little variability, resulting in poor adaptability and limited application range of these methods. To address this issue, this article proposes a low-coherence measurement method for measuring key parameters of industrial parts, which can be applied to a variety of parts with significant surface reflectance variations. To be more specific, we first establish an industrial low-coherence model that theoretically proves its feasibility in adapting to surfaces with varying reflectance levels. Based on the derived measurement model, we design a simple yet effective optical path that ensures the adaptability of the proposed system to different surfaces. Finally, we build an industrial low-coherence system to verify the effectiveness of the proposed method. We measure key parameters of a standard step and various industrial parts with different reflection conditions, and measurement results show that the proposed method achieves an optimal measurement accuracy of 0.0017 mm and a maximum range exceeding 29.0 mm. The proposed method is also demonstrated to be adaptable to industrial parts with a variety of reflection conditions, including diffuse reflection, specular reflection, and mirror-like reflection. |
Author | Wu, Jiajun Fu, Shengpeng Xia, Renbo Zhao, Jibin Chen, Yueling Sun, Yanyi Zhang, Tao |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-9800-7387 surname: Zhang fullname: Zhang, Tao email: zhangtaosia@gmail.com organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China – sequence: 2 givenname: Renbo orcidid: 0000-0003-0998-2605 surname: Xia fullname: Xia, Renbo email: xiarenbosia@163.com organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China – sequence: 3 givenname: Jibin orcidid: 0000-0003-4609-8499 surname: Zhao fullname: Zhao, Jibin email: jbzhao@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China – sequence: 4 givenname: Jiajun orcidid: 0000-0003-0099-6680 surname: Wu fullname: Wu, Jiajun email: wujiajun@ustc.edu organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China – sequence: 5 givenname: Shengpeng orcidid: 0000-0003-1636-4397 surname: Fu fullname: Fu, Shengpeng email: fushengpeng@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China – sequence: 6 givenname: Yueling orcidid: 0000-0002-1987-1231 surname: Chen fullname: Chen, Yueling email: chenyueling@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China – sequence: 7 givenname: Yanyi orcidid: 0000-0001-6601-5000 surname: Sun fullname: Sun, Yanyi email: sunyanyifri@163.com organization: Shanghai Academy of Spaceflight Technology, Shanghai, China |
BookMark | eNpNkE1PwzAMhiM0JLbBnQOHSpw7nKRN2iOa-JjUCQQDjiVLHdZpa0aSCvHvybQdONmynteWnxEZdLZDQi4pTCiF8mYxm08YMD7hHGhRZidkSPNcpqUQbECGEIdpmeXijIy8XwOAFJkcks_K_qRTu0KHncZkjsr3DrfYhdiHlW18YqxLZl3T--BatUmelQs--WjDKqmU-8LktXdGxewLmg3qoPZ73lVkQ2s7f05Ojdp4vDjWMXm7v1tMH9Pq6WE2va1SzUoW0iITQlOml5JqgwXLylzyDGijdSPMElUjDZeFUgwMCK1hCTktWVY0DRcyb_iYXB_27pz97tGHem1718WTNStyDiyP30cKDpR21nuHpt65dqvcb02h3nuso8d677E-eoyRq0OkRcR_OIOSyYz_AYulcO0 |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3353865 |
Cites_doi | 10.1007/978-3-540-77550-8_2 10.1109/TIM.2020.3026762 10.1016/j.vacuum.2014.01.031 10.1364/OE.415857 10.1109/2944.796348 10.1117/12.707806 10.1364/OE.435139 10.1364/AO.54.008036 10.1103/PhysRevA.75.033418 10.1364/OE.435715 10.1117/12.2003784 10.1117/12.837952 10.1007/s12541-016-0037-5 10.1039/C7AN01245D 10.1016/j.optlaseng.2020.106106 10.1109/ICEMI.2007.4350554 10.1364/OL.22.000757 10.1109/TIM.2022.3154796 10.3390/s21155101 10.1364/OE.27.035981 10.1364/AO.41.001315 10.1117/12.2501122 10.1109/LPT.2015.2502988 10.3390/s18093171 10.1016/j.measurement.2010.11.013 10.1364/AO.58.007436 10.1088/1361-6501/aaa16e 10.3807/JOSK.2013.17.1.068 10.1016/j.promfg.2019.09.020 10.1038/s42005-019-0249-y 10.1134/S0020441221040084 10.1088/0957-0233/7/7/001 10.1109/JSEN.2020.2998514 10.1515/teme-2016-0074 10.1364/OE.20.005658 10.1364/OE.389839 10.1088/0957-0233/27/1/015202 10.1016/j.measurement.2016.02.041 10.1034/j.1600-0846.2001.007001001.x 10.1103/PhysRevA.93.023432 10.1038/jid.2012.429 10.1117/1.3280283 10.1016/S0030-4018(01)01109-9 10.1364/AO.40.006618 10.1364/AO.34.006564 10.1016/j.measurement.2019.02.082 10.1016/j.matdes.2018.05.050 10.1109/JSTQE.2005.857380 10.1016/j.optlaseng.2016.02.011 10.1117/12.491311 10.1016/j.measurement.2021.110199 10.1364/AO.50.000970 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2023.3301894 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TIM_2023_3301894 10209274 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Liaoning Province grantid: 2020-MS-030 funderid: 10.13039/501100005047 – fundername: National Natural Science Foundation of China grantid: 52075532; 91948203 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TN5 TWZ VH1 VJK XFK AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-8466c12cb71cfe8249573401dccd6fbead7f378aa20f06cc0b0519248dd3675d3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Thu Oct 10 18:37:14 EDT 2024 Fri Aug 23 02:16:56 EDT 2024 Wed Jun 26 19:28:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-8466c12cb71cfe8249573401dccd6fbead7f378aa20f06cc0b0519248dd3675d3 |
ORCID | 0000-0002-1987-1231 0000-0003-0998-2605 0000-0001-6601-5000 0000-0002-9800-7387 0000-0003-0099-6680 0000-0003-1636-4397 0000-0003-4609-8499 |
PQID | 2853025945 |
PQPubID | 85462 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10209274 crossref_primary_10_1109_TIM_2023_3301894 proquest_journals_2853025945 |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 born (ref15) 2013 ref28 ref27 ref29 |
References_xml | – ident: ref42 doi: 10.1007/978-3-540-77550-8_2 – ident: ref6 doi: 10.1109/TIM.2020.3026762 – ident: ref50 doi: 10.1016/j.vacuum.2014.01.031 – ident: ref48 doi: 10.1364/OE.415857 – ident: ref29 doi: 10.1109/2944.796348 – ident: ref13 doi: 10.1117/12.707806 – ident: ref2 doi: 10.1364/OE.435139 – ident: ref25 doi: 10.1364/AO.54.008036 – ident: ref53 doi: 10.1103/PhysRevA.75.033418 – ident: ref18 doi: 10.1364/OE.435715 – ident: ref36 doi: 10.1117/12.2003784 – ident: ref23 doi: 10.1117/12.837952 – ident: ref52 doi: 10.1007/s12541-016-0037-5 – ident: ref33 doi: 10.1039/C7AN01245D – ident: ref28 doi: 10.1016/j.optlaseng.2020.106106 – ident: ref45 doi: 10.1109/ICEMI.2007.4350554 – ident: ref49 doi: 10.1364/OL.22.000757 – ident: ref17 doi: 10.1109/TIM.2022.3154796 – ident: ref3 doi: 10.3390/s21155101 – ident: ref47 doi: 10.1364/OE.27.035981 – ident: ref19 doi: 10.1364/AO.41.001315 – ident: ref14 doi: 10.1117/12.2501122 – ident: ref26 doi: 10.1109/LPT.2015.2502988 – ident: ref5 doi: 10.3390/s18093171 – ident: ref7 doi: 10.1016/j.measurement.2010.11.013 – ident: ref21 doi: 10.1364/AO.58.007436 – ident: ref41 doi: 10.1088/1361-6501/aaa16e – ident: ref31 doi: 10.3807/JOSK.2013.17.1.068 – ident: ref10 doi: 10.1016/j.promfg.2019.09.020 – ident: ref12 doi: 10.1038/s42005-019-0249-y – ident: ref40 doi: 10.1134/S0020441221040084 – ident: ref44 doi: 10.1088/0957-0233/7/7/001 – ident: ref34 doi: 10.1109/JSEN.2020.2998514 – ident: ref39 doi: 10.1515/teme-2016-0074 – ident: ref16 doi: 10.1364/OE.20.005658 – ident: ref37 doi: 10.1364/OE.389839 – ident: ref11 doi: 10.1088/0957-0233/27/1/015202 – ident: ref4 doi: 10.1016/j.measurement.2016.02.041 – ident: ref30 doi: 10.1034/j.1600-0846.2001.007001001.x – ident: ref51 doi: 10.1103/PhysRevA.93.023432 – ident: ref8 doi: 10.1038/jid.2012.429 – ident: ref24 doi: 10.1117/1.3280283 – ident: ref22 doi: 10.1016/S0030-4018(01)01109-9 – ident: ref35 doi: 10.1364/AO.40.006618 – ident: ref43 doi: 10.1364/AO.34.006564 – ident: ref1 doi: 10.1016/j.measurement.2019.02.082 – ident: ref38 doi: 10.1016/j.matdes.2018.05.050 – ident: ref27 doi: 10.1109/JSTQE.2005.857380 – ident: ref46 doi: 10.1016/j.optlaseng.2016.02.011 – ident: ref32 doi: 10.1117/12.491311 – ident: ref9 doi: 10.1016/j.measurement.2021.110199 – year: 2013 ident: ref15 publication-title: Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light contributor: fullname: born – ident: ref20 doi: 10.1364/AO.50.000970 |
SSID | ssj0007647 |
Score | 2.43692 |
Snippet | High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Coherence Industrial measurement low coherence Mathematical models Measurement methods Methods noncontact measurement nondestructive measurement Nondestructive testing Optical attenuators Optical interferometry Optical refraction Optical variables control Optical variables measurement Parameters Reflectance Specular reflection Time measurement |
Title | Low-Coherence Measurement Methods for Industrial Parts With Large Surface Reflectance Variations |
URI | https://ieeexplore.ieee.org/document/10209274 https://www.proquest.com/docview/2853025945 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sQdCDz4rVKjl48bBrmt1uNkcRi0pbxGdv6-aFIrTSbhH89U6yW58I3nJIQshMkvkmM_MBHOSWM8mtDlLEG0GsOjyQ-EwHipokSkRKo9zlDvcHydltfDHsDKtkdZ8LY4zxwWcmdE3_l6_HauZcZXjCGRUIo2pQ40KUyVof1y5P4rJAZhtPMJoF8z9JKo5uzvuhowkPEby3UxF_e4M8qcqvm9g_L91VGMwXVkaVPIezQobq7UfNxn-vfA1WKkOTHJeasQ4LZrQBy1_KD27Aog__VNNNeOiNXwOXqeFz_0j_03GIbUcxPSVo3JJPng9yiSo3JfdPxSPpuWBycj2b2BzHXhnrfgKcMpE7BOKlR7ABt93Tm5OzoOJeCBQTrAjQLElUmynJ28qa1DFU8wixmFZKJ1ai_nEb8TTPGbU0UYpKZwuyONU6Qgyioy2oj8Yjsw2EaY69hY1zqWJjrdQ2iVXewVZKeS6acDiXRvZSltjIPDShIkPJZU5yWSW5JjTc5n7pV-5rE1pz-WXVIZxmLHWUSB1Uhp0_hu3Ckpu9dKm0oF5MZmYPjYxC7nvlegc1xs8Z |
link.rule.ids | 315,783,787,799,4033,27937,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH64IOrBtWK1ag5ePMyYZpbMHEUsVdsiWpfbONlQhFbsFMFf70tm6orgLYeEhLyX5Pte3gKwnxvOBDfKS5BveKGMuCfwmfYk1XEQpwkNchs73O3F7evw7C66q4LVXSyM1to5n2nfNt1fvhrKsTWV4QlnNEUaNQ2zkQUWZbjWx8XL47BMkdnEM4zAYPIrSdPD_mnXt4XCfaTvzSQNv71CrqzKr7vYPTCtZehNllb6lTz540L48u1H1sZ_r30FliqoSY5K3ViFKT1Yg8UvCQjXYM45gMrROtx3hq-ejdVw0X-k-2k6xLYtMj0iCG_JZ6UPcoFKNyK3j8UD6Vh3cnI1fjE5jr3Uxv4FWHUiN0jFS5tgDa5bJ_3jtldVX_AkS1nhITCJZZNJwZvS6MTWqOYBsjElpYqNQA3kJuBJnjNqaCwlFRYNsjBRKkAWooINmBkMB3oTCFMce6cmzIUMtTFCmTiUeYSthPI8rcPBRBrZc5lkI3PkhKYZSi6zkssqydWhZjf3S79yX-vQmMgvq47hKGOJLYoUoTJs_TFsD-bb_W4n65z2zrdhwc5UGlgaMFO8jPUOQo5C7DpFewc3XdJm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Coherence+Measurement+Methods+for+Industrial+Parts+With+Large+Surface+Reflectance+Variations&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Tao&rft.au=Xia%2C+Renbo&rft.au=Zhao%2C+Jibin&rft.au=Wu%2C+Jiajun&rft.date=2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2023.3301894&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3301894 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |