Discrete-time TASEP with holdback

We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle. Each site may contain at most one particle. At each time, a particle may move to the right-neighbor site according to the following rules...

Full description

Saved in:
Bibliographic Details
Published inStochastic processes and their applications Vol. 131; pp. 201 - 235
Main Authors Shneer, Seva, Stolyar, Alexander
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text
ISSN0304-4149
1879-209X
DOI10.1016/j.spa.2020.09.011

Cover

Loading…
Abstract We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle. Each site may contain at most one particle. At each time, a particle may move to the right-neighbor site according to the following rules. If its right-neighbor site is occupied by another particle, the particle does not move. If the particle has unoccupied sites (“holes”) as neighbors on both sides, it moves right with probability 1. If the particle has a hole as the right-neighbor and an occupied site as the left-neighbor, it moves right with probability 0<p<1. (We refer to the latter rule as a “holdback” property.) From the point of view of holes moving counter-clockwise, this is a zero-range process. The main question we address is: what is the system steady-state flux (or throughput) when n is large, as a function of density ρ? The most interesting range of densities is 0≤ρ<1∕2. We define the system typical flux as the limit in n→∞ of the steady-state flux in a system subject to additional random perturbations, when the perturbation rate vanishes. Our main results show that: (a) the typical flux is different from the formal flux, defined as the limit in n→∞ of the steady-state flux in the system without perturbations, and (b) there is a phase transition at density h=p∕(1+p). If ρ<h, the typical flux is equal to ρ, which coincides with the formal flux. If ρ>h, a condensation phenomenon occurs, namely the formation and persistence of large particle clusters; in particular, the typical flux in this case is p(1−ρ)<h<ρ, which differs from the formal flux when h<ρ<1∕2. Our results include both the steady-state analysis (which determines the typical flux) and the transient analysis. In particular, we derive a version of the Ballot Theorem, and show that the key “reason” for large cluster formation for densities ρ>h is described by this theorem.
AbstractList We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle. Each site may contain at most one particle. At each time, a particle may move to the right-neighbor site according to the following rules. If its right-neighbor site is occupied by another particle, the particle does not move. If the particle has unoccupied sites (“holes”) as neighbors on both sides, it moves right with probability 1. If the particle has a hole as the right-neighbor and an occupied site as the left-neighbor, it moves right with probability 0<p<1. (We refer to the latter rule as a “holdback” property.) From the point of view of holes moving counter-clockwise, this is a zero-range process. The main question we address is: what is the system steady-state flux (or throughput) when n is large, as a function of density ρ? The most interesting range of densities is 0≤ρ<1∕2. We define the system typical flux as the limit in n→∞ of the steady-state flux in a system subject to additional random perturbations, when the perturbation rate vanishes. Our main results show that: (a) the typical flux is different from the formal flux, defined as the limit in n→∞ of the steady-state flux in the system without perturbations, and (b) there is a phase transition at density h=p∕(1+p). If ρ<h, the typical flux is equal to ρ, which coincides with the formal flux. If ρ>h, a condensation phenomenon occurs, namely the formation and persistence of large particle clusters; in particular, the typical flux in this case is p(1−ρ)<h<ρ, which differs from the formal flux when h<ρ<1∕2. Our results include both the steady-state analysis (which determines the typical flux) and the transient analysis. In particular, we derive a version of the Ballot Theorem, and show that the key “reason” for large cluster formation for densities ρ>h is described by this theorem.
Author Stolyar, Alexander
Shneer, Seva
Author_xml – sequence: 1
  givenname: Seva
  surname: Shneer
  fullname: Shneer, Seva
  email: V.Shneer@hw.ac.uk
  organization: Heriot-Watt University, United Kingdom
– sequence: 2
  givenname: Alexander
  surname: Stolyar
  fullname: Stolyar, Alexander
  email: stolyar@illinois.edu
  organization: University of Illinois at Urbana-Champaign, United States of America
BookMark eNp9z99KwzAUx_EgE-ymD-BdfYDWc5I2TfBqzPkHBgpO8C6k6SlL3daRFMW3t2Nee3WuvoffZ8om-35PjF0j5Agob7s8HmzOgUMOOgfEM5agqnTGQX9MWAICiqzAQl-waYwdACDnmLCbex9doIGywe8oXc_flq_ptx826abfNrV1n5fsvLXbSFd_d8beH5brxVO2enl8XsxXmeOaD5ni0AqNTalUDbYoS15oJGVlrW2lsQKBSlvh0JYkuWprIS1pSbK2DeeSxIzh6a8LfYyBWnMIfmfDj0EwR6PpzGg0R6MBbUbj2NydGhqHfXkKJjpPe0eND-QG0_T-n_oXrwdZMg
Cites_doi 10.1016/S0370-1573(99)00117-9
10.1088/0305-4470/30/16/011
10.1103/RevModPhys.73.1067
10.1088/1751-8113/40/46/R01
10.1093/imrn/rnt206
10.1209/epl/i1996-00180-y
10.1088/1742-5468/2007/07/P07008
10.1214/18-AAP1398
10.1214/13-AOP868
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.spa.2020.09.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-209X
EndPage 235
ExternalDocumentID 10_1016_j_spa_2020_09_011
S0304414920303719
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
3R3
4.4
457
4G.
5VS
63O
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c292t-820f391d588b0a4552491e8a6b9a791703189a3c1a5e628fb36ae96e6bad226e3
IEDL.DBID IXB
ISSN 0304-4149
IngestDate Tue Jul 01 03:24:07 EDT 2025
Fri Feb 23 02:45:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords secondary
Hydrodynamic limits
Interacting particle systems
Condensation/Phase transition
Ballot theorem
primary
TASEP
Medium access and Road traffic models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-820f391d588b0a4552491e8a6b9a791703189a3c1a5e628fb36ae96e6bad226e3
OpenAccessLink https://doi.org/10.1016/j.spa.2020.09.011
PageCount 35
ParticipantIDs crossref_primary_10_1016_j_spa_2020_09_011
elsevier_sciencedirect_doi_10_1016_j_spa_2020_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Stochastic processes and their applications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Takacs (b11) 1967
Evans (b7) 1997; 30
Cáceres, Ferrari, Pechersky (b4) 2007; 2007
Liggett (b9) 2012
Helbing (b8) 2001; 73
Shneer, Stolyar (b10) 2018; 28
Evans (b6) 1996; 36
Borodin, Corwin, Sasamoto (b3) 2014; 42
Chowdhury, Santen, Schadschneider (b5) 2000; 329
Blythe, Evans (b1) 2007; 40
Borodin, Corwin (b2) 2015; 2015
Liggett (10.1016/j.spa.2020.09.011_b9) 2012
Takacs (10.1016/j.spa.2020.09.011_b11) 1967
Evans (10.1016/j.spa.2020.09.011_b6) 1996; 36
Evans (10.1016/j.spa.2020.09.011_b7) 1997; 30
Shneer (10.1016/j.spa.2020.09.011_b10) 2018; 28
Borodin (10.1016/j.spa.2020.09.011_b3) 2014; 42
Blythe (10.1016/j.spa.2020.09.011_b1) 2007; 40
Helbing (10.1016/j.spa.2020.09.011_b8) 2001; 73
Chowdhury (10.1016/j.spa.2020.09.011_b5) 2000; 329
Cáceres (10.1016/j.spa.2020.09.011_b4) 2007; 2007
Borodin (10.1016/j.spa.2020.09.011_b2) 2015; 2015
References_xml – volume: 2007
  start-page: P07008
  year: 2007
  ident: b4
  article-title: A slow-to-start traffic model related to a m/m/1 queue
  publication-title: J. Stat. Mech. Theory Exp.
– year: 1967
  ident: b11
  article-title: Combinatorial Methods in the Theory of Stochastic Processes
– year: 2012
  ident: b9
  article-title: Interacting Particle Systems
– volume: 40
  start-page: R333
  year: 2007
  end-page: R441
  ident: b1
  article-title: Nonequilibrium steady states of matrix-product form: a solver’s guide
  publication-title: J. Phys. A
– volume: 329
  start-page: 199
  year: 2000
  end-page: 329
  ident: b5
  article-title: Statistical physics of vehicular traffic and some related systems
  publication-title: Phys. Rep.
– volume: 30
  start-page: 5669
  year: 1997
  end-page: 5685
  ident: b7
  article-title: Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics
  publication-title: J. Phys. A: Math. Gen.
– volume: 36
  start-page: 13
  year: 1996
  end-page: 18
  ident: b6
  article-title: Bose-einstein condensation in disordered exclusion models and relation to traffic flow
  publication-title: Europhys. Lett.
– volume: 2015
  start-page: 499
  year: 2015
  end-page: 537
  ident: b2
  article-title: Discrete time q-taseps
  publication-title: Int. Math. Res. Not.
– volume: 42
  start-page: 2314
  year: 2014
  end-page: 2382
  ident: b3
  article-title: From duality to determinants for q-tasep and asep
  publication-title: Ann. Probab.
– volume: 73
  start-page: 1067
  year: 2001
  end-page: 1141
  ident: b8
  article-title: Traffic and related self-driven many-particle systems
  publication-title: Rev. Modern Phys.
– volume: 28
  start-page: 3600
  year: 2018
  end-page: 3628
  ident: b10
  article-title: Stability conditions for a discrete-time decentralised medium access algorithm
  publication-title: Ann. Appl. Probab.
– volume: 329
  start-page: 199
  issue: 4–6
  year: 2000
  ident: 10.1016/j.spa.2020.09.011_b5
  article-title: Statistical physics of vehicular traffic and some related systems
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00117-9
– volume: 30
  start-page: 5669
  year: 1997
  ident: 10.1016/j.spa.2020.09.011_b7
  article-title: Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/30/16/011
– volume: 73
  start-page: 1067
  issue: 4
  year: 2001
  ident: 10.1016/j.spa.2020.09.011_b8
  article-title: Traffic and related self-driven many-particle systems
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.73.1067
– volume: 40
  start-page: R333
  year: 2007
  ident: 10.1016/j.spa.2020.09.011_b1
  article-title: Nonequilibrium steady states of matrix-product form: a solver’s guide
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/40/46/R01
– volume: 2015
  start-page: 499
  issue: 2
  year: 2015
  ident: 10.1016/j.spa.2020.09.011_b2
  article-title: Discrete time q-taseps
  publication-title: Int. Math. Res. Not.
  doi: 10.1093/imrn/rnt206
– volume: 36
  start-page: 13
  issue: 1
  year: 1996
  ident: 10.1016/j.spa.2020.09.011_b6
  article-title: Bose-einstein condensation in disordered exclusion models and relation to traffic flow
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1996-00180-y
– volume: 2007
  start-page: P07008
  year: 2007
  ident: 10.1016/j.spa.2020.09.011_b4
  article-title: A slow-to-start traffic model related to a m/m/1 queue
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2007/07/P07008
– volume: 28
  start-page: 3600
  issue: 6
  year: 2018
  ident: 10.1016/j.spa.2020.09.011_b10
  article-title: Stability conditions for a discrete-time decentralised medium access algorithm
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/18-AAP1398
– year: 1967
  ident: 10.1016/j.spa.2020.09.011_b11
– volume: 42
  start-page: 2314
  issue: 6
  year: 2014
  ident: 10.1016/j.spa.2020.09.011_b3
  article-title: From duality to determinants for q-tasep and asep
  publication-title: Ann. Probab.
  doi: 10.1214/13-AOP868
– year: 2012
  ident: 10.1016/j.spa.2020.09.011_b9
SSID ssj0001221
Score 2.2581918
Snippet We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 201
SubjectTerms Ballot theorem
Condensation/Phase transition
Hydrodynamic limits
Interacting particle systems
Medium access and Road traffic models
TASEP
Title Discrete-time TASEP with holdback
URI https://dx.doi.org/10.1016/j.spa.2020.09.011
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XvQgPrE-ygqehNjNY9PkWGtLVSxCW-gtJNsEqlCL1qu_3Ul2tyjoxduyJLD7hcw3k5n5gtClVV5KJ3Js2opibmc5VhmV2CvPnPUQAhRqn0MxmPD7aTatoW7VCxPKKkvbX9j0aK3LN60SzdZyPm-NQlKPg4NP4YG1o_Qn4zI28U1v1taY0Nh7FQbjMLrKbMYaL9i0ECLSNEqdEvI7N33jm_4u2ikdxaRTfMseqrnFPtp-XKusvh-gi9s5bHrwenG4IT4Zd0a9pyQcrCYhp2RN_nKIJv3euDvA5ZUHOKeKrjDwsWeKzDIpbWp4lkF0RJw0wioAkwSxeakMy4nJnKDSWyaMU8IJa2bgSDl2hOqL14U7RokELpfUKu6E5Cb1hrSZ8d7wnAEvylkDXVU_q5eFsoWuSr6eNSCjAzI6VRqQaSBewaF_LI8Gy_v3tJP_TTtFWzSUjsSTjjNUX719uHPg_pVtoo3rT9JEm527h8GwGZf6CwUrrDo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lPagH8Yn1uYInIXTz2DQ5lmrZ2gdCW-gtJNsEqlCL1v_vZB9FQS_elmUHsl_IzDeZyReE7qzyUjqRYdNWFHO7yLBKqMReeeashxSgUPsci3TGn-bJvIa61VmY0FZZ-v7Cp-feunzTKtFsrZfL1iQU9TgQfAoPrB2kPxtBnYrXUaPTH6TjrUMmND9-Fb7HwaAqbuZtXrBuIUukca52Ssjv4elbyOkdoP2SK0adYjiHqOZWR2hvtBVa_ThGtw9LWPdAfHG4JD6adiaPz1HYW41CWcma7PUEzXqP026Ky1sPcEYV3WAIyZ4pskiktLHhSQIJEnHSCKsATxL05qUyLCMmcYJKb5kwTgknrFkAl3LsFNVXbyt3hiIJ4VxSq7gTkpvYG9JmxnvDMwahUS6a6L76Wb0uxC101fX1ogEZHZDRsdKATBPxCg79Y4Y0ON-_zc7_Z3aDdtLpaKiH_fHgAu3S0EmSb3xcovrm_dNdARXY2Otyqr8A_0Ct4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete-time+TASEP+with+holdback&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Shneer%2C+Seva&rft.au=Stolyar%2C+Alexander&rft.date=2021-01-01&rft.issn=0304-4149&rft.volume=131&rft.spage=201&rft.epage=235&rft_id=info:doi/10.1016%2Fj.spa.2020.09.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spa_2020_09_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon