Discrete-time TASEP with holdback
We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle. Each site may contain at most one particle. At each time, a particle may move to the right-neighbor site according to the following rules...
Saved in:
Published in | Stochastic processes and their applications Vol. 131; pp. 201 - 235 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4149 1879-209X |
DOI | 10.1016/j.spa.2020.09.011 |
Cover
Loading…
Abstract | We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle. Each site may contain at most one particle. At each time, a particle may move to the right-neighbor site according to the following rules. If its right-neighbor site is occupied by another particle, the particle does not move. If the particle has unoccupied sites (“holes”) as neighbors on both sides, it moves right with probability 1. If the particle has a hole as the right-neighbor and an occupied site as the left-neighbor, it moves right with probability 0<p<1. (We refer to the latter rule as a “holdback” property.) From the point of view of holes moving counter-clockwise, this is a zero-range process.
The main question we address is: what is the system steady-state flux (or throughput) when n is large, as a function of density ρ? The most interesting range of densities is 0≤ρ<1∕2. We define the system typical flux as the limit in n→∞ of the steady-state flux in a system subject to additional random perturbations, when the perturbation rate vanishes. Our main results show that: (a) the typical flux is different from the formal flux, defined as the limit in n→∞ of the steady-state flux in the system without perturbations, and (b) there is a phase transition at density h=p∕(1+p). If ρ<h, the typical flux is equal to ρ, which coincides with the formal flux. If ρ>h, a condensation phenomenon occurs, namely the formation and persistence of large particle clusters; in particular, the typical flux in this case is p(1−ρ)<h<ρ, which differs from the formal flux when h<ρ<1∕2.
Our results include both the steady-state analysis (which determines the typical flux) and the transient analysis. In particular, we derive a version of the Ballot Theorem, and show that the key “reason” for large cluster formation for densities ρ>h is described by this theorem. |
---|---|
AbstractList | We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle. Each site may contain at most one particle. At each time, a particle may move to the right-neighbor site according to the following rules. If its right-neighbor site is occupied by another particle, the particle does not move. If the particle has unoccupied sites (“holes”) as neighbors on both sides, it moves right with probability 1. If the particle has a hole as the right-neighbor and an occupied site as the left-neighbor, it moves right with probability 0<p<1. (We refer to the latter rule as a “holdback” property.) From the point of view of holes moving counter-clockwise, this is a zero-range process.
The main question we address is: what is the system steady-state flux (or throughput) when n is large, as a function of density ρ? The most interesting range of densities is 0≤ρ<1∕2. We define the system typical flux as the limit in n→∞ of the steady-state flux in a system subject to additional random perturbations, when the perturbation rate vanishes. Our main results show that: (a) the typical flux is different from the formal flux, defined as the limit in n→∞ of the steady-state flux in the system without perturbations, and (b) there is a phase transition at density h=p∕(1+p). If ρ<h, the typical flux is equal to ρ, which coincides with the formal flux. If ρ>h, a condensation phenomenon occurs, namely the formation and persistence of large particle clusters; in particular, the typical flux in this case is p(1−ρ)<h<ρ, which differs from the formal flux when h<ρ<1∕2.
Our results include both the steady-state analysis (which determines the typical flux) and the transient analysis. In particular, we derive a version of the Ballot Theorem, and show that the key “reason” for large cluster formation for densities ρ>h is described by this theorem. |
Author | Stolyar, Alexander Shneer, Seva |
Author_xml | – sequence: 1 givenname: Seva surname: Shneer fullname: Shneer, Seva email: V.Shneer@hw.ac.uk organization: Heriot-Watt University, United Kingdom – sequence: 2 givenname: Alexander surname: Stolyar fullname: Stolyar, Alexander email: stolyar@illinois.edu organization: University of Illinois at Urbana-Champaign, United States of America |
BookMark | eNp9z99KwzAUx_EgE-ymD-BdfYDWc5I2TfBqzPkHBgpO8C6k6SlL3daRFMW3t2Nee3WuvoffZ8om-35PjF0j5Agob7s8HmzOgUMOOgfEM5agqnTGQX9MWAICiqzAQl-waYwdACDnmLCbex9doIGywe8oXc_flq_ptx826abfNrV1n5fsvLXbSFd_d8beH5brxVO2enl8XsxXmeOaD5ni0AqNTalUDbYoS15oJGVlrW2lsQKBSlvh0JYkuWprIS1pSbK2DeeSxIzh6a8LfYyBWnMIfmfDj0EwR6PpzGg0R6MBbUbj2NydGhqHfXkKJjpPe0eND-QG0_T-n_oXrwdZMg |
Cites_doi | 10.1016/S0370-1573(99)00117-9 10.1088/0305-4470/30/16/011 10.1103/RevModPhys.73.1067 10.1088/1751-8113/40/46/R01 10.1093/imrn/rnt206 10.1209/epl/i1996-00180-y 10.1088/1742-5468/2007/07/P07008 10.1214/18-AAP1398 10.1214/13-AOP868 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spa.2020.09.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-209X |
EndPage | 235 |
ExternalDocumentID | 10_1016_j_spa_2020_09_011 S0304414920303719 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 3R3 4.4 457 4G. 5VS 63O 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HX~ HZ~ IHE IXB J1W KOM LY1 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH WH7 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c292t-820f391d588b0a4552491e8a6b9a791703189a3c1a5e628fb36ae96e6bad226e3 |
IEDL.DBID | IXB |
ISSN | 0304-4149 |
IngestDate | Tue Jul 01 03:24:07 EDT 2025 Fri Feb 23 02:45:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | secondary Hydrodynamic limits Interacting particle systems Condensation/Phase transition Ballot theorem primary TASEP Medium access and Road traffic models |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-820f391d588b0a4552491e8a6b9a791703189a3c1a5e628fb36ae96e6bad226e3 |
OpenAccessLink | https://doi.org/10.1016/j.spa.2020.09.011 |
PageCount | 35 |
ParticipantIDs | crossref_primary_10_1016_j_spa_2020_09_011 elsevier_sciencedirect_doi_10_1016_j_spa_2020_09_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Stochastic processes and their applications |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Takacs (b11) 1967 Evans (b7) 1997; 30 Cáceres, Ferrari, Pechersky (b4) 2007; 2007 Liggett (b9) 2012 Helbing (b8) 2001; 73 Shneer, Stolyar (b10) 2018; 28 Evans (b6) 1996; 36 Borodin, Corwin, Sasamoto (b3) 2014; 42 Chowdhury, Santen, Schadschneider (b5) 2000; 329 Blythe, Evans (b1) 2007; 40 Borodin, Corwin (b2) 2015; 2015 Liggett (10.1016/j.spa.2020.09.011_b9) 2012 Takacs (10.1016/j.spa.2020.09.011_b11) 1967 Evans (10.1016/j.spa.2020.09.011_b6) 1996; 36 Evans (10.1016/j.spa.2020.09.011_b7) 1997; 30 Shneer (10.1016/j.spa.2020.09.011_b10) 2018; 28 Borodin (10.1016/j.spa.2020.09.011_b3) 2014; 42 Blythe (10.1016/j.spa.2020.09.011_b1) 2007; 40 Helbing (10.1016/j.spa.2020.09.011_b8) 2001; 73 Chowdhury (10.1016/j.spa.2020.09.011_b5) 2000; 329 Cáceres (10.1016/j.spa.2020.09.011_b4) 2007; 2007 Borodin (10.1016/j.spa.2020.09.011_b2) 2015; 2015 |
References_xml | – volume: 2007 start-page: P07008 year: 2007 ident: b4 article-title: A slow-to-start traffic model related to a m/m/1 queue publication-title: J. Stat. Mech. Theory Exp. – year: 1967 ident: b11 article-title: Combinatorial Methods in the Theory of Stochastic Processes – year: 2012 ident: b9 article-title: Interacting Particle Systems – volume: 40 start-page: R333 year: 2007 end-page: R441 ident: b1 article-title: Nonequilibrium steady states of matrix-product form: a solver’s guide publication-title: J. Phys. A – volume: 329 start-page: 199 year: 2000 end-page: 329 ident: b5 article-title: Statistical physics of vehicular traffic and some related systems publication-title: Phys. Rep. – volume: 30 start-page: 5669 year: 1997 end-page: 5685 ident: b7 article-title: Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics publication-title: J. Phys. A: Math. Gen. – volume: 36 start-page: 13 year: 1996 end-page: 18 ident: b6 article-title: Bose-einstein condensation in disordered exclusion models and relation to traffic flow publication-title: Europhys. Lett. – volume: 2015 start-page: 499 year: 2015 end-page: 537 ident: b2 article-title: Discrete time q-taseps publication-title: Int. Math. Res. Not. – volume: 42 start-page: 2314 year: 2014 end-page: 2382 ident: b3 article-title: From duality to determinants for q-tasep and asep publication-title: Ann. Probab. – volume: 73 start-page: 1067 year: 2001 end-page: 1141 ident: b8 article-title: Traffic and related self-driven many-particle systems publication-title: Rev. Modern Phys. – volume: 28 start-page: 3600 year: 2018 end-page: 3628 ident: b10 article-title: Stability conditions for a discrete-time decentralised medium access algorithm publication-title: Ann. Appl. Probab. – volume: 329 start-page: 199 issue: 4–6 year: 2000 ident: 10.1016/j.spa.2020.09.011_b5 article-title: Statistical physics of vehicular traffic and some related systems publication-title: Phys. Rep. doi: 10.1016/S0370-1573(99)00117-9 – volume: 30 start-page: 5669 year: 1997 ident: 10.1016/j.spa.2020.09.011_b7 article-title: Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/30/16/011 – volume: 73 start-page: 1067 issue: 4 year: 2001 ident: 10.1016/j.spa.2020.09.011_b8 article-title: Traffic and related self-driven many-particle systems publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.73.1067 – volume: 40 start-page: R333 year: 2007 ident: 10.1016/j.spa.2020.09.011_b1 article-title: Nonequilibrium steady states of matrix-product form: a solver’s guide publication-title: J. Phys. A doi: 10.1088/1751-8113/40/46/R01 – volume: 2015 start-page: 499 issue: 2 year: 2015 ident: 10.1016/j.spa.2020.09.011_b2 article-title: Discrete time q-taseps publication-title: Int. Math. Res. Not. doi: 10.1093/imrn/rnt206 – volume: 36 start-page: 13 issue: 1 year: 1996 ident: 10.1016/j.spa.2020.09.011_b6 article-title: Bose-einstein condensation in disordered exclusion models and relation to traffic flow publication-title: Europhys. Lett. doi: 10.1209/epl/i1996-00180-y – volume: 2007 start-page: P07008 year: 2007 ident: 10.1016/j.spa.2020.09.011_b4 article-title: A slow-to-start traffic model related to a m/m/1 queue publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2007/07/P07008 – volume: 28 start-page: 3600 issue: 6 year: 2018 ident: 10.1016/j.spa.2020.09.011_b10 article-title: Stability conditions for a discrete-time decentralised medium access algorithm publication-title: Ann. Appl. Probab. doi: 10.1214/18-AAP1398 – year: 1967 ident: 10.1016/j.spa.2020.09.011_b11 – volume: 42 start-page: 2314 issue: 6 year: 2014 ident: 10.1016/j.spa.2020.09.011_b3 article-title: From duality to determinants for q-tasep and asep publication-title: Ann. Probab. doi: 10.1214/13-AOP868 – year: 2012 ident: 10.1016/j.spa.2020.09.011_b9 |
SSID | ssj0001221 |
Score | 2.2581918 |
Snippet | We study the following interacting particle system. There are ρn particles, ρ<1, moving clockwise (“right”), in discrete time, on n sites arranged in a circle.... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 201 |
SubjectTerms | Ballot theorem Condensation/Phase transition Hydrodynamic limits Interacting particle systems Medium access and Road traffic models TASEP |
Title | Discrete-time TASEP with holdback |
URI | https://dx.doi.org/10.1016/j.spa.2020.09.011 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61XvQgPrE-ygqehNjNY9PkWGtLVSxCW-gtJNsEqlCL1qu_3Ul2tyjoxduyJLD7hcw3k5n5gtClVV5KJ3Js2opibmc5VhmV2CvPnPUQAhRqn0MxmPD7aTatoW7VCxPKKkvbX9j0aK3LN60SzdZyPm-NQlKPg4NP4YG1o_Qn4zI28U1v1taY0Nh7FQbjMLrKbMYaL9i0ECLSNEqdEvI7N33jm_4u2ikdxaRTfMseqrnFPtp-XKusvh-gi9s5bHrwenG4IT4Zd0a9pyQcrCYhp2RN_nKIJv3euDvA5ZUHOKeKrjDwsWeKzDIpbWp4lkF0RJw0wioAkwSxeakMy4nJnKDSWyaMU8IJa2bgSDl2hOqL14U7RokELpfUKu6E5Cb1hrSZ8d7wnAEvylkDXVU_q5eFsoWuSr6eNSCjAzI6VRqQaSBewaF_LI8Gy_v3tJP_TTtFWzSUjsSTjjNUX719uHPg_pVtoo3rT9JEm527h8GwGZf6CwUrrDo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lPagH8Yn1uYInIXTz2DQ5lmrZ2gdCW-gtJNsEqlCL1v_vZB9FQS_elmUHsl_IzDeZyReE7qzyUjqRYdNWFHO7yLBKqMReeeashxSgUPsci3TGn-bJvIa61VmY0FZZ-v7Cp-feunzTKtFsrZfL1iQU9TgQfAoPrB2kPxtBnYrXUaPTH6TjrUMmND9-Fb7HwaAqbuZtXrBuIUukca52Ssjv4elbyOkdoP2SK0adYjiHqOZWR2hvtBVa_ThGtw9LWPdAfHG4JD6adiaPz1HYW41CWcma7PUEzXqP026Ky1sPcEYV3WAIyZ4pskiktLHhSQIJEnHSCKsATxL05qUyLCMmcYJKb5kwTgknrFkAl3LsFNVXbyt3hiIJ4VxSq7gTkpvYG9JmxnvDMwahUS6a6L76Wb0uxC101fX1ogEZHZDRsdKATBPxCg79Y4Y0ON-_zc7_Z3aDdtLpaKiH_fHgAu3S0EmSb3xcovrm_dNdARXY2Otyqr8A_0Ct4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete-time+TASEP+with+holdback&rft.jtitle=Stochastic+processes+and+their+applications&rft.au=Shneer%2C+Seva&rft.au=Stolyar%2C+Alexander&rft.date=2021-01-01&rft.issn=0304-4149&rft.volume=131&rft.spage=201&rft.epage=235&rft_id=info:doi/10.1016%2Fj.spa.2020.09.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spa_2020_09_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4149&client=summon |