Strain engineering in 2D hBN and graphene with evaporated thin film stressors
We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-depe...
Saved in:
Published in | Applied physics letters Vol. 123; no. 4 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
24.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer. |
---|---|
AbstractList | We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer. |
Author | Wenner, Eric Wu, Stephen M. Dey, Aditya Azizimanesh, Ahmad Hou, Wenhui Chowdhury, Shoieb A. Askari, Hesam Peña, Tara |
Author_xml | – sequence: 1 givenname: Ahmad surname: Azizimanesh fullname: Azizimanesh, Ahmad organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 2 givenname: Aditya surname: Dey fullname: Dey, Aditya organization: Department of Mechanical Engineering, University of Rochester – sequence: 3 givenname: Shoieb A. surname: Chowdhury fullname: Chowdhury, Shoieb A. organization: Department of Mechanical Engineering, University of Rochester – sequence: 4 givenname: Eric surname: Wenner fullname: Wenner, Eric organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 5 givenname: Wenhui surname: Hou fullname: Hou, Wenhui organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 6 givenname: Tara surname: Peña fullname: Peña, Tara organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 7 givenname: Hesam surname: Askari fullname: Askari, Hesam organization: Department of Mechanical Engineering, University of Rochester – sequence: 8 givenname: Stephen M. surname: Wu fullname: Wu, Stephen M. organization: 3Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA |
BookMark | eNp9kEtLAzEUhYNUsK0u_AcBVwrT5tHMTJZan1B1oa6HdOamk9ImY5Iq_ntTWjciri7n8p1zuWeAetZZQOiUkhElOR-LEaGCSy4OUJ-Sosg4pWUP9QkhPMuloEdoEMIyScE476PHl-iVsRjswlgAb-wCJ8mucXv1hJVt8MKrrgUL-NPEFsOH6pxXERoc2wRqs1rjED2E4Hw4RodarQKc7OcQvd3evE7vs9nz3cP0cpbVTLKY5U1DlZozICxXKk-7XMybCSlIOS-IVpqCLLhkAEwXLAdBBa3TM5QwxnUp-RCd7XI77943EGK1dBtv08mKlRNGpZyIMlHnO6r2LgQPuuq8WSv_VVFSbduqRLVvK7HjX2xtoorG2W0_qz8dFztH-CH_if8GtsJ5EQ |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1007_s00894_024_06041_9 crossref_primary_10_1021_acsami_4c22462 crossref_primary_10_1016_j_rinp_2025_108211 crossref_primary_10_1002_sus2_236 crossref_primary_10_1002_adma_202417428 crossref_primary_10_1002_qua_27484 crossref_primary_10_1063_5_0197942 crossref_primary_10_1142_S0217979225501085 crossref_primary_10_1007_s00894_024_06121_w crossref_primary_10_1007_s10825_024_02222_0 crossref_primary_10_1039_D4LF00239C crossref_primary_10_1021_acsami_3c19101 crossref_primary_10_1021_acsanm_4c00412 crossref_primary_10_1016_j_commatsci_2024_113273 |
Cites_doi | 10.1088/0957-4484/23/49/495713 10.1088/0957-4484/22/50/505702 10.1039/C5TC01354B 10.1021/nn4047474 10.1002/jrs.2321 10.1088/1367-2630/17/3/035008 10.1038/ncomms2022 10.1063/5.0049446 10.1039/C5NR07755A 10.1021/nn203917d 10.1088/0034-4885/76/5/056503 10.1088/2053-1583/ac08f2 10.1063/1.3552685 10.1002/anie.200901678 10.1002/adfm.201301999 10.1038/s41467-022-30762-1 10.1021/nn800459e 10.1021/acsnano.0c05936 10.1021/nl501638a 10.1088/1361-6528/aa6133 10.1007/s40820-020-00464-8 10.1021/acs.nanolett.5b01689 10.1063/1.1819976 10.1103/PhysRevB.81.081407 10.1088/2053-1583/ac0c2a 10.1021/nl402875m 10.1109/TED.2006.872912 10.1109/TED.2004.836648 10.1021/nl4014748 10.1038/ncomms15815 10.1021/nl5016552 10.1115/1.4051306 10.1038/srep18219 10.1063/5.0075917 10.1038/ncomms8381 10.1021/acs.nanolett.5b04670 10.1021/acs.nanolett.6b02615 10.1021/jp501734s 10.1021/acsnano.5b00335 10.1021/acs.jpcc.8b09087 10.1021/cr900070d 10.1088/2053-1583/3/3/035010 10.1021/acs.nanolett.7b00730 10.1021/acsnano.7b01306 10.1103/PhysRevB.97.241414 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0153935 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0153935 apl |
GrantInformation_xml | – fundername: National Science Foundation grantid: ECCS-1942815 funderid: 10.13039/100000001 – fundername: National Science Foundation grantid: DMR-1719875 funderid: 10.13039/100000001 – fundername: National Science Foundation grantid: OMA-1936250 funderid: 10.13039/100000001 – fundername: National Science Foundation grantid: DGE-1939268 funderid: 10.13039/100000001 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-6dd1aab2e026aa629265bd40708b70faf1e97392ee2f726e5151c07710223f893 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 05:10:04 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Tue Jul 01 01:08:32 EDT 2025 Fri Jun 21 00:10:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-6dd1aab2e026aa629265bd40708b70faf1e97392ee2f726e5151c07710223f893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6079-3354 0000-0002-5041-8662 0000-0001-5562-1363 0000-0002-8249-8185 0000-0002-8404-9543 0000-0002-4051-5987 |
PQID | 2842199458 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0153935 scitation_primary_10_1063_5_0153935 crossref_primary_10_1063_5_0153935 proquest_journals_2842199458 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230724 2023-07-24 |
PublicationDateYYYYMMDD | 2023-07-24 |
PublicationDate_xml | – month: 07 year: 2023 text: 20230724 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Androulidakis, Koukaras, Poss, Papagelis, Galiotis, Tawfick (c34) 2018 Castellanos-Gomez, Roldán, Cappelluti, Buscema, Guinea, van der Zant, Steele (c6) 2013 Larentis, Fallahazad, Movva, Kim, Rai, Taniguchi, Watanabe, Banerjee, Tutuc (c24) 2017 Falin, Cai, Santos, Scullion, Qian, Zhang, Yang, Huang, Watanabe, Taniguchi, Barnett, Chen, Ruoff, Li (c45) 2017 Zhang, Ran, Shi, Fang, Wu, Liu, Zheng, Yang, Liu, Wang, Huang, Li, Huang (c37) 2017 Androulidakis, Koukaras, Parthenios, Kalosakas, Papagelis, Galiotis (c35) 2015 Si, Sun, Liu (c30) 2016 Sinha, Takabayashi, Shinohara, Kitaura (c25) 2016 Wang, Gao, Ni, He, Guo, Yang, Cong, Yu (c38) 2012 Peña, Chowdhury, Azizimanesh, Sewaket, Askari, Wu (c17) 2021 Lee, Ahn, Shim, Lee, Ryu (c40) 2012 Wickramaratne, Weston, van de Walle (c21) 2018 Allen, Tung, Kaner (c26) 2010 Gill, Hinnefeld, Zhu, Swanson, Li, Mason (c12) 2015 Lu, Shen, Zhang, Liu, Guo, Cai, Chen, Xu, Zheng, Xu, Chen, Cai, Kang (c39) 2022 Azizimanesh, Peña, Sewaket, Hou, Wu (c18) 2021 Chowdhury, Inzani, Penã, Dey, Wu, Griffin, Askari (c20) 2022 Jiang, Huang, Zhu (c46) 2014 Pace, Martini, Convertino, Keum, Forti, Pezzini, Fabbri, Mišeikis, Coletti (c23) 2021 Quereda, San-Jose, Parente, Vaquero-Garzon, Molina-Mendoza, Agraït, Rubio-Bollinger, Guinea, Roldán, Castellanos-Gomez (c8) 2016 Yang, Lee, Ghosh, Tang, Sankaran, Zorman, Feng (c7) 2017 Lee, Fitzgerald, Bulsara, Currie, Lochtefeld (c15) 2005 Srivastava, Mehta, Yu, Schadler, Koratkar (c44) 2011 Desai, Seol, Kang, Fang, Battaglia, Kapadia, Ager, Guo, Javey (c1) 2014 Nimbalkar, Kim (c28) 2020 Guo, Lu, Wang, Wu, Zeng (c3) 2014 Lloyd, Liu, Christopher, Cantley, Wadehra, Kim, Goldberg, Swan, Bunch (c9) 2016 McCann, Koshino (c41) 2013 Wang, Wang, Cao, Feng, Lan (c42) 2009 Ge, Wan, Yang, Yao (c4) 2015 Wang, Li, Marsden, Bissett, Young (c32) 2021 Boldrin, Scarpa, Chowdhury, Adhikari (c22) 2011 Choi, Jhi, Son (c31) 2010 Manzeli, Allain, Ghadimi, Kis (c2) 2015 Reserbat-Plantey, Kalita, Han, Ferlazzo, Autier-Laurent, Komatsu, Li, Weil, Ralko, Marty, Guéron (c10) 2014 Li, Contryman, Qian, Ardakani, Gong, Wang, Weisse, Lee, Zhao, Ajayan, Li, Manoharan, Zheng (c11) 2015 Chidambaram, Bowen, Chakravarthi, Machala, Wise (c16) 2006 Peña, Azizimanesh, Qiu, Mukherjee, Vamivakas, Wu (c19) 2022 Thompson, Armstrong, Auth, Alavi, Buehler, Chau, Cea, Ghani, Glass, Hoffman, Jan, Kenyon, Klaus, Kuhn, Ma, Mcintyre, Mistry, Murthy, Obradovic, Nagisetty, Nguyen, Sivakumar, Shaheed, Shifren, Tufts, Tyagi, Bohr, El-Mansy (c13) 2004 Cao, Wang, Cao, Yuan (c29) 2015 Rao, Sood, Subrahmanyam, Govindaraj (c27) 2009 Li, Wu, Huang, Lu, Yang, Lu, Xiong, Zhang (c36) 2013 Conley, Wang, Ziegler, Haglund, Pantelides, Bolotin (c5) 2013 Hoyt, Nayfeh, Eguchi, Aberg, Xia, Drake, Fitzgerald, Antoniadis (c14) Ni, Yu, Lu, Wang, Feng, Shen (c33) 2008 Gong, Young, Kinloch, Riaz, Jalil, Novoselov (c43) 2012 (2024072600020430300_c37) 2017; 28 (2024072600020430300_c39) 2022; 13 (2024072600020430300_c43) 2012; 6 (2024072600020430300_c36) 2013; 7 (2024072600020430300_c40) 2012; 3 (2024072600020430300_c15) 2005; 97 (2024072600020430300_c34) 2018; 97 (2024072600020430300_c46) 2014; 24 (2024072600020430300_c6) 2013; 13 (2024072600020430300_c18) 2021; 118 (2024072600020430300_c44) 2011; 98 (2024072600020430300_c13) 2004; 51 (2024072600020430300_c14); 2002 (2024072600020430300_c19) 2022; 131 (2024072600020430300_c22) 2011; 22 (2024072600020430300_c26) 2010; 110 (2024072600020430300_c42) 2009; 40 (2024072600020430300_c8) 2016; 16 (2024072600020430300_c10) 2014; 14 (2024072600020430300_c45) 2017; 8 (2024072600020430300_c41) 2013; 76 (2024072600020430300_c20) 2022; 144 (2024072600020430300_c21) 2018; 122 (2024072600020430300_c30) 2016; 8 (2024072600020430300_c29) 2015; 3 (2024072600020430300_c38) 2012; 23 (2024072600020430300_c5) 2013; 13 (2024072600020430300_c17) 2021; 8 (2024072600020430300_c32) 2021; 8 (2024072600020430300_c33) 2008; 2 (2024072600020430300_c7) 2017; 17 (2024072600020430300_c24) 2017; 11 (2024072600020430300_c9) 2016; 16 (2024072600020430300_c28) 2020; 12 (2024072600020430300_c11) 2015; 6 (2024072600020430300_c2) 2015; 15 (2024072600020430300_c27) 2009; 48 (2024072600020430300_c25) 2016; 3 (2024072600020430300_c31) 2010; 81 (2024072600020430300_c3) 2014; 118 (2024072600020430300_c16) 2006; 53 (2024072600020430300_c4) 2015; 17 (2024072600020430300_c12) 2015; 9 (2024072600020430300_c23) 2021; 15 (2024072600020430300_c35) 2015; 5 (2024072600020430300_c1) 2014; 14 |
References_xml | – start-page: 944 year: 2006 ident: c16 publication-title: IEEE Trans. Electron Devices – start-page: 126 year: 2020 ident: c28 publication-title: Nanomicro Lett. – start-page: 3626 year: 2013 ident: c5 publication-title: Nano Lett. – start-page: 024304 year: 2022 ident: c19 publication-title: J. Appl. Phys. – start-page: 3207 year: 2016 ident: c30 publication-title: Nanoscale – start-page: 18219 year: 2015 ident: c35 publication-title: Sci. Rep. – start-page: 132 year: 2010 ident: c26 publication-title: Chem. Rev. – start-page: 035058 year: 2021 ident: c32 publication-title: 2D Mater. – start-page: 2931 year: 2016 ident: c8 publication-title: Nano Lett. – start-page: 23 ident: c14 publication-title: Int. Electron Devices Meet. – start-page: 4832 year: 2017 ident: c24 publication-title: ACS Nano – start-page: 6589 year: 2015 ident: c29 publication-title: J. Mater. Chem. C – start-page: 7752 year: 2009 ident: c27 publication-title: Angew. Chem. Int. Ed. – start-page: 056503 year: 2013 ident: c41 publication-title: Rep. Prog. Phys. – start-page: 3109 year: 2022 ident: c39 publication-title: Nat. Commun. – start-page: 011101 year: 2005 ident: c15 publication-title: J. Appl. Phys. – start-page: 1791 year: 2009 ident: c42 publication-title: J. Raman Spectrosc. – start-page: 5836 year: 2016 ident: c9 publication-title: Nano Lett. – start-page: 213104 year: 2021 ident: c18 publication-title: Appl. Phys. Lett. – start-page: 063102 year: 2011 ident: c44 publication-title: Appl. Phys. Lett. – start-page: 081407 year: 2010 ident: c31 publication-title: Phys. Rev. B – start-page: 7381 year: 2015 ident: c11 publication-title: Nat. Commun. – start-page: 241414 year: 2018 ident: c34 publication-title: Phys. Rev. B – start-page: 4568 year: 2017 ident: c7 publication-title: Nano Lett. – start-page: 2086 year: 2012 ident: c43 publication-title: ACS Nano – start-page: 5330 year: 2015 ident: c2 publication-title: Nano Lett. – start-page: 495713 year: 2012 ident: c38 publication-title: Nanotechnology – start-page: 5361 year: 2013 ident: c6 publication-title: Nano Lett. – start-page: 7242 year: 2014 ident: c3 publication-title: J. Phys. Chem. C – start-page: 2301 year: 2008 ident: c33 publication-title: ACS Nano – start-page: 011006 year: 2022 ident: c20 publication-title: J. Eng. Mat. Technol. – start-page: 045001 year: 2021 ident: c17 publication-title: 2D Mater. – start-page: 035008 year: 2015 ident: c4 publication-title: New J. Phys. – start-page: 5044 year: 2014 ident: c10 publication-title: Nano Lett. – start-page: 15815 year: 2017 ident: c45 publication-title: Nat. Commun. – start-page: 10344 year: 2013 ident: c36 publication-title: ACS Nano – start-page: 164001 year: 2017 ident: c37 publication-title: Nanotechnology – start-page: 4592 year: 2014 ident: c1 publication-title: Nano Lett. – start-page: 5799 year: 2015 ident: c12 publication-title: ACS Nano – start-page: 1024 year: 2012 ident: c40 publication-title: Nat. Commun. – start-page: 4213 year: 2021 ident: c23 publication-title: ACS Nano – start-page: 25524 year: 2018 ident: c21 publication-title: J. Phys. Chem. C – start-page: 035010 year: 2016 ident: c25 publication-title: 2D Mater. – start-page: 505702 year: 2011 ident: c22 publication-title: Nanotechnology – start-page: 1790 year: 2004 ident: c13 publication-title: IEEE Trans. Electron Devices – start-page: 396 year: 2014 ident: c46 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 495713 year: 2012 ident: 2024072600020430300_c38 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/49/495713 – volume: 22 start-page: 505702 year: 2011 ident: 2024072600020430300_c22 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/50/505702 – volume: 3 start-page: 6589 year: 2015 ident: 2024072600020430300_c29 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01354B – volume: 7 start-page: 10344 year: 2013 ident: 2024072600020430300_c36 publication-title: ACS Nano doi: 10.1021/nn4047474 – volume: 40 start-page: 1791 year: 2009 ident: 2024072600020430300_c42 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2321 – volume: 17 start-page: 035008 year: 2015 ident: 2024072600020430300_c4 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/035008 – volume: 2002 start-page: 23 ident: 2024072600020430300_c14 publication-title: Int. Electron Devices Meet. – volume: 3 start-page: 1024 year: 2012 ident: 2024072600020430300_c40 publication-title: Nat. Commun. doi: 10.1038/ncomms2022 – volume: 118 start-page: 213104 year: 2021 ident: 2024072600020430300_c18 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0049446 – volume: 8 start-page: 3207 year: 2016 ident: 2024072600020430300_c30 publication-title: Nanoscale doi: 10.1039/C5NR07755A – volume: 6 start-page: 2086 year: 2012 ident: 2024072600020430300_c43 publication-title: ACS Nano doi: 10.1021/nn203917d – volume: 76 start-page: 056503 year: 2013 ident: 2024072600020430300_c41 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/5/056503 – volume: 8 start-page: 045001 year: 2021 ident: 2024072600020430300_c17 publication-title: 2D Mater. doi: 10.1088/2053-1583/ac08f2 – volume: 98 start-page: 063102 year: 2011 ident: 2024072600020430300_c44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3552685 – volume: 48 start-page: 7752 year: 2009 ident: 2024072600020430300_c27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901678 – volume: 24 start-page: 396 year: 2014 ident: 2024072600020430300_c46 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301999 – volume: 13 start-page: 3109 year: 2022 ident: 2024072600020430300_c39 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30762-1 – volume: 2 start-page: 2301 year: 2008 ident: 2024072600020430300_c33 publication-title: ACS Nano doi: 10.1021/nn800459e – volume: 15 start-page: 4213 year: 2021 ident: 2024072600020430300_c23 publication-title: ACS Nano doi: 10.1021/acsnano.0c05936 – volume: 14 start-page: 4592 year: 2014 ident: 2024072600020430300_c1 publication-title: Nano Lett. doi: 10.1021/nl501638a – volume: 28 start-page: 164001 year: 2017 ident: 2024072600020430300_c37 publication-title: Nanotechnology doi: 10.1088/1361-6528/aa6133 – volume: 12 start-page: 126 year: 2020 ident: 2024072600020430300_c28 publication-title: Nanomicro Lett. doi: 10.1007/s40820-020-00464-8 – volume: 15 start-page: 5330 year: 2015 ident: 2024072600020430300_c2 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01689 – volume: 97 start-page: 011101 year: 2005 ident: 2024072600020430300_c15 publication-title: J. Appl. Phys. doi: 10.1063/1.1819976 – volume: 81 start-page: 081407 year: 2010 ident: 2024072600020430300_c31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.081407 – volume: 8 start-page: 035058 year: 2021 ident: 2024072600020430300_c32 publication-title: 2D Mater. doi: 10.1088/2053-1583/ac0c2a – volume: 13 start-page: 5361 year: 2013 ident: 2024072600020430300_c6 publication-title: Nano Lett. doi: 10.1021/nl402875m – volume: 53 start-page: 944 year: 2006 ident: 2024072600020430300_c16 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2006.872912 – volume: 51 start-page: 1790 year: 2004 ident: 2024072600020430300_c13 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2004.836648 – volume: 13 start-page: 3626 year: 2013 ident: 2024072600020430300_c5 publication-title: Nano Lett. doi: 10.1021/nl4014748 – volume: 8 start-page: 15815 year: 2017 ident: 2024072600020430300_c45 publication-title: Nat. Commun. doi: 10.1038/ncomms15815 – volume: 14 start-page: 5044 year: 2014 ident: 2024072600020430300_c10 publication-title: Nano Lett. doi: 10.1021/nl5016552 – volume: 144 start-page: 011006 year: 2022 ident: 2024072600020430300_c20 publication-title: J. Eng. Mat. Technol. doi: 10.1115/1.4051306 – volume: 5 start-page: 18219 year: 2015 ident: 2024072600020430300_c35 publication-title: Sci. Rep. doi: 10.1038/srep18219 – volume: 131 start-page: 024304 year: 2022 ident: 2024072600020430300_c19 publication-title: J. Appl. Phys. doi: 10.1063/5.0075917 – volume: 6 start-page: 7381 year: 2015 ident: 2024072600020430300_c11 publication-title: Nat. Commun. doi: 10.1038/ncomms8381 – volume: 16 start-page: 2931 year: 2016 ident: 2024072600020430300_c8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04670 – volume: 16 start-page: 5836 year: 2016 ident: 2024072600020430300_c9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02615 – volume: 118 start-page: 7242 year: 2014 ident: 2024072600020430300_c3 publication-title: J. Phys. Chem. C doi: 10.1021/jp501734s – volume: 9 start-page: 5799 year: 2015 ident: 2024072600020430300_c12 publication-title: ACS Nano doi: 10.1021/acsnano.5b00335 – volume: 122 start-page: 25524 year: 2018 ident: 2024072600020430300_c21 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b09087 – volume: 110 start-page: 132 year: 2010 ident: 2024072600020430300_c26 publication-title: Chem. Rev. doi: 10.1021/cr900070d – volume: 3 start-page: 035010 year: 2016 ident: 2024072600020430300_c25 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/3/035010 – volume: 17 start-page: 4568 year: 2017 ident: 2024072600020430300_c7 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00730 – volume: 11 start-page: 4832 year: 2017 ident: 2024072600020430300_c24 publication-title: ACS Nano doi: 10.1021/acsnano.7b01306 – volume: 97 start-page: 241414 year: 2018 ident: 2024072600020430300_c34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.241414 |
SSID | ssj0005233 |
Score | 2.4912758 |
Snippet | We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Boron nitride Capping Flakes Graphene Heterostructures Monolayers Multilayers Raman spectroscopy Strain analysis Thin films Two dimensional analysis Two dimensional materials |
Title | Strain engineering in 2D hBN and graphene with evaporated thin film stressors |
URI | http://dx.doi.org/10.1063/5.0153935 https://www.proquest.com/docview/2842199458 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdy9j2MNpupVm7Ibo9DIJbR7Zk-9FbNspYyiAt9M3IloQDuYw2bSG_vkfWxd6aQrcXkwjFTnS-HH3nKoQ-ZWVF01CmgYgjBQaKqkAPhjTgNFSwn8ZJJnSB8-iMnV7EPy7pZZvE3lSXLMvjarW2ruR_pApjIFddJfsPkvU3hQF4DfKFK0gYrk-S8bg54KEv256C2n1Bhv36y1kTFWjaUYM2M-5WecubrsVS50zCRDWZzmyxyMIGdVw_WstNjd_juj9tin48_c5Xk9VkxkFLNk6ZvJ5x4Rmx8YHnAuh9mwVUL-5EbUP243oxkWU_P26jQu78L62Vu34IEmkHpyl_9ro1Clhm28dKo07DRHtBrYZ1-tYUGFtgxWv1OBAnWHzdUZXq2uF2s3IB-r_2MJ9Z2MTUWVTQwn70GdoiYEGACtzKh6Of407-TxS54xT113Ztp1h04p_7J1lpLZAXQE9MpkSHjJxvo9fWisC5gcQO2pDzXfSq01tyFz3_ZWT3Bo0MTHAHJhjekiEGmGCACXYwwRomuIUJ1jDBGibYw-Qtuvj-7fzraWBP0QgqkpFlwIQYcF4SCdY25wzGGC0F2PFhWiah4mogswRYspREJYRJILiDCuSmXQGRAjq7hzbni7ncR5gLzmUcVrRiJE44qHLFKh33TWEkZmEPfXbLVbgF0r9wWjwQSw8d-am_TV-VdZMO3ZoX9m93XQCfIrqhNU176KOXw-M3efeUJx2gly2mD9Hm8upGvge2uSw_WNzcA0u8fAk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+engineering+in+2D+hBN+and+graphene+with+evaporated+thin+film+stressors&rft.jtitle=Applied+physics+letters&rft.au=Azizimanesh%2C+Ahmad&rft.au=Dey%2C+Aditya&rft.au=Chowdhury%2C+Shoieb+A.&rft.au=Wenner%2C+Eric&rft.date=2023-07-24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=4&rft_id=info:doi/10.1063%2F5.0153935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0153935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |