Strain engineering in 2D hBN and graphene with evaporated thin film stressors

We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-depe...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 123; no. 4
Main Authors Azizimanesh, Ahmad, Dey, Aditya, Chowdhury, Shoieb A., Wenner, Eric, Hou, Wenhui, Peña, Tara, Askari, Hesam, Wu, Stephen M.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 24.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer.
AbstractList We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer.
Author Wenner, Eric
Wu, Stephen M.
Dey, Aditya
Azizimanesh, Ahmad
Hou, Wenhui
Chowdhury, Shoieb A.
Askari, Hesam
Peña, Tara
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Azizimanesh
  fullname: Azizimanesh, Ahmad
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 2
  givenname: Aditya
  surname: Dey
  fullname: Dey, Aditya
  organization: Department of Mechanical Engineering, University of Rochester
– sequence: 3
  givenname: Shoieb A.
  surname: Chowdhury
  fullname: Chowdhury, Shoieb A.
  organization: Department of Mechanical Engineering, University of Rochester
– sequence: 4
  givenname: Eric
  surname: Wenner
  fullname: Wenner, Eric
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 5
  givenname: Wenhui
  surname: Hou
  fullname: Hou, Wenhui
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 6
  givenname: Tara
  surname: Peña
  fullname: Peña, Tara
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 7
  givenname: Hesam
  surname: Askari
  fullname: Askari, Hesam
  organization: Department of Mechanical Engineering, University of Rochester
– sequence: 8
  givenname: Stephen M.
  surname: Wu
  fullname: Wu, Stephen M.
  organization: 3Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
BookMark eNp9kEtLAzEUhYNUsK0u_AcBVwrT5tHMTJZan1B1oa6HdOamk9ImY5Iq_ntTWjciri7n8p1zuWeAetZZQOiUkhElOR-LEaGCSy4OUJ-Sosg4pWUP9QkhPMuloEdoEMIyScE476PHl-iVsRjswlgAb-wCJ8mucXv1hJVt8MKrrgUL-NPEFsOH6pxXERoc2wRqs1rjED2E4Hw4RodarQKc7OcQvd3evE7vs9nz3cP0cpbVTLKY5U1DlZozICxXKk-7XMybCSlIOS-IVpqCLLhkAEwXLAdBBa3TM5QwxnUp-RCd7XI77943EGK1dBtv08mKlRNGpZyIMlHnO6r2LgQPuuq8WSv_VVFSbduqRLVvK7HjX2xtoorG2W0_qz8dFztH-CH_if8GtsJ5EQ
CODEN APPLAB
CitedBy_id crossref_primary_10_1007_s00894_024_06041_9
crossref_primary_10_1021_acsami_4c22462
crossref_primary_10_1016_j_rinp_2025_108211
crossref_primary_10_1002_sus2_236
crossref_primary_10_1002_adma_202417428
crossref_primary_10_1002_qua_27484
crossref_primary_10_1063_5_0197942
crossref_primary_10_1142_S0217979225501085
crossref_primary_10_1007_s00894_024_06121_w
crossref_primary_10_1007_s10825_024_02222_0
crossref_primary_10_1039_D4LF00239C
crossref_primary_10_1021_acsami_3c19101
crossref_primary_10_1021_acsanm_4c00412
crossref_primary_10_1016_j_commatsci_2024_113273
Cites_doi 10.1088/0957-4484/23/49/495713
10.1088/0957-4484/22/50/505702
10.1039/C5TC01354B
10.1021/nn4047474
10.1002/jrs.2321
10.1088/1367-2630/17/3/035008
10.1038/ncomms2022
10.1063/5.0049446
10.1039/C5NR07755A
10.1021/nn203917d
10.1088/0034-4885/76/5/056503
10.1088/2053-1583/ac08f2
10.1063/1.3552685
10.1002/anie.200901678
10.1002/adfm.201301999
10.1038/s41467-022-30762-1
10.1021/nn800459e
10.1021/acsnano.0c05936
10.1021/nl501638a
10.1088/1361-6528/aa6133
10.1007/s40820-020-00464-8
10.1021/acs.nanolett.5b01689
10.1063/1.1819976
10.1103/PhysRevB.81.081407
10.1088/2053-1583/ac0c2a
10.1021/nl402875m
10.1109/TED.2006.872912
10.1109/TED.2004.836648
10.1021/nl4014748
10.1038/ncomms15815
10.1021/nl5016552
10.1115/1.4051306
10.1038/srep18219
10.1063/5.0075917
10.1038/ncomms8381
10.1021/acs.nanolett.5b04670
10.1021/acs.nanolett.6b02615
10.1021/jp501734s
10.1021/acsnano.5b00335
10.1021/acs.jpcc.8b09087
10.1021/cr900070d
10.1088/2053-1583/3/3/035010
10.1021/acs.nanolett.7b00730
10.1021/acsnano.7b01306
10.1103/PhysRevB.97.241414
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0153935
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0153935
apl
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-1942815
  funderid: 10.13039/100000001
– fundername: National Science Foundation
  grantid: DMR-1719875
  funderid: 10.13039/100000001
– fundername: National Science Foundation
  grantid: OMA-1936250
  funderid: 10.13039/100000001
– fundername: National Science Foundation
  grantid: DGE-1939268
  funderid: 10.13039/100000001
GroupedDBID -DZ
-~X
.DC
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-6dd1aab2e026aa629265bd40708b70faf1e97392ee2f726e5151c07710223f893
ISSN 0003-6951
IngestDate Mon Jun 30 05:10:04 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Tue Jul 01 01:08:32 EDT 2025
Fri Jun 21 00:10:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-6dd1aab2e026aa629265bd40708b70faf1e97392ee2f726e5151c07710223f893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6079-3354
0000-0002-5041-8662
0000-0001-5562-1363
0000-0002-8249-8185
0000-0002-8404-9543
0000-0002-4051-5987
PQID 2842199458
PQPubID 2050678
PageCount 6
ParticipantIDs crossref_citationtrail_10_1063_5_0153935
scitation_primary_10_1063_5_0153935
crossref_primary_10_1063_5_0153935
proquest_journals_2842199458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230724
2023-07-24
PublicationDateYYYYMMDD 2023-07-24
PublicationDate_xml – month: 07
  year: 2023
  text: 20230724
  day: 24
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Androulidakis, Koukaras, Poss, Papagelis, Galiotis, Tawfick (c34) 2018
Castellanos-Gomez, Roldán, Cappelluti, Buscema, Guinea, van der Zant, Steele (c6) 2013
Larentis, Fallahazad, Movva, Kim, Rai, Taniguchi, Watanabe, Banerjee, Tutuc (c24) 2017
Falin, Cai, Santos, Scullion, Qian, Zhang, Yang, Huang, Watanabe, Taniguchi, Barnett, Chen, Ruoff, Li (c45) 2017
Zhang, Ran, Shi, Fang, Wu, Liu, Zheng, Yang, Liu, Wang, Huang, Li, Huang (c37) 2017
Androulidakis, Koukaras, Parthenios, Kalosakas, Papagelis, Galiotis (c35) 2015
Si, Sun, Liu (c30) 2016
Sinha, Takabayashi, Shinohara, Kitaura (c25) 2016
Wang, Gao, Ni, He, Guo, Yang, Cong, Yu (c38) 2012
Peña, Chowdhury, Azizimanesh, Sewaket, Askari, Wu (c17) 2021
Lee, Ahn, Shim, Lee, Ryu (c40) 2012
Wickramaratne, Weston, van de Walle (c21) 2018
Allen, Tung, Kaner (c26) 2010
Gill, Hinnefeld, Zhu, Swanson, Li, Mason (c12) 2015
Lu, Shen, Zhang, Liu, Guo, Cai, Chen, Xu, Zheng, Xu, Chen, Cai, Kang (c39) 2022
Azizimanesh, Peña, Sewaket, Hou, Wu (c18) 2021
Chowdhury, Inzani, Penã, Dey, Wu, Griffin, Askari (c20) 2022
Jiang, Huang, Zhu (c46) 2014
Pace, Martini, Convertino, Keum, Forti, Pezzini, Fabbri, Mišeikis, Coletti (c23) 2021
Quereda, San-Jose, Parente, Vaquero-Garzon, Molina-Mendoza, Agraït, Rubio-Bollinger, Guinea, Roldán, Castellanos-Gomez (c8) 2016
Yang, Lee, Ghosh, Tang, Sankaran, Zorman, Feng (c7) 2017
Lee, Fitzgerald, Bulsara, Currie, Lochtefeld (c15) 2005
Srivastava, Mehta, Yu, Schadler, Koratkar (c44) 2011
Desai, Seol, Kang, Fang, Battaglia, Kapadia, Ager, Guo, Javey (c1) 2014
Nimbalkar, Kim (c28) 2020
Guo, Lu, Wang, Wu, Zeng (c3) 2014
Lloyd, Liu, Christopher, Cantley, Wadehra, Kim, Goldberg, Swan, Bunch (c9) 2016
McCann, Koshino (c41) 2013
Wang, Wang, Cao, Feng, Lan (c42) 2009
Ge, Wan, Yang, Yao (c4) 2015
Wang, Li, Marsden, Bissett, Young (c32) 2021
Boldrin, Scarpa, Chowdhury, Adhikari (c22) 2011
Choi, Jhi, Son (c31) 2010
Manzeli, Allain, Ghadimi, Kis (c2) 2015
Reserbat-Plantey, Kalita, Han, Ferlazzo, Autier-Laurent, Komatsu, Li, Weil, Ralko, Marty, Guéron (c10) 2014
Li, Contryman, Qian, Ardakani, Gong, Wang, Weisse, Lee, Zhao, Ajayan, Li, Manoharan, Zheng (c11) 2015
Chidambaram, Bowen, Chakravarthi, Machala, Wise (c16) 2006
Peña, Azizimanesh, Qiu, Mukherjee, Vamivakas, Wu (c19) 2022
Thompson, Armstrong, Auth, Alavi, Buehler, Chau, Cea, Ghani, Glass, Hoffman, Jan, Kenyon, Klaus, Kuhn, Ma, Mcintyre, Mistry, Murthy, Obradovic, Nagisetty, Nguyen, Sivakumar, Shaheed, Shifren, Tufts, Tyagi, Bohr, El-Mansy (c13) 2004
Cao, Wang, Cao, Yuan (c29) 2015
Rao, Sood, Subrahmanyam, Govindaraj (c27) 2009
Li, Wu, Huang, Lu, Yang, Lu, Xiong, Zhang (c36) 2013
Conley, Wang, Ziegler, Haglund, Pantelides, Bolotin (c5) 2013
Hoyt, Nayfeh, Eguchi, Aberg, Xia, Drake, Fitzgerald, Antoniadis (c14)
Ni, Yu, Lu, Wang, Feng, Shen (c33) 2008
Gong, Young, Kinloch, Riaz, Jalil, Novoselov (c43) 2012
(2024072600020430300_c37) 2017; 28
(2024072600020430300_c39) 2022; 13
(2024072600020430300_c43) 2012; 6
(2024072600020430300_c36) 2013; 7
(2024072600020430300_c40) 2012; 3
(2024072600020430300_c15) 2005; 97
(2024072600020430300_c34) 2018; 97
(2024072600020430300_c46) 2014; 24
(2024072600020430300_c6) 2013; 13
(2024072600020430300_c18) 2021; 118
(2024072600020430300_c44) 2011; 98
(2024072600020430300_c13) 2004; 51
(2024072600020430300_c14); 2002
(2024072600020430300_c19) 2022; 131
(2024072600020430300_c22) 2011; 22
(2024072600020430300_c26) 2010; 110
(2024072600020430300_c42) 2009; 40
(2024072600020430300_c8) 2016; 16
(2024072600020430300_c10) 2014; 14
(2024072600020430300_c45) 2017; 8
(2024072600020430300_c41) 2013; 76
(2024072600020430300_c20) 2022; 144
(2024072600020430300_c21) 2018; 122
(2024072600020430300_c30) 2016; 8
(2024072600020430300_c29) 2015; 3
(2024072600020430300_c38) 2012; 23
(2024072600020430300_c5) 2013; 13
(2024072600020430300_c17) 2021; 8
(2024072600020430300_c32) 2021; 8
(2024072600020430300_c33) 2008; 2
(2024072600020430300_c7) 2017; 17
(2024072600020430300_c24) 2017; 11
(2024072600020430300_c9) 2016; 16
(2024072600020430300_c28) 2020; 12
(2024072600020430300_c11) 2015; 6
(2024072600020430300_c2) 2015; 15
(2024072600020430300_c27) 2009; 48
(2024072600020430300_c25) 2016; 3
(2024072600020430300_c31) 2010; 81
(2024072600020430300_c3) 2014; 118
(2024072600020430300_c16) 2006; 53
(2024072600020430300_c4) 2015; 17
(2024072600020430300_c12) 2015; 9
(2024072600020430300_c23) 2021; 15
(2024072600020430300_c35) 2015; 5
(2024072600020430300_c1) 2014; 14
References_xml – start-page: 944
  year: 2006
  ident: c16
  publication-title: IEEE Trans. Electron Devices
– start-page: 126
  year: 2020
  ident: c28
  publication-title: Nanomicro Lett.
– start-page: 3626
  year: 2013
  ident: c5
  publication-title: Nano Lett.
– start-page: 024304
  year: 2022
  ident: c19
  publication-title: J. Appl. Phys.
– start-page: 3207
  year: 2016
  ident: c30
  publication-title: Nanoscale
– start-page: 18219
  year: 2015
  ident: c35
  publication-title: Sci. Rep.
– start-page: 132
  year: 2010
  ident: c26
  publication-title: Chem. Rev.
– start-page: 035058
  year: 2021
  ident: c32
  publication-title: 2D Mater.
– start-page: 2931
  year: 2016
  ident: c8
  publication-title: Nano Lett.
– start-page: 23
  ident: c14
  publication-title: Int. Electron Devices Meet.
– start-page: 4832
  year: 2017
  ident: c24
  publication-title: ACS Nano
– start-page: 6589
  year: 2015
  ident: c29
  publication-title: J. Mater. Chem. C
– start-page: 7752
  year: 2009
  ident: c27
  publication-title: Angew. Chem. Int. Ed.
– start-page: 056503
  year: 2013
  ident: c41
  publication-title: Rep. Prog. Phys.
– start-page: 3109
  year: 2022
  ident: c39
  publication-title: Nat. Commun.
– start-page: 011101
  year: 2005
  ident: c15
  publication-title: J. Appl. Phys.
– start-page: 1791
  year: 2009
  ident: c42
  publication-title: J. Raman Spectrosc.
– start-page: 5836
  year: 2016
  ident: c9
  publication-title: Nano Lett.
– start-page: 213104
  year: 2021
  ident: c18
  publication-title: Appl. Phys. Lett.
– start-page: 063102
  year: 2011
  ident: c44
  publication-title: Appl. Phys. Lett.
– start-page: 081407
  year: 2010
  ident: c31
  publication-title: Phys. Rev. B
– start-page: 7381
  year: 2015
  ident: c11
  publication-title: Nat. Commun.
– start-page: 241414
  year: 2018
  ident: c34
  publication-title: Phys. Rev. B
– start-page: 4568
  year: 2017
  ident: c7
  publication-title: Nano Lett.
– start-page: 2086
  year: 2012
  ident: c43
  publication-title: ACS Nano
– start-page: 5330
  year: 2015
  ident: c2
  publication-title: Nano Lett.
– start-page: 495713
  year: 2012
  ident: c38
  publication-title: Nanotechnology
– start-page: 5361
  year: 2013
  ident: c6
  publication-title: Nano Lett.
– start-page: 7242
  year: 2014
  ident: c3
  publication-title: J. Phys. Chem. C
– start-page: 2301
  year: 2008
  ident: c33
  publication-title: ACS Nano
– start-page: 011006
  year: 2022
  ident: c20
  publication-title: J. Eng. Mat. Technol.
– start-page: 045001
  year: 2021
  ident: c17
  publication-title: 2D Mater.
– start-page: 035008
  year: 2015
  ident: c4
  publication-title: New J. Phys.
– start-page: 5044
  year: 2014
  ident: c10
  publication-title: Nano Lett.
– start-page: 15815
  year: 2017
  ident: c45
  publication-title: Nat. Commun.
– start-page: 10344
  year: 2013
  ident: c36
  publication-title: ACS Nano
– start-page: 164001
  year: 2017
  ident: c37
  publication-title: Nanotechnology
– start-page: 4592
  year: 2014
  ident: c1
  publication-title: Nano Lett.
– start-page: 5799
  year: 2015
  ident: c12
  publication-title: ACS Nano
– start-page: 1024
  year: 2012
  ident: c40
  publication-title: Nat. Commun.
– start-page: 4213
  year: 2021
  ident: c23
  publication-title: ACS Nano
– start-page: 25524
  year: 2018
  ident: c21
  publication-title: J. Phys. Chem. C
– start-page: 035010
  year: 2016
  ident: c25
  publication-title: 2D Mater.
– start-page: 505702
  year: 2011
  ident: c22
  publication-title: Nanotechnology
– start-page: 1790
  year: 2004
  ident: c13
  publication-title: IEEE Trans. Electron Devices
– start-page: 396
  year: 2014
  ident: c46
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 495713
  year: 2012
  ident: 2024072600020430300_c38
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/49/495713
– volume: 22
  start-page: 505702
  year: 2011
  ident: 2024072600020430300_c22
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/50/505702
– volume: 3
  start-page: 6589
  year: 2015
  ident: 2024072600020430300_c29
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC01354B
– volume: 7
  start-page: 10344
  year: 2013
  ident: 2024072600020430300_c36
  publication-title: ACS Nano
  doi: 10.1021/nn4047474
– volume: 40
  start-page: 1791
  year: 2009
  ident: 2024072600020430300_c42
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2321
– volume: 17
  start-page: 035008
  year: 2015
  ident: 2024072600020430300_c4
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/3/035008
– volume: 2002
  start-page: 23
  ident: 2024072600020430300_c14
  publication-title: Int. Electron Devices Meet.
– volume: 3
  start-page: 1024
  year: 2012
  ident: 2024072600020430300_c40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2022
– volume: 118
  start-page: 213104
  year: 2021
  ident: 2024072600020430300_c18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0049446
– volume: 8
  start-page: 3207
  year: 2016
  ident: 2024072600020430300_c30
  publication-title: Nanoscale
  doi: 10.1039/C5NR07755A
– volume: 6
  start-page: 2086
  year: 2012
  ident: 2024072600020430300_c43
  publication-title: ACS Nano
  doi: 10.1021/nn203917d
– volume: 76
  start-page: 056503
  year: 2013
  ident: 2024072600020430300_c41
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/5/056503
– volume: 8
  start-page: 045001
  year: 2021
  ident: 2024072600020430300_c17
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac08f2
– volume: 98
  start-page: 063102
  year: 2011
  ident: 2024072600020430300_c44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3552685
– volume: 48
  start-page: 7752
  year: 2009
  ident: 2024072600020430300_c27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200901678
– volume: 24
  start-page: 396
  year: 2014
  ident: 2024072600020430300_c46
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301999
– volume: 13
  start-page: 3109
  year: 2022
  ident: 2024072600020430300_c39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30762-1
– volume: 2
  start-page: 2301
  year: 2008
  ident: 2024072600020430300_c33
  publication-title: ACS Nano
  doi: 10.1021/nn800459e
– volume: 15
  start-page: 4213
  year: 2021
  ident: 2024072600020430300_c23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05936
– volume: 14
  start-page: 4592
  year: 2014
  ident: 2024072600020430300_c1
  publication-title: Nano Lett.
  doi: 10.1021/nl501638a
– volume: 28
  start-page: 164001
  year: 2017
  ident: 2024072600020430300_c37
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa6133
– volume: 12
  start-page: 126
  year: 2020
  ident: 2024072600020430300_c28
  publication-title: Nanomicro Lett.
  doi: 10.1007/s40820-020-00464-8
– volume: 15
  start-page: 5330
  year: 2015
  ident: 2024072600020430300_c2
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01689
– volume: 97
  start-page: 011101
  year: 2005
  ident: 2024072600020430300_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1819976
– volume: 81
  start-page: 081407
  year: 2010
  ident: 2024072600020430300_c31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.081407
– volume: 8
  start-page: 035058
  year: 2021
  ident: 2024072600020430300_c32
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac0c2a
– volume: 13
  start-page: 5361
  year: 2013
  ident: 2024072600020430300_c6
  publication-title: Nano Lett.
  doi: 10.1021/nl402875m
– volume: 53
  start-page: 944
  year: 2006
  ident: 2024072600020430300_c16
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2006.872912
– volume: 51
  start-page: 1790
  year: 2004
  ident: 2024072600020430300_c13
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2004.836648
– volume: 13
  start-page: 3626
  year: 2013
  ident: 2024072600020430300_c5
  publication-title: Nano Lett.
  doi: 10.1021/nl4014748
– volume: 8
  start-page: 15815
  year: 2017
  ident: 2024072600020430300_c45
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15815
– volume: 14
  start-page: 5044
  year: 2014
  ident: 2024072600020430300_c10
  publication-title: Nano Lett.
  doi: 10.1021/nl5016552
– volume: 144
  start-page: 011006
  year: 2022
  ident: 2024072600020430300_c20
  publication-title: J. Eng. Mat. Technol.
  doi: 10.1115/1.4051306
– volume: 5
  start-page: 18219
  year: 2015
  ident: 2024072600020430300_c35
  publication-title: Sci. Rep.
  doi: 10.1038/srep18219
– volume: 131
  start-page: 024304
  year: 2022
  ident: 2024072600020430300_c19
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0075917
– volume: 6
  start-page: 7381
  year: 2015
  ident: 2024072600020430300_c11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8381
– volume: 16
  start-page: 2931
  year: 2016
  ident: 2024072600020430300_c8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04670
– volume: 16
  start-page: 5836
  year: 2016
  ident: 2024072600020430300_c9
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02615
– volume: 118
  start-page: 7242
  year: 2014
  ident: 2024072600020430300_c3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp501734s
– volume: 9
  start-page: 5799
  year: 2015
  ident: 2024072600020430300_c12
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00335
– volume: 122
  start-page: 25524
  year: 2018
  ident: 2024072600020430300_c21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09087
– volume: 110
  start-page: 132
  year: 2010
  ident: 2024072600020430300_c26
  publication-title: Chem. Rev.
  doi: 10.1021/cr900070d
– volume: 3
  start-page: 035010
  year: 2016
  ident: 2024072600020430300_c25
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/3/035010
– volume: 17
  start-page: 4568
  year: 2017
  ident: 2024072600020430300_c7
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00730
– volume: 11
  start-page: 4832
  year: 2017
  ident: 2024072600020430300_c24
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01306
– volume: 97
  start-page: 241414
  year: 2018
  ident: 2024072600020430300_c34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.241414
SSID ssj0005233
Score 2.4912758
Snippet We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Boron nitride
Capping
Flakes
Graphene
Heterostructures
Monolayers
Multilayers
Raman spectroscopy
Strain analysis
Thin films
Two dimensional analysis
Two dimensional materials
Title Strain engineering in 2D hBN and graphene with evaporated thin film stressors
URI http://dx.doi.org/10.1063/5.0153935
https://www.proquest.com/docview/2842199458
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdy9j2MNpupVm7Ibo9DIJbR7Zk-9FbNspYyiAt9M3IloQDuYw2bSG_vkfWxd6aQrcXkwjFTnS-HH3nKoQ-ZWVF01CmgYgjBQaKqkAPhjTgNFSwn8ZJJnSB8-iMnV7EPy7pZZvE3lSXLMvjarW2ruR_pApjIFddJfsPkvU3hQF4DfKFK0gYrk-S8bg54KEv256C2n1Bhv36y1kTFWjaUYM2M-5WecubrsVS50zCRDWZzmyxyMIGdVw_WstNjd_juj9tin48_c5Xk9VkxkFLNk6ZvJ5x4Rmx8YHnAuh9mwVUL-5EbUP243oxkWU_P26jQu78L62Vu34IEmkHpyl_9ro1Clhm28dKo07DRHtBrYZ1-tYUGFtgxWv1OBAnWHzdUZXq2uF2s3IB-r_2MJ9Z2MTUWVTQwn70GdoiYEGACtzKh6Of407-TxS54xT113Ztp1h04p_7J1lpLZAXQE9MpkSHjJxvo9fWisC5gcQO2pDzXfSq01tyFz3_ZWT3Bo0MTHAHJhjekiEGmGCACXYwwRomuIUJ1jDBGibYw-Qtuvj-7fzraWBP0QgqkpFlwIQYcF4SCdY25wzGGC0F2PFhWiah4mogswRYspREJYRJILiDCuSmXQGRAjq7hzbni7ncR5gLzmUcVrRiJE44qHLFKh33TWEkZmEPfXbLVbgF0r9wWjwQSw8d-am_TV-VdZMO3ZoX9m93XQCfIrqhNU176KOXw-M3efeUJx2gly2mD9Hm8upGvge2uSw_WNzcA0u8fAk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+engineering+in+2D+hBN+and+graphene+with+evaporated+thin+film+stressors&rft.jtitle=Applied+physics+letters&rft.au=Azizimanesh%2C+Ahmad&rft.au=Dey%2C+Aditya&rft.au=Chowdhury%2C+Shoieb+A.&rft.au=Wenner%2C+Eric&rft.date=2023-07-24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=4&rft_id=info:doi/10.1063%2F5.0153935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0153935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon