Self-Assembling Vectorial Curvature Sensing System Based on a Single Helix of Polarization-Maintaining Fiber

This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach-Zehnder interferometer (TW-MZI) with unique refractive index (RI) distr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 11
Main Authors Han, Xiaopeng, Hasi, Wuliji, Yao, Yicun, Guo, Ying, Wang, Fan, Lin, Siyu, Zhang, Yundong
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2023.3324688

Cover

Abstract This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach-Zehnder interferometer (TW-MZI) with unique refractive index (RI) distribution characteristics proven through experiments. The sensing unit delivers remarkable performance in intensity modulation, reaching a maximum of 18.74 ± 0.01 dB/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. The sensing unit features a nonuniform geometric distribution and utilizes polarization-maintaining optical fibers as its structural material, enabling it to detect the correlation of polarized light and recognize the bending direction. With these advantages, a quasi-parallel distributed curvature sensing system is constructed, integrating a Sagnac interferometer (SI) as the sensing reference arm combined with the TW-MZI sensing unit. Adjusting the interference length and optical power can obtain a first-order harmonic vernier spectrum. Additionally, the envelope differencing technique enhances the interference fringe contrast, reducing the reliance on the monitoring wavelength domain. This combination highlights the composite system's wavelength modulation-based vector curvature sensing capability, achieving a maximum value of 15.59 ± 0.01 nm/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. Moreover, this system exhibits characteristics such as low-temperature crosstalk, high stability, and rapid responsiveness, making it well suited for applications in medical device diagnostics, oil and gas pipeline inspection, and structural safety monitoring within the construction industry.
AbstractList This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach–Zehnder interferometer (TW-MZI) with unique refractive index (RI) distribution characteristics proven through experiments. The sensing unit delivers remarkable performance in intensity modulation, reaching a maximum of 18.74 ± 0.01 dB/[Formula Omitted]. The sensing unit features a nonuniform geometric distribution and utilizes polarization-maintaining optical fibers as its structural material, enabling it to detect the correlation of polarized light and recognize the bending direction. With these advantages, a quasi-parallel distributed curvature sensing system is constructed, integrating a Sagnac interferometer (SI) as the sensing reference arm combined with the TW-MZI sensing unit. Adjusting the interference length and optical power can obtain a first-order harmonic vernier spectrum. Additionally, the envelope differencing technique enhances the interference fringe contrast, reducing the reliance on the monitoring wavelength domain. This combination highlights the composite system’s wavelength modulation-based vector curvature sensing capability, achieving a maximum value of 15.59 ± 0.01 nm/[Formula Omitted]. Moreover, this system exhibits characteristics such as low-temperature crosstalk, high stability, and rapid responsiveness, making it well suited for applications in medical device diagnostics, oil and gas pipeline inspection, and structural safety monitoring within the construction industry.
This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental sensing unit of the system depends on an offset rotation twisted Mach-Zehnder interferometer (TW-MZI) with unique refractive index (RI) distribution characteristics proven through experiments. The sensing unit delivers remarkable performance in intensity modulation, reaching a maximum of 18.74 ± 0.01 dB/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. The sensing unit features a nonuniform geometric distribution and utilizes polarization-maintaining optical fibers as its structural material, enabling it to detect the correlation of polarized light and recognize the bending direction. With these advantages, a quasi-parallel distributed curvature sensing system is constructed, integrating a Sagnac interferometer (SI) as the sensing reference arm combined with the TW-MZI sensing unit. Adjusting the interference length and optical power can obtain a first-order harmonic vernier spectrum. Additionally, the envelope differencing technique enhances the interference fringe contrast, reducing the reliance on the monitoring wavelength domain. This combination highlights the composite system's wavelength modulation-based vector curvature sensing capability, achieving a maximum value of 15.59 ± 0.01 nm/<inline-formula> <tex-math notation="LaTeX">\text{m}^{-1} </tex-math></inline-formula>. Moreover, this system exhibits characteristics such as low-temperature crosstalk, high stability, and rapid responsiveness, making it well suited for applications in medical device diagnostics, oil and gas pipeline inspection, and structural safety monitoring within the construction industry.
Author Guo, Ying
Zhang, Yundong
Hasi, Wuliji
Yao, Yicun
Wang, Fan
Han, Xiaopeng
Lin, Siyu
Author_xml – sequence: 1
  givenname: Xiaopeng
  orcidid: 0009-0007-2743-2638
  surname: Han
  fullname: Han, Xiaopeng
  email: 21b321002@hit.edu.cn
  organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Wuliji
  orcidid: 0000-0003-2424-9225
  surname: Hasi
  fullname: Hasi, Wuliji
  email: hasiwuliji@hit.edu.cn
  organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Yicun
  orcidid: 0000-0001-7345-3404
  surname: Yao
  fullname: Yao, Yicun
  email: yaoyicun@lcu.edu.cn
  organization: Key Laboratory of Optical Communications Science and Technology, School of Physical Sciences and Information Engineering, Liaocheng University, Liaocheng, China
– sequence: 4
  givenname: Ying
  orcidid: 0000-0003-2981-9020
  surname: Guo
  fullname: Guo, Ying
  email: guoying@hlju.edu.cn
  organization: Key Laboratory of Electronics Engineering, School of Electronic Information Engineering, Heilongjiang University, Harbin, China
– sequence: 5
  givenname: Fan
  orcidid: 0000-0002-0757-0861
  surname: Wang
  fullname: Wang, Fan
  email: wangfan@hit.edu.cn
  organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
– sequence: 6
  givenname: Siyu
  orcidid: 0009-0001-9795-1560
  surname: Lin
  fullname: Lin, Siyu
  email: linsiyu@hit.edu.cn
  organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
– sequence: 7
  givenname: Yundong
  orcidid: 0000-0002-4186-3844
  surname: Zhang
  fullname: Zhang, Yundong
  email: ydzhang@hit.edu.cn
  organization: National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
BookMark eNp9kE1LAzEQhoNUsK3ePXgIeN6aj918HGtRK1gUql6X7O6spKSbmqSi_nq31oN48BAGMu8zMzwjNOh8BwidUjKhlOiLx9vFhBHGJ5yzXCh1gIa0KGSmhWADNCSEqkznhThCoxhXhBApcjlEbgmuzaYxwrpytnvBz1AnH6xxeLYNbyZtA-AldHHXW37EBGt8aSI02HfY4GX_7QDPwdl37Fv84J0J9tMk67tsYWyX-rdDr20F4RgdtsZFOPmpY_R0ffU4m2d39ze3s-ldVjPNUiYrzhtFdaWKioqC0Jw33BS50q2QTAsqFQA3tZE816alFaHMNK2oGJe8qSkfo_P93E3wr1uIqVz5bej6lSXTnOhCF5L0KbFP1cHHGKAta5u-L0_BWFdSUu7Mlr3Zcme2_DHbg-QPuAl2bcLHf8jZHrEA8CvOlOBE8S9aIoXQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_3390_photonics11100911
Cites_doi 10.1109/jlt.2020.2985041
10.1109/tim.2022.3203450
10.1109/jsen.2021.3050702
10.1109/jphot.2022.3193732
10.1109/tim.2022.3199257
10.1109/jsen.2023.3244576
10.1364/oe.26.000544
10.1109/tim.2023.3268466
10.1109/jsen.2022.3213049
10.1038/s41598-022-05313-9
10.1109/jsen.2022.3151839
10.1016/j.measurement.2022.110964
10.1016/j.yofte.2022.102869
10.1016/j.yofte.2023.103355
10.1038/s41598-021-97646-0
10.1109/jsen.2021.3135052
10.1109/jsen.2021.3119967
10.1002/adom.202001693
10.1364/ol.455888
10.1109/jsen.2022.3226743
10.1364/ao.456788
10.1109/lpt.2023.3256487
10.1364/oe.20.015406
10.1109/jphot.2019.2944988
10.1117/12.624251
10.1109/jlt.2022.3195096
10.1109/jlt.2019.2917710
10.1364/ol.38.000531
10.1016/j.optcom.2022.129247
10.1364/oe.23.003010
10.1109/jlt.2022.3184042
10.1016/j.sna.2021.112903
10.1109/jsen.2022.3172148
10.1007/s13320-023-0683-z
10.1109/tim.2023.3234094
10.1109/tim.2022.3214491
10.1364/oe.479812
10.1109/tim.2009.2023147
10.1109/jsen.2022.3224441
10.3390/s23073436
10.1109/jlt.2022.3227186
10.1117/1.oe.58.4.046111
10.1109/jsen.2022.3151738
10.1364/ol.401556
10.3390/s22176604
10.1364/ao.416003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3324688
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2023_3324688
10286308
Genre orig-research
GrantInformation_xml – fundername: Shanghai Academy of Spaceflight Technology
  grantid: SAST2019-127
  funderid: 10.13039/100009101
– fundername: National Key Research and Development Program of China
  grantid: 2018YFC1503703-3
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-7b33d819b85b1650143d3a5489f67296178ee3aca7349af1b012adf6b2373dc13
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 08:42:14 EDT 2025
Tue Jul 01 03:07:33 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Aug 27 02:11:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7b33d819b85b1650143d3a5489f67296178ee3aca7349af1b012adf6b2373dc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2424-9225
0000-0001-7345-3404
0000-0002-0757-0861
0009-0007-2743-2638
0009-0001-9795-1560
0000-0003-2981-9020
0000-0002-4186-3844
PQID 2930959570
PQPubID 85462
PageCount 11
ParticipantIDs proquest_journals_2930959570
crossref_citationtrail_10_1109_TIM_2023_3324688
crossref_primary_10_1109_TIM_2023_3324688
ieee_primary_10286308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
Gang (ref5) 2022; 59
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref17
  doi: 10.1109/jlt.2020.2985041
– ident: ref20
  doi: 10.1109/tim.2022.3203450
– ident: ref21
  doi: 10.1109/jsen.2021.3050702
– ident: ref27
  doi: 10.1109/jphot.2022.3193732
– ident: ref46
  doi: 10.1109/tim.2022.3199257
– ident: ref7
  doi: 10.1109/jsen.2023.3244576
– ident: ref41
  doi: 10.1364/oe.26.000544
– ident: ref12
  doi: 10.1109/tim.2023.3268466
– ident: ref35
  doi: 10.1109/jsen.2022.3213049
– ident: ref15
  doi: 10.1038/s41598-022-05313-9
– ident: ref32
  doi: 10.1109/jsen.2022.3151839
– ident: ref25
  doi: 10.1016/j.measurement.2022.110964
– ident: ref37
  doi: 10.1016/j.yofte.2022.102869
– ident: ref40
  doi: 10.1016/j.yofte.2023.103355
– ident: ref38
  doi: 10.1038/s41598-021-97646-0
– ident: ref39
  doi: 10.1109/jsen.2021.3135052
– ident: ref29
  doi: 10.1109/jsen.2021.3119967
– ident: ref9
  doi: 10.1002/adom.202001693
– volume: 59
  issue: 19
  year: 2022
  ident: ref5
  article-title: Research review of rock and soil deformation monitoring based on distributed fiber optic sensing
  publication-title: Laser Optoelectron. Prog.
– ident: ref30
  doi: 10.1364/ol.455888
– ident: ref13
  doi: 10.1109/jsen.2022.3226743
– ident: ref43
  doi: 10.1364/ao.456788
– ident: ref26
  doi: 10.1109/lpt.2023.3256487
– ident: ref44
  doi: 10.1364/oe.20.015406
– ident: ref19
  doi: 10.1109/jphot.2019.2944988
– ident: ref10
  doi: 10.1117/12.624251
– ident: ref23
  doi: 10.1109/jlt.2022.3195096
– ident: ref8
  doi: 10.1109/jlt.2019.2917710
– ident: ref31
  doi: 10.1364/ol.38.000531
– ident: ref3
  doi: 10.1016/j.optcom.2022.129247
– ident: ref28
  doi: 10.1364/oe.23.003010
– ident: ref34
  doi: 10.1109/jlt.2022.3184042
– ident: ref22
  doi: 10.1016/j.sna.2021.112903
– ident: ref33
  doi: 10.1109/jsen.2022.3172148
– ident: ref45
  doi: 10.1007/s13320-023-0683-z
– ident: ref11
  doi: 10.1109/tim.2023.3234094
– ident: ref24
  doi: 10.1109/tim.2022.3214491
– ident: ref42
  doi: 10.1364/oe.479812
– ident: ref2
  doi: 10.1109/tim.2009.2023147
– ident: ref4
  doi: 10.1109/jsen.2022.3224441
– ident: ref1
  doi: 10.3390/s23073436
– ident: ref14
  doi: 10.1109/jlt.2022.3227186
– ident: ref16
  doi: 10.1117/1.oe.58.4.046111
– ident: ref18
  doi: 10.1109/jsen.2022.3151738
– ident: ref36
  doi: 10.1364/ol.401556
– ident: ref6
  doi: 10.3390/s22176604
– ident: ref47
  doi: 10.1364/ao.416003
SSID ssj0007647
Score 2.4109602
Snippet This article presents a novel composite vector bending sensing system capable of switching freely between wavelength and intensity modulation. The fundamental...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bending
Composite system
Construction industry
Crosstalk
Curvature
Gas pipelines
harmonic vernier effect
Interference fringes
Low temperature
Mach-Zehnder interferometers
Mach–Zehnder interferometer (MZI)
Medical devices
Monitoring
Natural gas
Optical fiber polarization
Optical fiber sensors
Optical fibers
Optical interferometry
Periodic structures
Polarization
Polarized light
Refractivity
Self-assembly
Sensitivity
Sensors
Structural safety
twist
vector curvature sensing
Vectors (mathematics)
Wavelength modulation
Title Self-Assembling Vectorial Curvature Sensing System Based on a Single Helix of Polarization-Maintaining Fiber
URI https://ieeexplore.ieee.org/document/10286308
https://www.proquest.com/docview/2930959570
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEA8qCPpwfh6uX-TBFx_abTdtun1UcVFhRVg9fCv5mIC4dkVbOO6vv5mkq3Li4VtpkxL4JZlfJjO_YexIwkCWkJuoSAobZVKkkRqWRVRokeUq0ZBqcg2Mr-XFXXZ1n993yeo-FwYAfPAZxPTo7_LtzLTkKuuTMZSCUnsXcZ6FZK23bbeQWRDITHEFIy2Y30kmZf_2chxTmfBYIH0IRVbebZAvqvJpJ_bmZbTGrucDC1Elj3Hb6Nj8-Uez8dsjX2c_OqLJT8LM2GALUG-y1Q_yg5ts2Yd_mtctNp3A1EV0AfykKT-d__LOfJyb_Kwlr237AnxCse74LYic81O0f5bPaq74BF9PgaMJe_jNZ47f0Hm5S_CMxuqhbkIdCj6i-JRtdjc6vz27iLo6DJEZlIOGcBMWmYMe5jqVXhHQCoVHndJJ5OaUZAgglFGFyErlUo1GT1kn9UAUwppU_GRL9ayGHcad0EKlzjjS3XOpUjnyMZckYIeZBZH3WH-OTGU6kXKqlTGt_GElKSvEsiIsqw7LHjt-6_EcBDr-03aboPnQLqDSY_tz9KtuCb9WyIPIR5oXye4X3fbYCv49Cw6ZfbbUvLRwgBSl0Yd-av4FmVjhEw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2hIgQc-ChFLBTwgQuHZJN14myOULHaQneFtFvUW-SPsVR1yaI2kRC_nhk7WyoQiFuU2IqlZ3uexzNvAN4onKgaS5tUWeWSQsk80dO6Sioji1JnBnPDroHFUs1Pi49n5dmQrB5yYRAxBJ9hyo_hLt9tbc-usjEbQyU5tfc2Gf6ijOla1xtvpYookZnTGiZisLuVzOrx-niRcqHwVBKBiGVWflmhUFblj704GJjZQ1juhhbjSi7SvjOp_fGbauN_j_0RPBiopngX58ZjuIXtPty_IUC4D3dCAKi9egKbFW58wlfAXw1nqIsvwZ1Ps1Mc9ey37S9RrDjanb5FmXPxniygE9tWaLGi1xsUZMTOv4utF5_5xDykeCYLfd52sRKFmHGEygGczj6sj-bJUIkhsZN60jFy0hF3MNPS5CpoAjqp6bBTe0XsnNMMEaW2upJFrX1uyOxp55WZyEo6m8unsNduW3wGwksjde6tZ-U9n2tdEiPzWYZuWjiU5QjGO2QaO8iUc7WMTROOK1ndEJYNY9kMWI7g7XWPb1Gi4x9tDxiaG-0iKiM43KHfDIv4qiEmxF7Sssqe_6Xba7g7Xy9OmpPj5acXcI_-VET3zCHsdZc9viTC0plXYZr-BIpY5GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembling+Vectorial+Curvature+Sensing+System+Based+on+a+Single+Helix+of+Polarization-Maintaining+Fiber&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Han%2C+Xiaopeng&rft.au=Hasi%2C+Wuliji&rft.au=Yao%2C+Yicun&rft.au=Guo%2C+Ying&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2023.3324688&rft.externalDocID=10286308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon