Community Detection With Contextual Multilayer Networks
In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a high dimensional covariate matrix, all encoding the same community structure among <inline-formula> <...
Saved in:
Published in | IEEE transactions on information theory Vol. 69; no. 5; pp. 3203 - 3239 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a high dimensional covariate matrix, all encoding the same community structure among <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> subjects. In the asymptotic regime where the number of features <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> and the number of subjects <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> grow proportionally, we derive an exact formula of asymptotic minimum mean square error (MMSE) for estimating the common community structure in the balanced two block case using an orchestrated approximate message passing algorithm. The formula implies the necessity of integrating information from multiple data sources. Consequently, it induces a sharp threshold of phase transition between the regime where detection (i.e., weak recovery) is possible and the regime where no procedure performs better than random guess. The asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than the phase transition threshold. In the special case of <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>, our asymptotic MMSE formula complements the pioneering work Deshpande et al., (2018) which found the sharp threshold when <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>. A practical variant of the theoretically justified algorithm with spectral initialization leads to an estimator whose empirical MSEs closely approximate theoretical predictions over simulated examples. |
---|---|
AbstractList | In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a high dimensional covariate matrix, all encoding the same community structure among <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> subjects. In the asymptotic regime where the number of features <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> and the number of subjects <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> grow proportionally, we derive an exact formula of asymptotic minimum mean square error (MMSE) for estimating the common community structure in the balanced two block case using an orchestrated approximate message passing algorithm. The formula implies the necessity of integrating information from multiple data sources. Consequently, it induces a sharp threshold of phase transition between the regime where detection (i.e., weak recovery) is possible and the regime where no procedure performs better than random guess. The asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than the phase transition threshold. In the special case of <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>, our asymptotic MMSE formula complements the pioneering work Deshpande et al., (2018) which found the sharp threshold when <inline-formula> <tex-math notation="LaTeX">m=1 </tex-math></inline-formula>. A practical variant of the theoretically justified algorithm with spectral initialization leads to an estimator whose empirical MSEs closely approximate theoretical predictions over simulated examples. In this paper, we study community detection when we observe [Formula Omitted] sparse networks and a high dimensional covariate matrix, all encoding the same community structure among [Formula Omitted] subjects. In the asymptotic regime where the number of features [Formula Omitted] and the number of subjects [Formula Omitted] grow proportionally, we derive an exact formula of asymptotic minimum mean square error (MMSE) for estimating the common community structure in the balanced two block case using an orchestrated approximate message passing algorithm. The formula implies the necessity of integrating information from multiple data sources. Consequently, it induces a sharp threshold of phase transition between the regime where detection (i.e., weak recovery) is possible and the regime where no procedure performs better than random guess. The asymptotic MMSE depends on the covariate signal-to-noise ratio in a more subtle way than the phase transition threshold. In the special case of [Formula Omitted], our asymptotic MMSE formula complements the pioneering work Deshpande et al., (2018) which found the sharp threshold when [Formula Omitted]. A practical variant of the theoretically justified algorithm with spectral initialization leads to an estimator whose empirical MSEs closely approximate theoretical predictions over simulated examples. |
Author | Nandy, Sagnik Ma, Zongming |
Author_xml | – sequence: 1 givenname: Zongming surname: Ma fullname: Ma, Zongming organization: Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA – sequence: 2 givenname: Sagnik orcidid: 0000-0002-7665-3214 surname: Nandy fullname: Nandy, Sagnik email: sagnik@wharton.upenn.edu organization: Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA |
BookMark | eNp9kD1LAzEYgINUsK3uDg4Hzlfzndwo51eh6lJxDLmYYOr1UpMc2n_vlXYQB6fwwvO8L3kmYNSFzgJwjuAMIVhdLefLGYaYzAgmkjB8BMaIMVFWnNERGEOIZFlRKk_AJKXVMFKG8BiIOqzXfefztrix2ZrsQ1e8-vxe1KHL9jv3ui0e-zb7Vm9tLJ5s_grxI52CY6fbZM8O7xS83N0u64dy8Xw_r68XpcEVzqWgjcC6Ikxr7VzTCMGwE5oxUhmnuUHacSgQd9JyyRtO9JuREnJpBGG2kWQKLvd7NzF89jZltQp97IaTCktIEeKYwoHie8rEkFK0Thmf9e4vOWrfKgTVLpIaIqldJHWINIjwj7iJfq3j9j_lYq94a-0vfGAYpuQHj05z9w |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1007_s13278_024_01266_1 crossref_primary_10_1007_s10479_024_06426_2 crossref_primary_10_1109_TIT_2024_3486685 crossref_primary_10_1007_s10489_024_05424_y crossref_primary_10_1080_01621459_2024_2308848 crossref_primary_10_1080_08839514_2024_2427545 crossref_primary_10_1088_1367_2630_ada573 crossref_primary_10_1109_TIT_2024_3449321 crossref_primary_10_1093_imaiai_iaae019 crossref_primary_10_3390_math12040619 crossref_primary_10_1109_TIT_2024_3471953 crossref_primary_10_1108_JM2_11_2023_0268 crossref_primary_10_1093_biomet_asae011 crossref_primary_10_1016_j_osnem_2025_100312 |
Cites_doi | 10.1214/19-STS715 10.1017/CBO9780511801334 10.1109/TIT.2005.844072 10.1214/19-STS736 10.1214/16-EJS1211 10.1214/18-AOS1797 10.1214/20-AOS1958 10.1214/aos/1009210544 10.1109/JSAIT.2020.3040598 10.1109/TIT.2010.2094817 10.1214/15-AOS1428 10.1109/ISIT.2019.8849735 10.1016/j.jmva.2005.08.003 10.1007/s00220-013-1862-3 10.1109/ISIT.2014.6875223 10.1109/ISIT44484.2020.9173970 10.5802/ahl.146 10.1093/biomet/asx008 10.1093/imaiai/iay021 10.1109/ITW.2006.1633802 10.1093/imaiai/iaw017 10.1007/s00440-018-0879-0 10.1016/0378-8733(83)90021-7 10.1214/009117905000000233 10.1093/imaiai/iat004 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2023.3238352 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 3239 |
ExternalDocumentID | 10_1109_TIT_2023_3238352 10023524 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-74b72a935aaaffbb7752f7a5539cfa6c1af60716f8e686b63adc88068c735eb83 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Sun Jun 29 13:47:57 EDT 2025 Tue Jul 01 02:16:22 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Aug 27 02:14:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-74b72a935aaaffbb7752f7a5539cfa6c1af60716f8e686b63adc88068c735eb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7665-3214 |
PQID | 2804116240 |
PQPubID | 36024 |
PageCount | 37 |
ParticipantIDs | ieee_primary_10023524 crossref_primary_10_1109_TIT_2023_3238352 proquest_journals_2804116240 crossref_citationtrail_10_1109_TIT_2023_3238352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref15 ref14 ref31 ma (ref36) 2021 ref30 ref32 ref2 ref17 ref16 ref38 ref18 lu (ref8) 2020 miolane (ref37) 2017 nandy (ref33) 2022 abbe (ref10) 2020 ref24 ref23 ref26 ref25 abbe (ref3) 2017; 18 ref20 rivas (ref7) 2010; 6 ref21 ref28 ref27 han (ref19) 2014 ref29 ref9 ref4 deshpande (ref1) 2018; 31 vershynin (ref39) 2010 wang (ref34) 2022 ref6 ref5 jog (ref12) 2015 paul (ref22) 2007; 17 yan (ref11) 2020; 116 |
References_xml | – ident: ref5 doi: 10.1214/19-STS715 – year: 2021 ident: ref36 article-title: Community detection with contextual multilayer networks publication-title: arXiv 2104 02960 – ident: ref38 doi: 10.1017/CBO9780511801334 – volume: 17 start-page: 1617 year: 2007 ident: ref22 article-title: Asymptotics of sample eigenstructure for a large dimensional spiked covariance model publication-title: Statist Sinica – ident: ref26 doi: 10.1109/TIT.2005.844072 – year: 2022 ident: ref34 article-title: Universality of approximate message passing algorithms and tensor networks publication-title: arXiv 2206 13037 – volume: 6 year: 2010 ident: ref7 article-title: Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks publication-title: PLoS Comput Biol – year: 2014 ident: ref19 article-title: Consistent estimation of dynamic and multi-layer block models publication-title: arXiv 1410 8597 – ident: ref4 doi: 10.1214/19-STS736 – ident: ref13 doi: 10.1214/16-EJS1211 – year: 2015 ident: ref12 article-title: Information-theoretic bounds for exact recovery in weighted stochastic block models using the Renyi divergence publication-title: arXiv 1509 06418 – ident: ref14 doi: 10.1214/18-AOS1797 – year: 2020 ident: ref8 article-title: Contextual stochastic block model: Sharp thresholds and contiguity publication-title: arXiv 2011 09841 – year: 2022 ident: ref33 publication-title: Spectral methods for community detection in contextual stochastic block models – ident: ref29 doi: 10.1214/20-AOS1958 – ident: ref6 doi: 10.1214/aos/1009210544 – ident: ref16 doi: 10.1109/JSAIT.2020.3040598 – ident: ref27 doi: 10.1109/TIT.2010.2094817 – ident: ref35 doi: 10.1214/15-AOS1428 – ident: ref30 doi: 10.1109/ISIT.2019.8849735 – ident: ref21 doi: 10.1016/j.jmva.2005.08.003 – year: 2017 ident: ref37 article-title: Fundamental limits of low-rank matrix estimation: The non-symmetric case publication-title: arXiv 1702 00473 – ident: ref32 doi: 10.1007/s00220-013-1862-3 – ident: ref25 doi: 10.1109/ISIT.2014.6875223 – volume: 31 start-page: 8581 year: 2018 ident: ref1 article-title: Contextual stochastic block models publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1109/ISIT44484.2020.9173970 – ident: ref18 doi: 10.5802/ahl.146 – ident: ref9 doi: 10.1093/biomet/asx008 – ident: ref31 doi: 10.1093/imaiai/iay021 – year: 2020 ident: ref10 article-title: An ?p theory of PCA and spectral clustering publication-title: arXiv 2006 14062 – ident: ref24 doi: 10.1109/ITW.2006.1633802 – ident: ref23 doi: 10.1093/imaiai/iaw017 – volume: 116 start-page: 1 year: 2020 ident: ref11 article-title: Covariate regularized community detection in sparse graphs publication-title: J Amer Stat Assoc – ident: ref17 doi: 10.1007/s00440-018-0879-0 – ident: ref2 doi: 10.1016/0378-8733(83)90021-7 – volume: 18 start-page: 6446 year: 2017 ident: ref3 article-title: Community detection and stochastic block models: Recent developments publication-title: J Mach Learn Res – ident: ref20 doi: 10.1214/009117905000000233 – ident: ref28 doi: 10.1093/imaiai/iat004 – year: 2010 ident: ref39 article-title: Introduction to the non-asymptotic analysis of random matrices publication-title: arXiv 1011 3027 |
SSID | ssj0014512 |
Score | 2.4954967 |
Snippet | In this paper, we study community detection when we observe <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> sparse networks and a... In this paper, we study community detection when we observe [Formula Omitted] sparse networks and a high dimensional covariate matrix, all encoding the same... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3203 |
SubjectTerms | Algorithms approximate message passing Asymptotic methods Asymptotic properties Clustering contextual SBM Estimation integrative data analysis Mathematical models Message passing multilayer network Multilayers Mutual information Nonhomogeneous media phase transition Phase transitions Signal to noise ratio Social networking (online) Soft sensors stochastic block model |
Title | Community Detection With Contextual Multilayer Networks |
URI | https://ieeexplore.ieee.org/document/10023524 https://www.proquest.com/docview/2804116240 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nfTgdE6cTunBi4d2bdImzVHUoYI7bbhbSbIExbGJ60D9682PdgxF8VZKEkLee30vfe_7HsA5wVxQiXUoYiTDVMcsZFNEQm1j60xoSV1tzsOQ3I7T-0k2qcDqDgujlHLFZyqyjy6XP13Ilf1V1k8cOwtKG9AwS3iw1jplkGaJpwZPjAWbS0edk4xZf3Q3imyb8AgbB-UwRhs-yDVV-fEldu5l0IJhvTFfVfISrUoRyc9vnI3_3vke7FaBZnDpNWMfttS8Da26iUNQ2XQbdjYYCQ-AVoCR8iO4VqUr05oHj8_lU-BorN4t2iRwoN0ZN8F6MPRV5MsOjAc3o6vbsOqtEErEUBnSVFDEGc4451oLQWmGNOVZhpnUnMiEa8s8R3SuSE6EEelUGlMnuaQ4UyLHh9CcL-bqCAIeq1yZdxpznDJuAgDOcqUs64tARhW60K9Pu5AV8bjtfzEr3AUkZoWRT2HlU1Ty6cLFesarJ934Y2zHHvfGOH_SXejVEi0qs1wWyLItJcREMce_TDuBbbu6L2nsQbN8W6lTE3aU4syp2xd0adLl |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBQimiPDOwMCRN7NiOR8RD5dWpFd0i27UFoioIUgn49dhOgioQiC2KbMXy3fnOufu-AziiWEimsAlljFSYmpiHfIxoaFxsTaRRzNfm3PZpb5hejcioAqt7LIzW2hef6cg9-lz--EnN3K-ybuLZWVC6CEvW8ZOkhGt9JQ1SkpTk4Im1YXvtqLOSMe8OLgeRaxQeYeuiPMpozgv5tio_zmLvYC6a0K-XVtaVPEazQkbq4xtr47_Xvg5rVagZnJS6sQELetqCZt3GIaisugWrc5yEm8AqyEjxHpzpwhdqTYO7h-I-8ERWbw5vEnjY7kTYcD3ol3Xkr20YXpwPTnth1V0hVIijImSpZEhwTIQQxkjJGEGGCUIwV0ZQlQjjuOeoyTTNqLRCHStr7DRTDBMtM7wFjenTVG9DIGKdafvOYIFTLmwIIHimteN9kcgqQwe69W7nqqIedx0wJrm_gsQ8t_LJnXzySj4dOP6a8VzSbvwxtu22e25cudMd2KslmleG-Zojx7eUUBvH7Pwy7RCWe4Pbm_zmsn-9CyvuS2WB4x40ipeZ3rdBSCEPvOp9AqDV1i4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+Detection+With+Contextual+Multilayer+Networks&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Ma%2C+Zongming&rft.au=Nandy%2C+Sagnik&rft.date=2023-05-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=5&rft.spage=3203&rft.epage=3239&rft_id=info:doi/10.1109%2FTIT.2023.3238352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2023_3238352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |