Self-Assembling Vectorial Curvature Sensing System Based on a Single Helix of Polarization-Maintaining Fiber
This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach-Zehnder interferometer (TW-MZI) with unique refractive index (RI) distr...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2023.3324688 |
Cover
Abstract | This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach-Zehnder interferometer (TW-MZI) with unique refractive index (RI) distribution characteristics proven through experiments. The sensing unit delivers remarkable performance in intensity modulation, reaching a maximum of 18.74 ± 0.01 dB/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. The sensing unit features a nonuniform geometric distribution and utilizes polarization-maintaining optical fibers as its structural material, enabling it to detect the correlation of polarized light and recognize the bending direction. With these advantages, a quasi-parallel distributed curvature sensing system is constructed, integrating a Sagnac interferometer (SI) as the sensing reference arm combined with the TW-MZI sensing unit. Adjusting the interference length and optical power can obtain a first-order harmonic vernier spectrum. Additionally, the envelope differencing technique enhances the interference fringe contrast, reducing the reliance on the monitoring wavelength domain. This combination highlights the composite system's wavelength modulation-based vector curvature sensing capability, achieving a maximum value of 15.59 ± 0.01 nm/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. Moreover, this system exhibits characteristics such as low-temperature crosstalk, high stability, and rapid responsiveness, making it well suited for applications in medical device diagnostics, oil and gas pipeline inspection, and structural safety monitoring within the construction industry. |
---|---|
AbstractList | This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach–Zehnder interferometer (TW-MZI) with unique refractive index (RI) distribution characteristics proven through experiments. The sensing unit delivers remarkable performance in intensity modulation, reaching a maximum of 18.74 ± 0.01 dB/[Formula Omitted]. The sensing unit features a nonuniform geometric distribution and utilizes polarization-maintaining optical fibers as its structural material, enabling it to detect the correlation of polarized light and recognize the bending direction. With these advantages, a quasi-parallel distributed curvature sensing system is constructed, integrating a Sagnac interferometer (SI) as the sensing reference arm combined with the TW-MZI sensing unit. Adjusting the interference length and optical power can obtain a first-order harmonic vernier spectrum. Additionally, the envelope differencing technique enhances the interference fringe contrast, reducing the reliance on the monitoring wavelength domain. This combination highlights the composite system’s wavelength modulation-based vector curvature sensing capability, achieving a maximum value of 15.59 ± 0.01 nm/[Formula Omitted]. Moreover, this system exhibits characteristics such as low-temperature crosstalk, high stability, and rapid responsiveness, making it well suited for applications in medical device diagnostics, oil and gas pipeline inspection, and structural safety monitoring within the construction industry. This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach-Zehnder interferometer (TW-MZI) with unique refractive index (RI) distribution characteristics proven through experiments. The sensing unit delivers remarkable performance in intensity modulation, reaching a maximum of 18.74 ± 0.01 dB/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. The sensing unit features a nonuniform geometric distribution and utilizes polarization-maintaining optical fibers as its structural material, enabling it to detect the correlation of polarized light and recognize the bending direction. With these advantages, a quasi-parallel distributed curvature sensing system is constructed, integrating a Sagnac interferometer (SI) as the sensing reference arm combined with the TW-MZI sensing unit. Adjusting the interference length and optical power can obtain a first-order harmonic vernier spectrum. Additionally, the envelope differencing technique enhances the interference fringe contrast, reducing the reliance on the monitoring wavelength domain. This combination highlights the composite system's wavelength modulation-based vector curvature sensing capability, achieving a maximum value of 15.59 ± 0.01 nm/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. Moreover, this system exhibits characteristics such as low-temperature crosstalk, high stability, and rapid responsiveness, making it well suited for applications in medical device diagnostics, oil and gas pipeline inspection, and structural safety monitoring within the construction industry. |
Author | Guo, Ying Zhang, Yundong Hasi, Wuliji Yao, Yicun Wang, Fan Han, Xiaopeng Lin, Siyu |
Author_xml | – sequence: 1 givenname: Xiaopeng orcidid: 0009-0007-2743-2638 surname: Han fullname: Han, Xiaopeng email: 21b321002@hit.edu.cn organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Wuliji orcidid: 0000-0003-2424-9225 surname: Hasi fullname: Hasi, Wuliji email: hasiwuliji@hit.edu.cn organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Yicun orcidid: 0000-0001-7345-3404 surname: Yao fullname: Yao, Yicun email: yaoyicun@lcu.edu.cn organization: Key Laboratory of Optical Communications Science and Technology, School of Physical Sciences and Information Engineering, Liaocheng University, Liaocheng, China – sequence: 4 givenname: Ying orcidid: 0000-0003-2981-9020 surname: Guo fullname: Guo, Ying email: guoying@hlju.edu.cn organization: Key Laboratory of Electronics Engineering, School of Electronic Information Engineering, Heilongjiang University, Harbin, China – sequence: 5 givenname: Fan orcidid: 0000-0002-0757-0861 surname: Wang fullname: Wang, Fan email: wangfan@hit.edu.cn organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China – sequence: 6 givenname: Siyu orcidid: 0009-0001-9795-1560 surname: Lin fullname: Lin, Siyu email: linsiyu@hit.edu.cn organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China – sequence: 7 givenname: Yundong orcidid: 0000-0002-4186-3844 surname: Zhang fullname: Zhang, Yundong email: ydzhang@hit.edu.cn organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China |
BookMark | eNp9kE1LAzEQhoNUsK3ePXgIeN6aj918HGtRK1gUql6X7O6spKSbmqSi_nq31oN48BAGMu8zMzwjNOh8BwidUjKhlOiLx9vFhBHGJ5yzXCh1gIa0KGSmhWADNCSEqkznhThCoxhXhBApcjlEbgmuzaYxwrpytnvBz1AnH6xxeLYNbyZtA-AldHHXW37EBGt8aSI02HfY4GX_7QDPwdl37Fv84J0J9tMk67tsYWyX-rdDr20F4RgdtsZFOPmpY_R0ffU4m2d39ze3s-ldVjPNUiYrzhtFdaWKioqC0Jw33BS50q2QTAsqFQA3tZE816alFaHMNK2oGJe8qSkfo_P93E3wr1uIqVz5bej6lSXTnOhCF5L0KbFP1cHHGKAta5u-L0_BWFdSUu7Mlr3Zcme2_DHbg-QPuAl2bcLHf8jZHrEA8CvOlOBE8S9aIoXQ |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_3390_photonics11100911 |
Cites_doi | 10.1109/jlt.2020.2985041 10.1109/tim.2022.3203450 10.1109/jsen.2021.3050702 10.1109/jphot.2022.3193732 10.1109/tim.2022.3199257 10.1109/jsen.2023.3244576 10.1364/oe.26.000544 10.1109/tim.2023.3268466 10.1109/jsen.2022.3213049 10.1038/s41598-022-05313-9 10.1109/jsen.2022.3151839 10.1016/j.measurement.2022.110964 10.1016/j.yofte.2022.102869 10.1016/j.yofte.2023.103355 10.1038/s41598-021-97646-0 10.1109/jsen.2021.3135052 10.1109/jsen.2021.3119967 10.1002/adom.202001693 10.1364/ol.455888 10.1109/jsen.2022.3226743 10.1364/ao.456788 10.1109/lpt.2023.3256487 10.1364/oe.20.015406 10.1109/jphot.2019.2944988 10.1117/12.624251 10.1109/jlt.2022.3195096 10.1109/jlt.2019.2917710 10.1364/ol.38.000531 10.1016/j.optcom.2022.129247 10.1364/oe.23.003010 10.1109/jlt.2022.3184042 10.1016/j.sna.2021.112903 10.1109/jsen.2022.3172148 10.1007/s13320-023-0683-z 10.1109/tim.2023.3234094 10.1109/tim.2022.3214491 10.1364/oe.479812 10.1109/tim.2009.2023147 10.1109/jsen.2022.3224441 10.3390/s23073436 10.1109/jlt.2022.3227186 10.1117/1.oe.58.4.046111 10.1109/jsen.2022.3151738 10.1364/ol.401556 10.3390/s22176604 10.1364/ao.416003 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2023.3324688 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TIM_2023_3324688 10286308 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shanghai Academy of Spaceflight Technology grantid: SAST2019-127 funderid: 10.13039/100009101 – fundername: National Key Research and Development Program of China grantid: 2018YFC1503703-3 funderid: 10.13039/501100012166 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-7b33d819b85b1650143d3a5489f67296178ee3aca7349af1b012adf6b2373dc13 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 08:42:14 EDT 2025 Tue Jul 01 03:07:33 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Aug 27 02:11:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-7b33d819b85b1650143d3a5489f67296178ee3aca7349af1b012adf6b2373dc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2424-9225 0000-0001-7345-3404 0000-0002-0757-0861 0009-0007-2743-2638 0009-0001-9795-1560 0000-0003-2981-9020 0000-0002-4186-3844 |
PQID | 2930959570 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2930959570 crossref_citationtrail_10_1109_TIM_2023_3324688 crossref_primary_10_1109_TIM_2023_3324688 ieee_primary_10286308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 Gang (ref5) 2022; 59 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref40 |
References_xml | – ident: ref17 doi: 10.1109/jlt.2020.2985041 – ident: ref20 doi: 10.1109/tim.2022.3203450 – ident: ref21 doi: 10.1109/jsen.2021.3050702 – ident: ref27 doi: 10.1109/jphot.2022.3193732 – ident: ref46 doi: 10.1109/tim.2022.3199257 – ident: ref7 doi: 10.1109/jsen.2023.3244576 – ident: ref41 doi: 10.1364/oe.26.000544 – ident: ref12 doi: 10.1109/tim.2023.3268466 – ident: ref35 doi: 10.1109/jsen.2022.3213049 – ident: ref15 doi: 10.1038/s41598-022-05313-9 – ident: ref32 doi: 10.1109/jsen.2022.3151839 – ident: ref25 doi: 10.1016/j.measurement.2022.110964 – ident: ref37 doi: 10.1016/j.yofte.2022.102869 – ident: ref40 doi: 10.1016/j.yofte.2023.103355 – ident: ref38 doi: 10.1038/s41598-021-97646-0 – ident: ref39 doi: 10.1109/jsen.2021.3135052 – ident: ref29 doi: 10.1109/jsen.2021.3119967 – ident: ref9 doi: 10.1002/adom.202001693 – volume: 59 issue: 19 year: 2022 ident: ref5 article-title: Research review of rock and soil deformation monitoring based on distributed fiber optic sensing publication-title: Laser Optoelectron. Prog. – ident: ref30 doi: 10.1364/ol.455888 – ident: ref13 doi: 10.1109/jsen.2022.3226743 – ident: ref43 doi: 10.1364/ao.456788 – ident: ref26 doi: 10.1109/lpt.2023.3256487 – ident: ref44 doi: 10.1364/oe.20.015406 – ident: ref19 doi: 10.1109/jphot.2019.2944988 – ident: ref10 doi: 10.1117/12.624251 – ident: ref23 doi: 10.1109/jlt.2022.3195096 – ident: ref8 doi: 10.1109/jlt.2019.2917710 – ident: ref31 doi: 10.1364/ol.38.000531 – ident: ref3 doi: 10.1016/j.optcom.2022.129247 – ident: ref28 doi: 10.1364/oe.23.003010 – ident: ref34 doi: 10.1109/jlt.2022.3184042 – ident: ref22 doi: 10.1016/j.sna.2021.112903 – ident: ref33 doi: 10.1109/jsen.2022.3172148 – ident: ref45 doi: 10.1007/s13320-023-0683-z – ident: ref11 doi: 10.1109/tim.2023.3234094 – ident: ref24 doi: 10.1109/tim.2022.3214491 – ident: ref42 doi: 10.1364/oe.479812 – ident: ref2 doi: 10.1109/tim.2009.2023147 – ident: ref4 doi: 10.1109/jsen.2022.3224441 – ident: ref1 doi: 10.3390/s23073436 – ident: ref14 doi: 10.1109/jlt.2022.3227186 – ident: ref16 doi: 10.1117/1.oe.58.4.046111 – ident: ref18 doi: 10.1109/jsen.2022.3151738 – ident: ref36 doi: 10.1364/ol.401556 – ident: ref6 doi: 10.3390/s22176604 – ident: ref47 doi: 10.1364/ao.416003 |
SSID | ssj0007647 |
Score | 2.4109602 |
Snippet | This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Bending Composite system Construction industry Crosstalk Curvature Gas pipelines harmonic vernier effect Interference fringes Low temperature Mach-Zehnder interferometers Mach–Zehnder interferometer (MZI) Medical devices Monitoring Natural gas Optical fiber polarization Optical fiber sensors Optical fibers Optical interferometry Periodic structures Polarization Polarized light Refractivity Self-assembly Sensitivity Sensors Structural safety twist vector curvature sensing Vectors (mathematics) Wavelength modulation |
Title | Self-Assembling Vectorial Curvature Sensing System Based on a Single Helix of Polarization-Maintaining Fiber |
URI | https://ieeexplore.ieee.org/document/10286308 https://www.proquest.com/docview/2930959570 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEA8qCPpwfh6uX-TBFx_abTdtun1UcVFhRVg9fCv5mIC4dkVbOO6vv5mkq3Li4VtpkxL4JZlfJjO_YexIwkCWkJuoSAobZVKkkRqWRVRokeUq0ZBqcg2Mr-XFXXZ1n993yeo-FwYAfPAZxPTo7_LtzLTkKuuTMZSCUnsXcZ6FZK23bbeQWRDITHEFIy2Y30kmZf_2chxTmfBYIH0IRVbebZAvqvJpJ_bmZbTGrucDC1Elj3Hb6Nj8-Uez8dsjX2c_OqLJT8LM2GALUG-y1Q_yg5ts2Yd_mtctNp3A1EV0AfykKT-d__LOfJyb_Kwlr237AnxCse74LYic81O0f5bPaq74BF9PgaMJe_jNZ47f0Hm5S_CMxuqhbkIdCj6i-JRtdjc6vz27iLo6DJEZlIOGcBMWmYMe5jqVXhHQCoVHndJJ5OaUZAgglFGFyErlUo1GT1kn9UAUwppU_GRL9ayGHcad0EKlzjjS3XOpUjnyMZckYIeZBZH3WH-OTGU6kXKqlTGt_GElKSvEsiIsqw7LHjt-6_EcBDr-03aboPnQLqDSY_tz9KtuCb9WyIPIR5oXye4X3fbYCv49Cw6ZfbbUvLRwgBSl0Yd-av4FmVjhEw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2hIgQc-ChFLBTwgQuHZJN14myOULHaQneFtFvUW-SPsVR1yaI2kRC_nhk7WyoQiFuU2IqlZ3uexzNvAN4onKgaS5tUWeWSQsk80dO6Sioji1JnBnPDroHFUs1Pi49n5dmQrB5yYRAxBJ9hyo_hLt9tbc-usjEbQyU5tfc2Gf6ijOla1xtvpYookZnTGiZisLuVzOrx-niRcqHwVBKBiGVWflmhUFblj704GJjZQ1juhhbjSi7SvjOp_fGbauN_j_0RPBiopngX58ZjuIXtPty_IUC4D3dCAKi9egKbFW58wlfAXw1nqIsvwZ1Ps1Mc9ey37S9RrDjanb5FmXPxniygE9tWaLGi1xsUZMTOv4utF5_5xDykeCYLfd52sRKFmHGEygGczj6sj-bJUIkhsZN60jFy0hF3MNPS5CpoAjqp6bBTe0XsnNMMEaW2upJFrX1uyOxp55WZyEo6m8unsNduW3wGwksjde6tZ-U9n2tdEiPzWYZuWjiU5QjGO2QaO8iUc7WMTROOK1ndEJYNY9kMWI7g7XWPb1Gi4x9tDxiaG-0iKiM43KHfDIv4qiEmxF7Sssqe_6Xba7g7Xy9OmpPj5acXcI_-VET3zCHsdZc9viTC0plXYZr-BIpY5GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembling+Vectorial+Curvature+Sensing+System+Based+on+a+Single+Helix+of+Polarization-Maintaining+Fiber&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Han%2C+Xiaopeng&rft.au=Hasi%2C+Wuliji&rft.au=Yao%2C+Yicun&rft.au=Guo%2C+Ying&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2023.3324688&rft.externalDocID=10286308 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |