Low-Coherence Measurement Methods for Industrial Parts With Large Surface Reflectance Variations

High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence measurement methods offer advantages, including high precision, relatively large measuring range, and nondestructive nature. These measuremen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 14
Main Authors Zhang, Tao, Xia, Renbo, Zhao, Jibin, Wu, Jiajun, Fu, Shengpeng, Chen, Yueling, Sun, Yanyi
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence measurement methods offer advantages, including high precision, relatively large measuring range, and nondestructive nature. These measurement methods have shown great potential for applications in the field of industrial measurement. However, most of the current industrial low-coherence measurement methods assume that the surface reflectance of parts is constant or has little variability, resulting in poor adaptability and limited application range of these methods. To address this issue, this article proposes a low-coherence measurement method for measuring key parameters of industrial parts, which can be applied to a variety of parts with significant surface reflectance variations. To be more specific, we first establish an industrial low-coherence model that theoretically proves its feasibility in adapting to surfaces with varying reflectance levels. Based on the derived measurement model, we design a simple yet effective optical path that ensures the adaptability of the proposed system to different surfaces. Finally, we build an industrial low-coherence system to verify the effectiveness of the proposed method. We measure key parameters of a standard step and various industrial parts with different reflection conditions, and measurement results show that the proposed method achieves an optimal measurement accuracy of 0.0017 mm and a maximum range exceeding 29.0 mm. The proposed method is also demonstrated to be adaptable to industrial parts with a variety of reflection conditions, including diffuse reflection, specular reflection, and mirror-like reflection.
AbstractList High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence measurement methods offer advantages, including high precision, relatively large measuring range, and nondestructive nature. These measurement methods have shown great potential for applications in the field of industrial measurement. However, most of the current industrial low-coherence measurement methods assume that the surface reflectance of parts is constant or has little variability, resulting in poor adaptability and limited application range of these methods. To address this issue, this article proposes a low-coherence measurement method for measuring key parameters of industrial parts, which can be applied to a variety of parts with significant surface reflectance variations. To be more specific, we first establish an industrial low-coherence model that theoretically proves its feasibility in adapting to surfaces with varying reflectance levels. Based on the derived measurement model, we design a simple yet effective optical path that ensures the adaptability of the proposed system to different surfaces. Finally, we build an industrial low-coherence system to verify the effectiveness of the proposed method. We measure key parameters of a standard step and various industrial parts with different reflection conditions, and measurement results show that the proposed method achieves an optimal measurement accuracy of 0.0017 mm and a maximum range exceeding 29.0 mm. The proposed method is also demonstrated to be adaptable to industrial parts with a variety of reflection conditions, including diffuse reflection, specular reflection, and mirror-like reflection.
Author Wu, Jiajun
Fu, Shengpeng
Xia, Renbo
Zhao, Jibin
Chen, Yueling
Sun, Yanyi
Zhang, Tao
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-9800-7387
  surname: Zhang
  fullname: Zhang, Tao
  email: zhangtaosia@gmail.com
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
– sequence: 2
  givenname: Renbo
  orcidid: 0000-0003-0998-2605
  surname: Xia
  fullname: Xia, Renbo
  email: xiarenbosia@163.com
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
– sequence: 3
  givenname: Jibin
  orcidid: 0000-0003-4609-8499
  surname: Zhao
  fullname: Zhao, Jibin
  email: jbzhao@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
– sequence: 4
  givenname: Jiajun
  orcidid: 0000-0003-0099-6680
  surname: Wu
  fullname: Wu, Jiajun
  email: wujiajun@ustc.edu
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
– sequence: 5
  givenname: Shengpeng
  orcidid: 0000-0003-1636-4397
  surname: Fu
  fullname: Fu, Shengpeng
  email: fushengpeng@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
– sequence: 6
  givenname: Yueling
  orcidid: 0000-0002-1987-1231
  surname: Chen
  fullname: Chen, Yueling
  email: chenyueling@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, and the Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
– sequence: 7
  givenname: Yanyi
  orcidid: 0000-0001-6601-5000
  surname: Sun
  fullname: Sun, Yanyi
  email: sunyanyifri@163.com
  organization: Shanghai Academy of Spaceflight Technology, Shanghai, China
BookMark eNpNkE1PwzAMhiM0JLbBnQOHSpw7nKRN2iOa-JjUCQQDjiVLHdZpa0aSCvHvybQdONmynteWnxEZdLZDQi4pTCiF8mYxm08YMD7hHGhRZidkSPNcpqUQbECGEIdpmeXijIy8XwOAFJkcks_K_qRTu0KHncZkjsr3DrfYhdiHlW18YqxLZl3T--BatUmelQs--WjDKqmU-8LktXdGxewLmg3qoPZ73lVkQ2s7f05Ojdp4vDjWMXm7v1tMH9Pq6WE2va1SzUoW0iITQlOml5JqgwXLylzyDGijdSPMElUjDZeFUgwMCK1hCTktWVY0DRcyb_iYXB_27pz97tGHem1718WTNStyDiyP30cKDpR21nuHpt65dqvcb02h3nuso8d677E-eoyRq0OkRcR_OIOSyYz_AYulcO0
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2024_3353865
Cites_doi 10.1007/978-3-540-77550-8_2
10.1109/TIM.2020.3026762
10.1016/j.vacuum.2014.01.031
10.1364/OE.415857
10.1109/2944.796348
10.1117/12.707806
10.1364/OE.435139
10.1364/AO.54.008036
10.1103/PhysRevA.75.033418
10.1364/OE.435715
10.1117/12.2003784
10.1117/12.837952
10.1007/s12541-016-0037-5
10.1039/C7AN01245D
10.1016/j.optlaseng.2020.106106
10.1109/ICEMI.2007.4350554
10.1364/OL.22.000757
10.1109/TIM.2022.3154796
10.3390/s21155101
10.1364/OE.27.035981
10.1364/AO.41.001315
10.1117/12.2501122
10.1109/LPT.2015.2502988
10.3390/s18093171
10.1016/j.measurement.2010.11.013
10.1364/AO.58.007436
10.1088/1361-6501/aaa16e
10.3807/JOSK.2013.17.1.068
10.1016/j.promfg.2019.09.020
10.1038/s42005-019-0249-y
10.1134/S0020441221040084
10.1088/0957-0233/7/7/001
10.1109/JSEN.2020.2998514
10.1515/teme-2016-0074
10.1364/OE.20.005658
10.1364/OE.389839
10.1088/0957-0233/27/1/015202
10.1016/j.measurement.2016.02.041
10.1034/j.1600-0846.2001.007001001.x
10.1103/PhysRevA.93.023432
10.1038/jid.2012.429
10.1117/1.3280283
10.1016/S0030-4018(01)01109-9
10.1364/AO.40.006618
10.1364/AO.34.006564
10.1016/j.measurement.2019.02.082
10.1016/j.matdes.2018.05.050
10.1109/JSTQE.2005.857380
10.1016/j.optlaseng.2016.02.011
10.1117/12.491311
10.1016/j.measurement.2021.110199
10.1364/AO.50.000970
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3301894
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2023_3301894
10209274
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Liaoning Province
  grantid: 2020-MS-030
  funderid: 10.13039/501100005047
– fundername: National Natural Science Foundation of China
  grantid: 52075532; 91948203
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-8466c12cb71cfe8249573401dccd6fbead7f378aa20f06cc0b0519248dd3675d3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Thu Oct 10 18:37:14 EDT 2024
Fri Aug 23 02:16:56 EDT 2024
Wed Jun 26 19:28:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-8466c12cb71cfe8249573401dccd6fbead7f378aa20f06cc0b0519248dd3675d3
ORCID 0000-0002-1987-1231
0000-0003-0998-2605
0000-0001-6601-5000
0000-0002-9800-7387
0000-0003-0099-6680
0000-0003-1636-4397
0000-0003-4609-8499
PQID 2853025945
PQPubID 85462
PageCount 14
ParticipantIDs ieee_primary_10209274
crossref_primary_10_1109_TIM_2023_3301894
proquest_journals_2853025945
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
born (ref15) 2013
ref28
ref27
ref29
References_xml – ident: ref42
  doi: 10.1007/978-3-540-77550-8_2
– ident: ref6
  doi: 10.1109/TIM.2020.3026762
– ident: ref50
  doi: 10.1016/j.vacuum.2014.01.031
– ident: ref48
  doi: 10.1364/OE.415857
– ident: ref29
  doi: 10.1109/2944.796348
– ident: ref13
  doi: 10.1117/12.707806
– ident: ref2
  doi: 10.1364/OE.435139
– ident: ref25
  doi: 10.1364/AO.54.008036
– ident: ref53
  doi: 10.1103/PhysRevA.75.033418
– ident: ref18
  doi: 10.1364/OE.435715
– ident: ref36
  doi: 10.1117/12.2003784
– ident: ref23
  doi: 10.1117/12.837952
– ident: ref52
  doi: 10.1007/s12541-016-0037-5
– ident: ref33
  doi: 10.1039/C7AN01245D
– ident: ref28
  doi: 10.1016/j.optlaseng.2020.106106
– ident: ref45
  doi: 10.1109/ICEMI.2007.4350554
– ident: ref49
  doi: 10.1364/OL.22.000757
– ident: ref17
  doi: 10.1109/TIM.2022.3154796
– ident: ref3
  doi: 10.3390/s21155101
– ident: ref47
  doi: 10.1364/OE.27.035981
– ident: ref19
  doi: 10.1364/AO.41.001315
– ident: ref14
  doi: 10.1117/12.2501122
– ident: ref26
  doi: 10.1109/LPT.2015.2502988
– ident: ref5
  doi: 10.3390/s18093171
– ident: ref7
  doi: 10.1016/j.measurement.2010.11.013
– ident: ref21
  doi: 10.1364/AO.58.007436
– ident: ref41
  doi: 10.1088/1361-6501/aaa16e
– ident: ref31
  doi: 10.3807/JOSK.2013.17.1.068
– ident: ref10
  doi: 10.1016/j.promfg.2019.09.020
– ident: ref12
  doi: 10.1038/s42005-019-0249-y
– ident: ref40
  doi: 10.1134/S0020441221040084
– ident: ref44
  doi: 10.1088/0957-0233/7/7/001
– ident: ref34
  doi: 10.1109/JSEN.2020.2998514
– ident: ref39
  doi: 10.1515/teme-2016-0074
– ident: ref16
  doi: 10.1364/OE.20.005658
– ident: ref37
  doi: 10.1364/OE.389839
– ident: ref11
  doi: 10.1088/0957-0233/27/1/015202
– ident: ref4
  doi: 10.1016/j.measurement.2016.02.041
– ident: ref30
  doi: 10.1034/j.1600-0846.2001.007001001.x
– ident: ref51
  doi: 10.1103/PhysRevA.93.023432
– ident: ref8
  doi: 10.1038/jid.2012.429
– ident: ref24
  doi: 10.1117/1.3280283
– ident: ref22
  doi: 10.1016/S0030-4018(01)01109-9
– ident: ref35
  doi: 10.1364/AO.40.006618
– ident: ref43
  doi: 10.1364/AO.34.006564
– ident: ref1
  doi: 10.1016/j.measurement.2019.02.082
– ident: ref38
  doi: 10.1016/j.matdes.2018.05.050
– ident: ref27
  doi: 10.1109/JSTQE.2005.857380
– ident: ref46
  doi: 10.1016/j.optlaseng.2016.02.011
– ident: ref32
  doi: 10.1117/12.491311
– ident: ref9
  doi: 10.1016/j.measurement.2021.110199
– year: 2013
  ident: ref15
  publication-title: Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light
  contributor:
    fullname: born
– ident: ref20
  doi: 10.1364/AO.50.000970
SSID ssj0007647
Score 2.43692
Snippet High-precision measurement of sizes and key parameters of industrial parts is crucial to ensure manufacturing accuracy and assembly reliability. Low-coherence...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Coherence
Industrial measurement
low coherence
Mathematical models
Measurement methods
Methods
noncontact measurement
nondestructive measurement
Nondestructive testing
Optical attenuators
Optical interferometry
Optical refraction
Optical variables control
Optical variables measurement
Parameters
Reflectance
Specular reflection
Time measurement
Title Low-Coherence Measurement Methods for Industrial Parts With Large Surface Reflectance Variations
URI https://ieeexplore.ieee.org/document/10209274
https://www.proquest.com/docview/2853025945
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sQdCDz4rVKjl48bBrmt1uNkcRi0pbxGdv6-aFIrTSbhH89U6yW58I3nJIQshMkvkmM_MBHOSWM8mtDlLEG0GsOjyQ-EwHipokSkRKo9zlDvcHydltfDHsDKtkdZ8LY4zxwWcmdE3_l6_HauZcZXjCGRUIo2pQ40KUyVof1y5P4rJAZhtPMJoF8z9JKo5uzvuhowkPEby3UxF_e4M8qcqvm9g_L91VGMwXVkaVPIezQobq7UfNxn-vfA1WKkOTHJeasQ4LZrQBy1_KD27Aog__VNNNeOiNXwOXqeFz_0j_03GIbUcxPSVo3JJPng9yiSo3JfdPxSPpuWBycj2b2BzHXhnrfgKcMpE7BOKlR7ABt93Tm5OzoOJeCBQTrAjQLElUmynJ28qa1DFU8wixmFZKJ1ai_nEb8TTPGbU0UYpKZwuyONU6Qgyioy2oj8Yjsw2EaY69hY1zqWJjrdQ2iVXewVZKeS6acDiXRvZSltjIPDShIkPJZU5yWSW5JjTc5n7pV-5rE1pz-WXVIZxmLHWUSB1Uhp0_hu3Ckpu9dKm0oF5MZmYPjYxC7nvlegc1xs8Z
link.rule.ids 315,783,787,799,4033,27937,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH64IOrBtWK1ag5ePMyYZpbMHEUsVdsiWpfbONlQhFbsFMFf70tm6orgLYeEhLyX5Pte3gKwnxvOBDfKS5BveKGMuCfwmfYk1XEQpwkNchs73O3F7evw7C66q4LVXSyM1to5n2nfNt1fvhrKsTWV4QlnNEUaNQ2zkQUWZbjWx8XL47BMkdnEM4zAYPIrSdPD_mnXt4XCfaTvzSQNv71CrqzKr7vYPTCtZehNllb6lTz540L48u1H1sZ_r30FliqoSY5K3ViFKT1Yg8UvCQjXYM45gMrROtx3hq-ejdVw0X-k-2k6xLYtMj0iCG_JZ6UPcoFKNyK3j8UD6Vh3cnI1fjE5jr3Uxv4FWHUiN0jFS5tgDa5bJ_3jtldVX_AkS1nhITCJZZNJwZvS6MTWqOYBsjElpYqNQA3kJuBJnjNqaCwlFRYNsjBRKkAWooINmBkMB3oTCFMce6cmzIUMtTFCmTiUeYSthPI8rcPBRBrZc5lkI3PkhKYZSi6zkssqydWhZjf3S79yX-vQmMgvq47hKGOJLYoUoTJs_TFsD-bb_W4n65z2zrdhwc5UGlgaMFO8jPUOQo5C7DpFewc3XdJm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Coherence+Measurement+Methods+for+Industrial+Parts+With+Large+Surface+Reflectance+Variations&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Tao&rft.au=Xia%2C+Renbo&rft.au=Zhao%2C+Jibin&rft.au=Wu%2C+Jiajun&rft.date=2023&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2023.3301894&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3301894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon