Community Detection With Contextual Multilayer Networks

In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a high dimensional covariate matrix, all encoding the same community structure among <inline-formula> <...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 69; no. 5; pp. 3203 - 3239
Main Authors Ma, Zongming, Nandy, Sagnik
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a high dimensional covariate matrix, all encoding the same community structure among <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> subjects. In the asymptotic regime where the number of features <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> and the number of subjects <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> grow proportionally, we derive an exact formula of asymptotic minimum mean square error (MMSE) for estimating the common community structure in the balanced two block case using an orchestrated approximate message passing algorithm. The formula implies the necessity of integrating information from multiple data sources. Consequently, it induces a sharp threshold of phase transition between the regime where detection (i.e., weak recovery) is possible and the regime where no procedure performs better than random guess. The asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than the phase transition threshold. In the special case of <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>, our asymptotic MMSE formula complements the pioneering work Deshpande et al., (2018) which found the sharp threshold when <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>. A practical variant of the theoretically justified algorithm with spectral initialization leads to an estimator whose empirical MSEs closely approximate theoretical predictions over simulated examples.
AbstractList In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a high dimensional covariate matrix, all encoding the same community structure among <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> subjects. In the asymptotic regime where the number of features <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> and the number of subjects <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> grow proportionally, we derive an exact formula of asymptotic minimum mean square error (MMSE) for estimating the common community structure in the balanced two block case using an orchestrated approximate message passing algorithm. The formula implies the necessity of integrating information from multiple data sources. Consequently, it induces a sharp threshold of phase transition between the regime where detection (i.e., weak recovery) is possible and the regime where no procedure performs better than random guess. The asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than the phase transition threshold. In the special case of <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>, our asymptotic MMSE formula complements the pioneering work Deshpande et al., (2018) which found the sharp threshold when <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>. A practical variant of the theoretically justified algorithm with spectral initialization leads to an estimator whose empirical MSEs closely approximate theoretical predictions over simulated examples.
In this paper, we study community detection when we observe [Formula Omitted] sparse networks and a high dimensional covariate matrix, all encoding the same community structure among [Formula Omitted] subjects. In the asymptotic regime where the number of features [Formula Omitted] and the number of subjects [Formula Omitted] grow proportionally, we derive an exact formula of asymptotic minimum mean square error (MMSE) for estimating the common community structure in the balanced two block case using an orchestrated approximate message passing algorithm. The formula implies the necessity of integrating information from multiple data sources. Consequently, it induces a sharp threshold of phase transition between the regime where detection (i.e., weak recovery) is possible and the regime where no procedure performs better than random guess. The asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than the phase transition threshold. In the special case of [Formula Omitted], our asymptotic MMSE formula complements the pioneering work Deshpande et al., (2018) which found the sharp threshold when [Formula Omitted]. A practical variant of the theoretically justified algorithm with spectral initialization leads to an estimator whose empirical MSEs closely approximate theoretical predictions over simulated examples.
Author Nandy, Sagnik
Ma, Zongming
Author_xml – sequence: 1
  givenname: Zongming
  surname: Ma
  fullname: Ma, Zongming
  organization: Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Sagnik
  orcidid: 0000-0002-7665-3214
  surname: Nandy
  fullname: Nandy, Sagnik
  email: sagnik@wharton.upenn.edu
  organization: Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
BookMark eNp9kD1LAzEYgINUsK3uDg4Hzlfzndwo51eh6lJxDLmYYOr1UpMc2n_vlXYQB6fwwvO8L3kmYNSFzgJwjuAMIVhdLefLGYaYzAgmkjB8BMaIMVFWnNERGEOIZFlRKk_AJKXVMFKG8BiIOqzXfefztrix2ZrsQ1e8-vxe1KHL9jv3ui0e-zb7Vm9tLJ5s_grxI52CY6fbZM8O7xS83N0u64dy8Xw_r68XpcEVzqWgjcC6Ikxr7VzTCMGwE5oxUhmnuUHacSgQd9JyyRtO9JuREnJpBGG2kWQKLvd7NzF89jZltQp97IaTCktIEeKYwoHie8rEkFK0Thmf9e4vOWrfKgTVLpIaIqldJHWINIjwj7iJfq3j9j_lYq94a-0vfGAYpuQHj05z9w
CODEN IETTAW
CitedBy_id crossref_primary_10_1007_s13278_024_01266_1
crossref_primary_10_1007_s10479_024_06426_2
crossref_primary_10_1109_TIT_2024_3486685
crossref_primary_10_1007_s10489_024_05424_y
crossref_primary_10_1080_01621459_2024_2308848
crossref_primary_10_1080_08839514_2024_2427545
crossref_primary_10_1088_1367_2630_ada573
crossref_primary_10_1109_TIT_2024_3449321
crossref_primary_10_1093_imaiai_iaae019
crossref_primary_10_3390_math12040619
crossref_primary_10_1109_TIT_2024_3471953
crossref_primary_10_1108_JM2_11_2023_0268
crossref_primary_10_1093_biomet_asae011
crossref_primary_10_1016_j_osnem_2025_100312
Cites_doi 10.1214/19-STS715
10.1017/CBO9780511801334
10.1109/TIT.2005.844072
10.1214/19-STS736
10.1214/16-EJS1211
10.1214/18-AOS1797
10.1214/20-AOS1958
10.1214/aos/1009210544
10.1109/JSAIT.2020.3040598
10.1109/TIT.2010.2094817
10.1214/15-AOS1428
10.1109/ISIT.2019.8849735
10.1016/j.jmva.2005.08.003
10.1007/s00220-013-1862-3
10.1109/ISIT.2014.6875223
10.1109/ISIT44484.2020.9173970
10.5802/ahl.146
10.1093/biomet/asx008
10.1093/imaiai/iay021
10.1109/ITW.2006.1633802
10.1093/imaiai/iaw017
10.1007/s00440-018-0879-0
10.1016/0378-8733(83)90021-7
10.1214/009117905000000233
10.1093/imaiai/iat004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2023.3238352
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 3239
ExternalDocumentID 10_1109_TIT_2023_3238352
10023524
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-74b72a935aaaffbb7752f7a5539cfa6c1af60716f8e686b63adc88068c735eb83
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Jun 29 13:47:57 EDT 2025
Tue Jul 01 02:16:22 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Aug 27 02:14:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-74b72a935aaaffbb7752f7a5539cfa6c1af60716f8e686b63adc88068c735eb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7665-3214
PQID 2804116240
PQPubID 36024
PageCount 37
ParticipantIDs ieee_primary_10023524
crossref_primary_10_1109_TIT_2023_3238352
proquest_journals_2804116240
crossref_citationtrail_10_1109_TIT_2023_3238352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref15
ref14
ref31
ma (ref36) 2021
ref30
ref32
ref2
ref17
ref16
ref38
ref18
lu (ref8) 2020
miolane (ref37) 2017
nandy (ref33) 2022
abbe (ref10) 2020
ref24
ref23
ref26
ref25
abbe (ref3) 2017; 18
ref20
rivas (ref7) 2010; 6
ref21
ref28
ref27
han (ref19) 2014
ref29
ref9
ref4
deshpande (ref1) 2018; 31
vershynin (ref39) 2010
wang (ref34) 2022
ref6
ref5
jog (ref12) 2015
paul (ref22) 2007; 17
yan (ref11) 2020; 116
References_xml – ident: ref5
  doi: 10.1214/19-STS715
– year: 2021
  ident: ref36
  article-title: Community detection with contextual multilayer networks
  publication-title: arXiv 2104 02960
– ident: ref38
  doi: 10.1017/CBO9780511801334
– volume: 17
  start-page: 1617
  year: 2007
  ident: ref22
  article-title: Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
  publication-title: Statist Sinica
– ident: ref26
  doi: 10.1109/TIT.2005.844072
– year: 2022
  ident: ref34
  article-title: Universality of approximate message passing algorithms and tensor networks
  publication-title: arXiv 2206 13037
– volume: 6
  year: 2010
  ident: ref7
  article-title: Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks
  publication-title: PLoS Comput Biol
– year: 2014
  ident: ref19
  article-title: Consistent estimation of dynamic and multi-layer block models
  publication-title: arXiv 1410 8597
– ident: ref4
  doi: 10.1214/19-STS736
– ident: ref13
  doi: 10.1214/16-EJS1211
– year: 2015
  ident: ref12
  article-title: Information-theoretic bounds for exact recovery in weighted stochastic block models using the Renyi divergence
  publication-title: arXiv 1509 06418
– ident: ref14
  doi: 10.1214/18-AOS1797
– year: 2020
  ident: ref8
  article-title: Contextual stochastic block model: Sharp thresholds and contiguity
  publication-title: arXiv 2011 09841
– year: 2022
  ident: ref33
  publication-title: Spectral methods for community detection in contextual stochastic block models
– ident: ref29
  doi: 10.1214/20-AOS1958
– ident: ref6
  doi: 10.1214/aos/1009210544
– ident: ref16
  doi: 10.1109/JSAIT.2020.3040598
– ident: ref27
  doi: 10.1109/TIT.2010.2094817
– ident: ref35
  doi: 10.1214/15-AOS1428
– ident: ref30
  doi: 10.1109/ISIT.2019.8849735
– ident: ref21
  doi: 10.1016/j.jmva.2005.08.003
– year: 2017
  ident: ref37
  article-title: Fundamental limits of low-rank matrix estimation: The non-symmetric case
  publication-title: arXiv 1702 00473
– ident: ref32
  doi: 10.1007/s00220-013-1862-3
– ident: ref25
  doi: 10.1109/ISIT.2014.6875223
– volume: 31
  start-page: 8581
  year: 2018
  ident: ref1
  article-title: Contextual stochastic block models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1109/ISIT44484.2020.9173970
– ident: ref18
  doi: 10.5802/ahl.146
– ident: ref9
  doi: 10.1093/biomet/asx008
– ident: ref31
  doi: 10.1093/imaiai/iay021
– year: 2020
  ident: ref10
  article-title: An ?p theory of PCA and spectral clustering
  publication-title: arXiv 2006 14062
– ident: ref24
  doi: 10.1109/ITW.2006.1633802
– ident: ref23
  doi: 10.1093/imaiai/iaw017
– volume: 116
  start-page: 1
  year: 2020
  ident: ref11
  article-title: Covariate regularized community detection in sparse graphs
  publication-title: J Amer Stat Assoc
– ident: ref17
  doi: 10.1007/s00440-018-0879-0
– ident: ref2
  doi: 10.1016/0378-8733(83)90021-7
– volume: 18
  start-page: 6446
  year: 2017
  ident: ref3
  article-title: Community detection and stochastic block models: Recent developments
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.1214/009117905000000233
– ident: ref28
  doi: 10.1093/imaiai/iat004
– year: 2010
  ident: ref39
  article-title: Introduction to the non-asymptotic analysis of random matrices
  publication-title: arXiv 1011 3027
SSID ssj0014512
Score 2.4954967
Snippet In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a...
In this paper, we study community detection when we observe [Formula Omitted] sparse networks and a high dimensional covariate matrix, all encoding the same...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3203
SubjectTerms Algorithms
approximate message passing
Asymptotic methods
Asymptotic properties
Clustering
contextual SBM
Estimation
integrative data analysis
Mathematical models
Message passing
multilayer network
Multilayers
Mutual information
Nonhomogeneous media
phase transition
Phase transitions
Signal to noise ratio
Social networking (online)
Soft sensors
stochastic block model
Title Community Detection With Contextual Multilayer Networks
URI https://ieeexplore.ieee.org/document/10023524
https://www.proquest.com/docview/2804116240
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nfTgdE6cTunBi4d2bdImzVHUoYI7bbhbSbIExbGJ60D9682PdgxF8VZKEkLee30vfe_7HsA5wVxQiXUoYiTDVMcsZFNEQm1j60xoSV1tzsOQ3I7T-0k2qcDqDgujlHLFZyqyjy6XP13Ilf1V1k8cOwtKG9AwS3iw1jplkGaJpwZPjAWbS0edk4xZf3Q3imyb8AgbB-UwRhs-yDVV-fEldu5l0IJhvTFfVfISrUoRyc9vnI3_3vke7FaBZnDpNWMfttS8Da26iUNQ2XQbdjYYCQ-AVoCR8iO4VqUr05oHj8_lU-BorN4t2iRwoN0ZN8F6MPRV5MsOjAc3o6vbsOqtEErEUBnSVFDEGc4451oLQWmGNOVZhpnUnMiEa8s8R3SuSE6EEelUGlMnuaQ4UyLHh9CcL-bqCAIeq1yZdxpznDJuAgDOcqUs64tARhW60K9Pu5AV8bjtfzEr3AUkZoWRT2HlU1Ty6cLFesarJ934Y2zHHvfGOH_SXejVEi0qs1wWyLItJcREMce_TDuBbbu6L2nsQbN8W6lTE3aU4syp2xd0adLl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBQimiPDOwMCRN7NiOR8RD5dWpFd0i27UFoioIUgn49dhOgioQiC2KbMXy3fnOufu-AziiWEimsAlljFSYmpiHfIxoaFxsTaRRzNfm3PZpb5hejcioAqt7LIzW2hef6cg9-lz--EnN3K-ybuLZWVC6CEvW8ZOkhGt9JQ1SkpTk4Im1YXvtqLOSMe8OLgeRaxQeYeuiPMpozgv5tio_zmLvYC6a0K-XVtaVPEazQkbq4xtr47_Xvg5rVagZnJS6sQELetqCZt3GIaisugWrc5yEm8AqyEjxHpzpwhdqTYO7h-I-8ERWbw5vEnjY7kTYcD3ol3Xkr20YXpwPTnth1V0hVIijImSpZEhwTIQQxkjJGEGGCUIwV0ZQlQjjuOeoyTTNqLRCHStr7DRTDBMtM7wFjenTVG9DIGKdafvOYIFTLmwIIHimteN9kcgqQwe69W7nqqIedx0wJrm_gsQ8t_LJnXzySj4dOP6a8VzSbvwxtu22e25cudMd2KslmleG-Zojx7eUUBvH7Pwy7RCWe4Pbm_zmsn-9CyvuS2WB4x40ipeZ3rdBSCEPvOp9AqDV1i4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+Detection+With+Contextual+Multilayer+Networks&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Ma%2C+Zongming&rft.au=Nandy%2C+Sagnik&rft.date=2023-05-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=5&rft.spage=3203&rft.epage=3239&rft_id=info:doi/10.1109%2FTIT.2023.3238352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2023_3238352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon