Two-dimensional van der Waals ferroelectric field-effect transistors toward nonvolatile memory and neuromorphic computing
With the gradual decline in Moore's law, traditional silicon-based technologies have encountered numerous challenges and limitations, prompting researchers to seek solutions. Two-dimensional (2D) van der Waals (vdWs) ferroelectric (Fe) field-effect transistors (FETs) (2D vdWs FeFETs) are device...
Saved in:
Published in | Applied physics letters Vol. 123; no. 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
30.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the gradual decline in Moore's law, traditional silicon-based technologies have encountered numerous challenges and limitations, prompting researchers to seek solutions. Two-dimensional (2D) van der Waals (vdWs) ferroelectric (Fe) field-effect transistors (FETs) (2D vdWs FeFETs) are devices that integrate emerging 2D vdWs ferroelectric materials into the transistor structures. In comparison with traditional complementary metal oxide semiconductor FETs (COMSFETs), they exhibit superior performance, including lower power consumption, higher switching speed, and improved stability. The vdWs FeFETs are anticipated to surpass the limits imposed by Moore's law, offering increased possibilities and opportunities for research and application in the field of nanoelectronics, particularly in nonvolatile memory (NVM) and neuromorphic computing (NMC). In this review, we summarize the recent research progress of vdWs FeFETs and elucidate their development origin, basic structure, and working mechanism. Furthermore, we explore the application of vdWs FeFETs in NVM, NMC, and large-scale arrays. Finally, we highlight the prominent challenges and future directions in this field. |
---|---|
AbstractList | With the gradual decline in Moore's law, traditional silicon-based technologies have encountered numerous challenges and limitations, prompting researchers to seek solutions. Two-dimensional (2D) van der Waals (vdWs) ferroelectric (Fe) field-effect transistors (FETs) (2D vdWs FeFETs) are devices that integrate emerging 2D vdWs ferroelectric materials into the transistor structures. In comparison with traditional complementary metal oxide semiconductor FETs (COMSFETs), they exhibit superior performance, including lower power consumption, higher switching speed, and improved stability. The vdWs FeFETs are anticipated to surpass the limits imposed by Moore's law, offering increased possibilities and opportunities for research and application in the field of nanoelectronics, particularly in nonvolatile memory (NVM) and neuromorphic computing (NMC). In this review, we summarize the recent research progress of vdWs FeFETs and elucidate their development origin, basic structure, and working mechanism. Furthermore, we explore the application of vdWs FeFETs in NVM, NMC, and large-scale arrays. Finally, we highlight the prominent challenges and future directions in this field. |
Author | Yi, Jianxian Liu, Shenghua Zhang, Qian Lin, Xiankai Liang, Qijie Huang, Xuguang |
Author_xml | – sequence: 1 givenname: Xiankai surname: Lin fullname: Lin, Xiankai organization: 3School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China – sequence: 2 givenname: Xuguang surname: Huang fullname: Huang, Xuguang organization: School of Information and Optoelectronic Science and Engineering SCNU, South China Normal University – sequence: 3 givenname: Qian surname: Zhang fullname: Zhang, Qian organization: School of Materials, Shenzhen Campus of Sun Yat-sen University – sequence: 4 givenname: Jianxian surname: Yi fullname: Yi, Jianxian organization: 3School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China – sequence: 5 givenname: Shenghua surname: Liu fullname: Liu, Shenghua organization: School of Materials, Shenzhen Campus of Sun Yat-sen University – sequence: 6 givenname: Qijie surname: Liang fullname: Liang, Qijie organization: Songshan Lake Materials Laboratory, Songshan Lake Mat Lab |
BookMark | eNp9kF9LwzAUxYMouE0f_AYBnxS6JU2bpo8y_AcDXyY-ljS90Yy2qUm6sW9vZPNFxKdwwu-ce8-dotPe9oDQFSVzSjhb5HNCeS5YcYImlBRFwigVp2hCCGEJL3N6jqbeb6LMU8YmaL_e2aQxHfTe2F62eCt73IDDb1K2HmtwzkILKjijsDbQNgloHTUOTkaPD9Z5HOxOugbHXba2lcG0gDvorNtj2cdvGJ2NaviIGcp2wxhM_36BznQcAZfHd4ZeH-7Xy6dk9fL4vLxbJSot05BwLhjljJRK10pr1ZCcZBxSKRkw2uimrDPFsjLLciGLmnFNVSGZomkmdCZqNkPXh9zB2c8RfKg2dnSxqq9SIVg0Cs4jtThQylnvHehKmRCb2D72NG1FSfV93yqvjveNjptfjsGZTrr9n-ztgfU_qf_AX7wBjIQ |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1039_D3NR03360K crossref_primary_10_1002_pssr_202400111 crossref_primary_10_1002_smll_202412761 |
Cites_doi | 10.1038/natrevmats.2016.87 10.1038/nature01501 10.1021/jacs.0c07055 10.1038/s41467-019-10738-4 10.1021/acsami.0c09246 10.1038/s41565-023-01399-y 10.1021/acs.nanolett.8b04326 10.1038/s41586-021-04362-w 10.1038/s41578-022-00431-2 10.1039/c3cs60407a 10.1038/s41467-020-20257-2 10.1016/j.micpro.2019.01.009 10.1126/science.aad8609 10.1007/s12274-023-5583-4 10.1109/LED.2017.2748992 10.1088/0957-4484/24/38/382001 10.1103/PhysRevApplied.15.034048 10.1109/DRC.1999.806306 10.1038/s41928-019-0338-7 10.1002/adfm.201803738 10.1002/advs.202200566 10.1088/2058-7058/33/11/31 10.1039/C9NR02172H 10.1126/science.abm5134 10.1002/adma.202211598 10.1088/2752-5724/acc678 10.1038/s41928-022-00847-2 10.1038/35016072 10.1038/479309a 10.1038/s41467-022-34565-2 10.1002/adma.202007081 10.1038/s41565-020-0724-3 10.1038/nature10676 10.1007/s10853-009-3548-y 10.1038/nature12385 10.1002/aelm.202200909 10.1002/adfm.202203555 10.1007/s12274-020-3038-8 10.1038/s41565-021-00904-5 10.1016/j.neunet.2019.03.005 10.1002/adma.202005620 10.1103/RevModPhys.71.S336 10.1016/j.mattod.2022.08.017 10.1038/s41565-021-00921-4 10.1126/science.1079567 10.1109/JPROC.2002.1002521 10.1088/0953-8984/28/10/103003 10.1039/C7NR06485C 10.7753/IJCATR0507.1014 10.1002/adfm.202004609 10.1039/D0TC01500H 10.1002/adfm.202011083 10.1038/ncomms2018 10.1038/ncomms12357 10.1002/adma.202108826 10.1021/acsnano.3c00187 10.1103/RevModPhys.77.1083 10.1126/science.abd3230 10.1063/1.351910 10.1038/s41578-019-0089-0 10.1007/s40820-020-0402-x 10.1109/MC.2015.374 10.1002/adfm.202103982 10.1109/LED.2002.1015207 10.1039/D2NH00458E 10.1126/science.abe8177 10.1038/s41586-020-2098-y 10.1038/nnano.2010.279 10.1038/s41467-020-16291-9 10.1038/s41565-021-01059-z 10.1038/s41565-019-0466-2 10.1002/adma.201908040 10.1038/nnano.2014.35 10.1073/pnas.2007736117 10.1038/s41565-017-0010-1 10.1038/s41565-022-01257-3 10.1002/adma.202208266 10.1021/acsami.9b15457 10.1038/s41467-020-15249-1 10.1021/acs.nanolett.0c02357 10.1038/nature03261 10.1038/s41467-021-21320-2 10.1039/C7SC03859C 10.1126/science.1098252 10.1145/216585.216588 10.1021/acs.chemmater.9b03499 10.1002/adma.201901300 10.1038/s42254-020-0208-2 10.1109/JPROC.1998.65 10.1038/s41578-022-00484-3 10.1109/T-ED.1963.15245 10.1038/s41563-020-00873-5 10.1126/scirobotics.abl8419 10.1002/smll.202203611 10.1063/5.0032954 10.1007/978-981-16-1376-0 10.1126/science.1099822 10.1038/s41524-022-00738-2 10.1021/acsnano.0c00180 10.1103/PhysRev.17.475 10.1021/acsmaterialslett.2c01026 10.1021/acs.nanolett.5b03768 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0165837 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0165837 apl |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2021A1515110424 funderid: 10.13039/501100021171 – fundername: National Natural Science Foundation of China grantid: 52202183 funderid: 10.13039/501100001809 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-668316309cfbcffcd05046e2aa3e31dfd9b4c3494458a7b36f1c7a3c1248f48b3 |
ISSN | 0003-6951 |
IngestDate | Mon Aug 18 00:06:49 EDT 2025 Tue Jul 01 01:08:35 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Fri Jun 21 00:10:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-668316309cfbcffcd05046e2aa3e31dfd9b4c3494458a7b36f1c7a3c1248f48b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9427-4923 0000-0002-1774-9726 0000-0001-9486-1159 0009-0004-7010-3360 0009-0000-0916-1693 0000-0003-4252-7997 |
PQID | 2883944866 |
PQPubID | 2050678 |
PageCount | 11 |
ParticipantIDs | scitation_primary_10_1063_5_0165837 crossref_citationtrail_10_1063_5_0165837 crossref_primary_10_1063_5_0165837 proquest_journals_2883944866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231030 2023-10-30 |
PublicationDateYYYYMMDD | 2023-10-30 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231030 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Si, Saha, Gao, Qiu, Qin, Duan, Jian, Niu, Wang, Wu, Gupta, Ye (c60) 2019 Kim, Oh, Fiagbenu, Zheng, Musavigharavi, Kumar, Trainor, Aljarb, Wan, Kim, Katti, Song, Kim, Tang, Fu, Hakami, Tung, Redwing, Stach, Olsson, Jariwala (c32) 2023 Spaldin (c9) 2004 Hong (c55) 2016 Wang, Zhu, Deng, Duan, Chen, Zeng, Zhou, Fu, You, Liu, Edgar, Yu, Liu (c72) 2021 Luo, Yang, Liu, Alexe (c51) 2021 Neumayer, Brehm, Tao, O'Hara, Ganesh, Jesse, Susner, McGuire, Pantelides, Maksymovych (c98) 2020 Horiuchi, Kumai, Ishibashi (c95) 2018 Liang, Zhang, Gou, Song, Arramel, Chen, Yang, Lim, Wang, Zhu, Yakovlev, Tan, Zhang, Novoselov, Wee (c100) 2020 Liu, Chen, Wang, Liu, Jiang, Zhang, Liu, Zhou (c68) 2020 Gattinoni, Strkalj, Härdi, Fiebig, Trassin, Spaldin (c14) 2020 Liu, Zhang, Dang, Bao, Xu, Cheng, Yang, Huang, Yang (c30) 2022 Lundstrom (c89) 2003 Najmaei, Glasmann, Schroeder, Sarney, Chin, Potrepka (c93) 2022 Zha, Shi, Chaturvedi, Huang, Yang, Yao, Li, Xia, Zhang, Wang (c29) 2023 Li, Guo, Luo, Wu, Han, Hu, You, Watanabe, Taniguchi, Alava (c69) 2023 Geim, Grigorieva (c54) 2013 Liang, Gou, Arramel, Zhang, Zhang, Wee (c101) 2020 Mutlu, Ghose, Gómez-Luna, Ausavarungnirun (c65) 2019 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (c16) 2011 Kuzum, Yu, Philip Wong (c76) 2013 Chang, Liu, Lin, Wang, Zhao, Zhang, Jin, Zhong, Hu, Duan, Zhang, Fu, Xue, Chen, Ji (c46) 2016 Wu, Wang, Shi, Yan, Zhou, Bian, Ma, Ma, Liu, Chen, Huang, Zhou, Bao, Ouyang, Pennycook, Pantelides, Gao (c35) 2021 Wang, Yasuda, Zhang, Liu, Watanabe, Taniguchi, Hone, Fu, Jarillo-Herrero (c41) 2022 Wang, Yu, Lei, Zhu, Cao, Liu, You, Zeng, Deng, Zhu, Zhou, Fu, Wang, Huang, Liu (c21) 2019 Li, Yu, Ye, Ge, Ou, Wu, Feng, Chen, Zhang (c17) 2014 Ferain, Colinge, Colinge (c26) 2011 Lee, Christen, Chisholm, Rouleau, Lowndes (c96) 2005 Liu, Zhang, Chen, Xiong (c97) 2020 Zhang, Schoenherr, Sharma, Seidel (c80) 2022 Dawber, Rabe, Scott (c7) 2005 Bhalla, Avadh (c37) 2021 Fong, Stephenson, Streiffer, Eastman, Auciello, Fuoss, Thompson (c6) 2004 Hsu, Chang, Nikonov, Young, Naeemi (c57) 2021 Marković, Mizrahi, Querlioz, Grollier (c66) 2020 Hou, Azizimanesh, Sewaket, Peña, Watson, Liu, Askari, Wu (c31) 2019 Chatterjee, Kim, Karbasian, Tan, Yadav, Khan, Hu, Salahuddin (c73) 2017 Huang, Wang, Yin, Cheng, Wang, Sendeku, Wang, Li, Yao, He (c34) 2020 Valasek (c36) 1921 Vizner Stern, Waschitz, Cao, Nevo, Watanabe, Taniguchi, Sela, Urbakh, Hod, Ben Shalom (c48) 2021 Rashid, Shakeel, Bashir, Malik, Wajib (c71) 2016 Wang, Liu, Gan, Chen, Hou, Ding, Ma, Zhang, Zhou (c79) 2021 Mehonic, Kenyon (c102) 2022 Xue, Hu, Lee, Lu, Zhang, Tang, Han, Hsu, Tu, Chang (c49) 2018 Nie, Wu, Wang, Ban, Lei, Yi, Liu, Liu (c15) 2023 Hoffmann, Slesazeck, Mikolajick (c24) 2021 Han, Zheng, Yang, Tsang, Zheng, Wong, Lai, Yang, Wei, Li (c91) 2023 Yasuda, Wang, Watanabe, Taniguchi, Jarillo-Herrero (c47) 2021 Venema (c3) 2011 Junquera, Ghosez (c8) 2003 Liu, Wu, Wang, Chen, Yi, Liu, Nan, Ma (c83) 2023 Luk'yanchuk, Razumnaya, Sené, Tikhonov, Vinokur (c52) 2022 Zavabeti, Jannat, Zhong, Haidry, Yao, Ou (c99) 2020 Tanaka, Yamane, Héroux, Nakane, Kanazawa, Takeda, Numata, Nakano, Hirose (c81) 2019 Zhao, Frisenda, Wang, Castellanos-Gomez (c25) 2019 Yang, Hu, Fang, Jia, Yang, Deng, Lu, Dieguez, Fan, Zheng, Zhang, Dong, Luo, Wang, Wang, Sui, Xing, Chen, Tian, Zhang (c10) 2023 Liu, Dang, Zhang, Yang, Bao, Xu, Cheng, Huang, Yang (c63) 2022 Chang, Küster, Miller, Ji, Zhang, Sessi, Barraza-Lopez, Parkin (c44) 2020 Shalf, Leland (c70) 2015 Kim, Konar, Hwang, Lee, Lee, Yang, Jung, Kim, Yoo, Choi, Jin, Lee, Jena, Choi, Kim (c20) 2012 Liu, You, Seyler, Li, Yu, Lin, Wang, Zhou, Wang, He, Pantelides, Zhou, Sharma, Xu, Ajayan, Wang, Liu (c39) 2016 Moll, Tarui (c38) 1963 Ishiwara (c58) 1999 Yu, He, Gao, Zhang, Li, Guo, Li, Chen (c67) 2022 Lee, Baasandorj, Chang, Hwang, Kim, Kim, Ko, Shim, Choi, You, Yang, Kim, Song (c12) 2019 Miller, McWhorter (c50) 1992 Peng, Peng, Wu, Xie (c18) 2014 Liu, Liu, Jiang, Li, Ding, Wang, Jiang, Sun, Wang, Chen, Zhang, Zhou (c19) 2021 Chen, Li, Ren, Tang, Liang, Wang, Li, Song, Guan, Chen (c87) 2022 Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung (c27) 2000 Wang, Wang, Zhang, Li, Ma, Leng, Chen, Abdelwahab, Loh (c61) 2020 Ma, Han (c59) 2002 Andersen, Scuri, Sushko, De Greve, Sung, Zhou, Wild, Gelly, Heo, Bérubé, Joe, Jauregui, Watanabe, Taniguchi, Kim, Park, Lukin (c40) 2021 Tang, He, Tang, Yue, Zhang, Liu, Wang, Wang, Li, Shen (c84) 2021 Xia, Huang, Hang, Guo, Yan, Yang, Yang, Yu, Li (c62) 2023 Park, Kim, Lee (c28) 2020 Kawamoto (c2) 2002 Si, Su, Jiang, Conrad, Zhou, Maize, Qiu, Wu, Shakouri, Alam, Ye (c23) 2018 Arredondo, Saunders, Petraru, Kohlstedt, Vrejoiu, Alexe, Hesse, Browning, Munroe, Nagarajan (c13) 2009 Yin, Cheng, Wen, Liu, He (c75) 2021 Moore (c88) 1998 Chen, Chen, Zhao, Roy, Han, Zhou (c78) 2023 Cao, Meng, Li, Wang, Zhu, Sun, Zhang, Chen (c85) 2022 Higashitarumizu, Kawamoto, Lee, Lin, Chu, Yonemori, Nishimura, Wakabayashi, Chang, Nagashio (c45) 2020 Li, Yang, Liu, Huang, Wu, Zhang, Zhao, Ma, Dang, Wei (c90) 2020 Martin, Rappe (c4) 2016 Íñiguez, Zubko, Luk'yanchuk, Cano (c53) 2019 Liu, Dong, Huang, Nie, Zhai, Xiang, Wang, Wen, Mu, Zhao, Gong, Tian, Liu (c43) 2019 Sandamirskaya, Kaboli, Conradt, Celikel (c77) 2022 Wulf, McKee (c64) 1995 Baek, Yoo, Ju, Sriboriboon, Singh, Niu, Park, Shin, Kim, Lee (c74) 2022 Liang, Chen, Zhang, Wee (c94) 2022 Schroeder, Park, Mikolajick, Hwang (c5) 2022 Yan, Ying, Yan, Wang, Li, Chen, Gao, Liao, Luo, Zhang, Chai, Zheng (c11) 2021 Yang, Park, Yeom, Baek, Yoon, Jeong, Oh, Lee, Yoo (c86) 2023 Yan, Huang, Xie, Ye, Li, Taniguchi, Watanabe, Han, Chen, Wang, Chen (c33) 2019 Jie, Hao (c56) 2018 Torres, Lan, Zeng, Chen, Kou, Navabi, Tang, Montazeri, Adleman, Lerner, Zhong, Li, Chen, Wang (c22) 2015 Ma, Luo, Huang, Zhao, Chen, Lin, Liu, Chen, Liu, Sun (c82) 2020 Xue, He, Retamal, Han, Zhang, Liu, Huang, Hu, Tung, He, Li, Zhang (c42) 2019 Riordan, Hoddeson, Herring (c1) 1999 (2024060520164330700_c20) 2012; 3 (2024060520164330700_c49) 2018; 28 (2024060520164330700_c40) 2021; 20 (2024060520164330700_c92) 2021 (2024060520164330700_c59) 2002; 23 (2024060520164330700_c60) 2019; 2 (2024060520164330700_c14) 2020; 117 (2024060520164330700_c11) 2021; 31 (2024060520164330700_c56) 2018; 10 (2024060520164330700_c8) 2003; 422 (2024060520164330700_c2) 2002; 90 (2024060520164330700_c61) 2020; 30 (2024060520164330700_c69) 2023; 35 (2024060520164330700_c5) 2022; 7 (2024060520164330700_c83) 2023; 16 (2024060520164330700_c89) 2003; 299 (2024060520164330700_c93) 2022; 59 (2024060520164330700_c47) 2021; 372 (2024060520164330700_c32) 2023; 18 (2024060520164330700_c26) 2011; 479 (2024060520164330700_c87) 2022; 18 (2024060520164330700_c31) 2019; 14 (2024060520164330700_c81) 2019; 115 (2024060520164330700_c52) 2022; 8 (2024060520164330700_c45) 2020; 11 (2024060520164330700_c78) 2023; 2 (2024060520164330700_c16) 2011; 6 (2024060520164330700_c101) 2020; 13 (2024060520164330700_c85) 2022; 8 (2024060520164330700_c30) 2022; 5 (2024060520164330700_c70) 2015; 48 (2024060520164330700_c97) 2020; 142 (2024060520164330700_c68) 2020; 15 (2024060520164330700_c74) 2022; 9 (2024060520164330700_c94) 2022; 32 (2024060520164330700_c80) 2022; 8 (2024060520164330700_c102) 2022; 604 (2024060520164330700_c90) 2020; 579 (2024060520164330700_c62) 2023; 5 (2024060520164330700_c21) 2019; 10 (2024060520164330700_c99) 2020; 12 (2024060520164330700_c15) 2023; 8 (2024060520164330700_c19) 2021; 16 (2024060520164330700_c57) 2021; 15 (2024060520164330700_c25) 2019; 11 (2024060520164330700_c42) 2019; 31 (2024060520164330700_c37) 2021; 33 (2024060520164330700_c73) 2017; 38 (2024060520164330700_c6) 2004; 304 (2024060520164330700_c18) 2014; 43 (2024060520164330700_c35) 2021; 16 (2024060520164330700_c75) 2021; 33 (2024060520164330700_c7) 2005; 77 (2024060520164330700_c33) 2019; 11 (2024060520164330700_c34) 2020; 32 (2024060520164330700_c54) 2013; 499 (2024060520164330700_c36) 1921; 17 (2024060520164330700_c58) 1999 (2024060520164330700_c72) 2021; 12 (2024060520164330700_c43) 2019; 31 (2024060520164330700_c71) 2016; 5 (2024060520164330700_c77) 2022; 7 (2024060520164330700_c51) 2021; 33 (2024060520164330700_c13) 2009; 44 (2024060520164330700_c9) 2004; 304 (2024060520164330700_c55) 2016; 28 (2024060520164330700_c23) 2018; 13 (2024060520164330700_c1) 1999; 71 (2024060520164330700_c28) 2020; 8 (2024060520164330700_c63) 2022; 34 (2024060520164330700_c17) 2014; 9 (2024060520164330700_c10) 2023; 379 (2024060520164330700_c12) 2019; 19 (2024060520164330700_c3) 2011; 479 (2024060520164330700_c84) 2021; 31 (2024060520164330700_c4) 2016; 2 (2024060520164330700_c48) 2021; 372 (2024060520164330700_c98) 2020; 12 (2024060520164330700_c41) 2022; 17 (2024060520164330700_c50) 1992; 72 (2024060520164330700_c53) 2019; 4 (2024060520164330700_c86) 2023; 17 (2024060520164330700_c67) 2022; 13 (2024060520164330700_c82) 2020; 11 (2024060520164330700_c79) 2021; 12 (2024060520164330700_c64) 1995; 23 (2024060520164330700_c76) 2013; 24 (2024060520164330700_c22) 2015; 15 (2024060520164330700_c39) 2016; 7 (2024060520164330700_c46) 2016; 353 (2024060520164330700_c100) 2020; 14 (2024060520164330700_c29) 2023; 35 (2024060520164330700_c95) 2018; 9 (2024060520164330700_c38) 1963; 10 (2024060520164330700_c24) 2021; 9 (2024060520164330700_c66) 2020; 2 (2024060520164330700_c96) 2005; 433 (2024060520164330700_c27) 2000; 405 (2024060520164330700_c44) 2020; 20 (2024060520164330700_c91) 2023; 18 (2024060520164330700_c65) 2019; 67 (2024060520164330700_c88) 1998; 86 |
References_xml | – start-page: 9163 year: 2020 ident: c28 publication-title: J. Mater. Chem. C – start-page: 2428 year: 2020 ident: c45 publication-title: Nat. Commun. – start-page: 158 year: 2023 ident: c15 publication-title: Nanoscale Horiz. – start-page: 2200909 year: 2022 ident: c85 publication-title: Adv. Electron. Mater. – start-page: 580 year: 2019 ident: c60 publication-title: Nat. Electron. – start-page: 668 year: 2019 ident: c31 publication-title: Nat. Nanotechnol. – start-page: 274 year: 2016 ident: c46 publication-title: Science – start-page: 2103982 year: 2021 ident: c11 publication-title: Adv. Funct. Mater. – start-page: 210 year: 2003 ident: c89 publication-title: Science – start-page: S336 year: 1999 ident: c1 publication-title: Rev. Mod. Phys. – start-page: 82 year: 1998 ident: c88 publication-title: Proceedings of the IEEE. – start-page: 309 year: 2011 ident: c3 publication-title: Nature – start-page: 3439 year: 2020 ident: c101 publication-title: Nano Res. – start-page: 28 year: 2019 ident: c65 publication-title: Microprocess. Microsyst. – start-page: 328 year: 2018 ident: c56 publication-title: Nanoscale – start-page: 12357 year: 2016 ident: c39 publication-title: Nat. Commun. – start-page: 1458 year: 2021 ident: c47 publication-title: Science – start-page: 10143 year: 2019 ident: c43 publication-title: Chem. Mater. – start-page: 2211598 year: 2023 ident: c29 publication-title: Adv. Mater. – start-page: 14 year: 2015 ident: c70 publication-title: Computer – start-page: 2200566 year: 2022 ident: c74 publication-title: Adv. Sci. – start-page: 3303 year: 2014 ident: c18 publication-title: Chem. Soc. Rev. – start-page: 761 year: 2022 ident: c30 publication-title: Nat. Electron. – start-page: 947 year: 2000 ident: c27 publication-title: Nature – start-page: 55 year: 2023 ident: c91 publication-title: Nat. Nanotechnol. – start-page: 243 year: 2019 ident: c53 publication-title: Nat. Rev. Mater. – start-page: 103003 year: 2016 ident: c55 publication-title: J. Phys. – start-page: 53 year: 2021 ident: c79 publication-title: Nat. Commun. – start-page: 2005620 year: 2021 ident: c51 publication-title: Adv. Mater. – start-page: 24 year: 2018 ident: c23 publication-title: Nat. Nanotechnol. – start-page: 66 year: 2020 ident: c99 publication-title: Nano-Micro Lett. – start-page: 1011 year: 2012 ident: c20 publication-title: Nat. Commun. – start-page: 5297 year: 2009 ident: c13 publication-title: J. Mater. Sci. – start-page: 506 year: 2003 ident: c8 publication-title: Nature – start-page: 368 year: 2020 ident: c90 publication-title: Nature – start-page: 1109 year: 2023 ident: c62 publication-title: Acs. Mater. Lett. – start-page: 147 year: 2011 ident: c16 publication-title: Nat. Nanotechnol. – start-page: 52 year: 2022 ident: c52 publication-title: npj Comput. Mater. – start-page: 1901300 year: 2019 ident: c42 publication-title: Adv. Mater. – start-page: 100 year: 2019 ident: c81 publication-title: Neural Netw. – start-page: 1439 year: 2020 ident: c82 publication-title: Nat. Commun. – start-page: 1379 year: 2017 ident: c73 publication-title: IEEE Electron Device Lett. – start-page: 1606 year: 2004 ident: c9 publication-title: Science – start-page: 38 year: 2021 ident: c37 publication-title: Phys. World – start-page: 9845 year: 2019 ident: c25 publication-title: Nanoscale – start-page: 1044 year: 1999 ident: c58 – start-page: 020902 year: 2021 ident: c24 publication-title: APL Mater. – start-page: 15205 year: 2020 ident: c97 publication-title: J. Am. Chem. Soc. – start-page: 419 year: 2013 ident: c54 publication-title: Nature – start-page: 2208266 year: 2023 ident: c69 publication-title: Adv. Mater. – start-page: 310 year: 2011 ident: c26 publication-title: Nature – start-page: 338 year: 1963 ident: c38 publication-title: IEEE Trans. Electron Devices – start-page: 425 year: 2018 ident: c95 publication-title: Chem. Sci. – start-page: 2108826 year: 2022 ident: c63 publication-title: Adv. Mater. – start-page: 42358 year: 2019 ident: c33 publication-title: ACS Appl. Mater. Interfaces – start-page: 25 year: 2022 ident: c80 publication-title: Nat. Rev. Mater. – start-page: 28589 year: 2020 ident: c14 publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 395 year: 2005 ident: c96 publication-title: Nature – start-page: 882 year: 2021 ident: c35 publication-title: Nat. Nanotechnol. – start-page: 2004609 year: 2020 ident: c61 publication-title: Adv. Funct. Mater. – start-page: 372 year: 2014 ident: c17 publication-title: Nat. Nanotechnol. – start-page: 3037 year: 2019 ident: c21 publication-title: Nat. Commun. – start-page: 874 year: 2021 ident: c19 publication-title: Nat. Nanotechnol. – start-page: 7695 year: 2023 ident: c86 publication-title: ACS. Nano – start-page: 7019 year: 2022 ident: c67 publication-title: Nat. Commun. – start-page: 6590 year: 2020 ident: c44 publication-title: Nano Lett. – start-page: 480 year: 2021 ident: c40 publication-title: Nat. Mater. – start-page: 367 year: 2022 ident: c41 publication-title: Nat. Nanotechnol. – start-page: 255 year: 2022 ident: c102 publication-title: Nature – start-page: 2243 year: 2019 ident: c12 publication-title: Nano. Lett. – start-page: 499 year: 2020 ident: c66 publication-title: Nat. Rev. Phys. – start-page: 023501 year: 2023 ident: c78 publication-title: Mater. Futures – start-page: 386 year: 2002 ident: c59 publication-title: IEEE Electron Device Lett. – start-page: 5668 year: 2020 ident: c100 publication-title: ACS Nano – start-page: 7905 year: 2015 ident: c22 publication-title: Nano Lett. – start-page: 1462 year: 2021 ident: c48 publication-title: Science – start-page: 034048 year: 2021 ident: c57 publication-title: Phys. Rev. Appl. – start-page: 545 year: 2020 ident: c68 publication-title: Nat. Nanotechnol. – start-page: 653 year: 2022 ident: c5 publication-title: Nat. Rev. Mater. – start-page: 5999 year: 1992 ident: c50 publication-title: J. Appl. Phys. – start-page: 10191 year: 2023 ident: c83 publication-title: Nano. Res. – start-page: 1650 year: 2004 ident: c6 publication-title: Science – start-page: 38546 year: 2020 ident: c98 publication-title: ACS Appl. Mater. Interfaces – start-page: 80 year: 2022 ident: c93 publication-title: Mater. Today – start-page: 495 year: 2016 ident: c71 publication-title: Int. J. Comput. Appl. Technol. Res. – start-page: 1109 year: 2021 ident: c72 publication-title: Nat. Commun. – start-page: 382001 year: 2013 ident: c76 publication-title: Nanotechnology. – start-page: 2011083 year: 2021 ident: c84 publication-title: Adv. Funct. Mater. – start-page: 460 year: 2002 ident: c2 publication-title: Proc. IEEE – start-page: 2203555 year: 2022 ident: c94 publication-title: Adv. Funct. Mater. – start-page: 1908040 year: 2020 ident: c34 publication-title: Adv. Mater. – start-page: eabl8419 year: 2022 ident: c77 publication-title: Sci. Robot. – start-page: 16087 year: 2016 ident: c4 publication-title: Nat. Rev. Mater. – start-page: 1044 year: 2023 ident: c32 publication-title: Nat. Nanotechnol. – start-page: 20 year: 1995 ident: c64 publication-title: SIGARCH Comput. Archit. News – start-page: 2203611 year: 2022 ident: c87 publication-title: Small – start-page: 1218 year: 2023 ident: c10 publication-title: Science – start-page: 2007081 year: 2021 ident: c75 publication-title: Adv. Mater. – start-page: 1803738 year: 2018 ident: c49 publication-title: Adv. Funct. Mater. – start-page: 475 year: 1921 ident: c36 publication-title: Phys. Rev. – start-page: 1083 year: 2005 ident: c7 publication-title: Rev. Mod. Phys. – volume: 2 start-page: 16087 year: 2016 ident: 2024060520164330700_c4 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.87 – volume: 422 start-page: 506 year: 2003 ident: 2024060520164330700_c8 publication-title: Nature doi: 10.1038/nature01501 – volume: 142 start-page: 15205 year: 2020 ident: 2024060520164330700_c97 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07055 – volume: 10 start-page: 3037 year: 2019 ident: 2024060520164330700_c21 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10738-4 – volume: 12 start-page: 38546 year: 2020 ident: 2024060520164330700_c98 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09246 – volume: 18 start-page: 1044 year: 2023 ident: 2024060520164330700_c32 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01399-y – volume: 19 start-page: 2243 year: 2019 ident: 2024060520164330700_c12 publication-title: Nano. Lett. doi: 10.1021/acs.nanolett.8b04326 – volume: 604 start-page: 255 year: 2022 ident: 2024060520164330700_c102 publication-title: Nature doi: 10.1038/s41586-021-04362-w – volume: 7 start-page: 653 year: 2022 ident: 2024060520164330700_c5 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00431-2 – volume: 43 start-page: 3303 year: 2014 ident: 2024060520164330700_c18 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60407a – volume: 12 start-page: 53 year: 2021 ident: 2024060520164330700_c79 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20257-2 – volume: 67 start-page: 28 year: 2019 ident: 2024060520164330700_c65 publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2019.01.009 – volume: 353 start-page: 274 year: 2016 ident: 2024060520164330700_c46 publication-title: Science doi: 10.1126/science.aad8609 – volume: 16 start-page: 10191 year: 2023 ident: 2024060520164330700_c83 publication-title: Nano. Res. doi: 10.1007/s12274-023-5583-4 – volume: 38 start-page: 1379 year: 2017 ident: 2024060520164330700_c73 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2748992 – volume: 24 start-page: 382001 year: 2013 ident: 2024060520164330700_c76 publication-title: Nanotechnology. doi: 10.1088/0957-4484/24/38/382001 – volume: 15 start-page: 034048 year: 2021 ident: 2024060520164330700_c57 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.034048 – start-page: 1044 year: 1999 ident: 2024060520164330700_c58 publication-title: 1999 57th Annual Device Research Conference Digest doi: 10.1109/DRC.1999.806306 – volume: 2 start-page: 580 year: 2019 ident: 2024060520164330700_c60 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0338-7 – volume: 28 start-page: 1803738 year: 2018 ident: 2024060520164330700_c49 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803738 – volume: 9 start-page: 2200566 year: 2022 ident: 2024060520164330700_c74 publication-title: Adv. Sci. doi: 10.1002/advs.202200566 – volume: 33 start-page: 38 year: 2021 ident: 2024060520164330700_c37 publication-title: Phys. World doi: 10.1088/2058-7058/33/11/31 – volume: 11 start-page: 9845 year: 2019 ident: 2024060520164330700_c25 publication-title: Nanoscale doi: 10.1039/C9NR02172H – volume: 379 start-page: 1218 year: 2023 ident: 2024060520164330700_c10 publication-title: Science doi: 10.1126/science.abm5134 – volume: 35 start-page: 2211598 year: 2023 ident: 2024060520164330700_c29 publication-title: Adv. Mater. doi: 10.1002/adma.202211598 – volume: 2 start-page: 023501 year: 2023 ident: 2024060520164330700_c78 publication-title: Mater. Futures doi: 10.1088/2752-5724/acc678 – volume: 5 start-page: 761 year: 2022 ident: 2024060520164330700_c30 publication-title: Nat. Electron. doi: 10.1038/s41928-022-00847-2 – volume: 405 start-page: 947 year: 2000 ident: 2024060520164330700_c27 publication-title: Nature doi: 10.1038/35016072 – volume: 479 start-page: 309 year: 2011 ident: 2024060520164330700_c3 publication-title: Nature doi: 10.1038/479309a – volume: 13 start-page: 7019 year: 2022 ident: 2024060520164330700_c67 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34565-2 – volume: 33 start-page: 2007081 year: 2021 ident: 2024060520164330700_c75 publication-title: Adv. Mater. doi: 10.1002/adma.202007081 – volume: 15 start-page: 545 year: 2020 ident: 2024060520164330700_c68 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0724-3 – volume: 479 start-page: 310 year: 2011 ident: 2024060520164330700_c26 publication-title: Nature doi: 10.1038/nature10676 – volume: 44 start-page: 5297 year: 2009 ident: 2024060520164330700_c13 publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3548-y – volume: 499 start-page: 419 year: 2013 ident: 2024060520164330700_c54 publication-title: Nature doi: 10.1038/nature12385 – volume: 8 start-page: 2200909 year: 2022 ident: 2024060520164330700_c85 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202200909 – volume: 32 start-page: 2203555 year: 2022 ident: 2024060520164330700_c94 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202203555 – volume: 13 start-page: 3439 year: 2020 ident: 2024060520164330700_c101 publication-title: Nano Res. doi: 10.1007/s12274-020-3038-8 – volume: 16 start-page: 882 year: 2021 ident: 2024060520164330700_c35 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00904-5 – volume: 115 start-page: 100 year: 2019 ident: 2024060520164330700_c81 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.03.005 – volume: 33 start-page: 2005620 year: 2021 ident: 2024060520164330700_c51 publication-title: Adv. Mater. doi: 10.1002/adma.202005620 – volume: 71 start-page: S336 year: 1999 ident: 2024060520164330700_c1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.S336 – volume: 59 start-page: 80 year: 2022 ident: 2024060520164330700_c93 publication-title: Mater. Today doi: 10.1016/j.mattod.2022.08.017 – volume: 16 start-page: 874 year: 2021 ident: 2024060520164330700_c19 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00921-4 – volume: 299 start-page: 210 year: 2003 ident: 2024060520164330700_c89 publication-title: Science doi: 10.1126/science.1079567 – volume: 90 start-page: 460 year: 2002 ident: 2024060520164330700_c2 publication-title: Proc. IEEE doi: 10.1109/JPROC.2002.1002521 – volume: 28 start-page: 103003 year: 2016 ident: 2024060520164330700_c55 publication-title: J. Phys. doi: 10.1088/0953-8984/28/10/103003 – volume: 10 start-page: 328 year: 2018 ident: 2024060520164330700_c56 publication-title: Nanoscale doi: 10.1039/C7NR06485C – volume: 5 start-page: 495 year: 2016 ident: 2024060520164330700_c71 publication-title: Int. J. Comput. Appl. Technol. Res. doi: 10.7753/IJCATR0507.1014 – volume: 30 start-page: 2004609 year: 2020 ident: 2024060520164330700_c61 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004609 – volume: 8 start-page: 9163 year: 2020 ident: 2024060520164330700_c28 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC01500H – volume: 31 start-page: 2011083 year: 2021 ident: 2024060520164330700_c84 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202011083 – volume: 3 start-page: 1011 year: 2012 ident: 2024060520164330700_c20 publication-title: Nat. Commun. doi: 10.1038/ncomms2018 – volume: 7 start-page: 12357 year: 2016 ident: 2024060520164330700_c39 publication-title: Nat. Commun. doi: 10.1038/ncomms12357 – volume: 34 start-page: 2108826 year: 2022 ident: 2024060520164330700_c63 publication-title: Adv. Mater. doi: 10.1002/adma.202108826 – volume: 17 start-page: 7695 year: 2023 ident: 2024060520164330700_c86 publication-title: ACS. Nano doi: 10.1021/acsnano.3c00187 – volume: 77 start-page: 1083 year: 2005 ident: 2024060520164330700_c7 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.1083 – volume: 372 start-page: 1458 year: 2021 ident: 2024060520164330700_c47 publication-title: Science doi: 10.1126/science.abd3230 – volume: 72 start-page: 5999 year: 1992 ident: 2024060520164330700_c50 publication-title: J. Appl. Phys. doi: 10.1063/1.351910 – volume: 4 start-page: 243 year: 2019 ident: 2024060520164330700_c53 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0089-0 – volume: 12 start-page: 66 year: 2020 ident: 2024060520164330700_c99 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-0402-x – volume: 48 start-page: 14 year: 2015 ident: 2024060520164330700_c70 publication-title: Computer doi: 10.1109/MC.2015.374 – volume: 31 start-page: 2103982 year: 2021 ident: 2024060520164330700_c11 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103982 – volume: 23 start-page: 386 year: 2002 ident: 2024060520164330700_c59 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2002.1015207 – volume: 8 start-page: 158 year: 2023 ident: 2024060520164330700_c15 publication-title: Nanoscale Horiz. doi: 10.1039/D2NH00458E – volume: 372 start-page: 1462 year: 2021 ident: 2024060520164330700_c48 publication-title: Science doi: 10.1126/science.abe8177 – volume: 579 start-page: 368 year: 2020 ident: 2024060520164330700_c90 publication-title: Nature doi: 10.1038/s41586-020-2098-y – volume: 6 start-page: 147 year: 2011 ident: 2024060520164330700_c16 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 11 start-page: 2428 year: 2020 ident: 2024060520164330700_c45 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16291-9 – volume: 17 start-page: 367 year: 2022 ident: 2024060520164330700_c41 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-01059-z – volume: 14 start-page: 668 year: 2019 ident: 2024060520164330700_c31 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0466-2 – volume: 32 start-page: 1908040 year: 2020 ident: 2024060520164330700_c34 publication-title: Adv. Mater. doi: 10.1002/adma.201908040 – volume: 9 start-page: 372 year: 2014 ident: 2024060520164330700_c17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 117 start-page: 28589 year: 2020 ident: 2024060520164330700_c14 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2007736117 – volume: 13 start-page: 24 year: 2018 ident: 2024060520164330700_c23 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0010-1 – volume: 18 start-page: 55 year: 2023 ident: 2024060520164330700_c91 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01257-3 – volume: 35 start-page: 2208266 year: 2023 ident: 2024060520164330700_c69 publication-title: Adv. Mater. doi: 10.1002/adma.202208266 – volume: 11 start-page: 42358 year: 2019 ident: 2024060520164330700_c33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15457 – volume: 11 start-page: 1439 year: 2020 ident: 2024060520164330700_c82 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15249-1 – volume: 20 start-page: 6590 year: 2020 ident: 2024060520164330700_c44 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02357 – volume: 433 start-page: 395 year: 2005 ident: 2024060520164330700_c96 publication-title: Nature doi: 10.1038/nature03261 – volume: 12 start-page: 1109 year: 2021 ident: 2024060520164330700_c72 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21320-2 – volume: 9 start-page: 425 year: 2018 ident: 2024060520164330700_c95 publication-title: Chem. Sci. doi: 10.1039/C7SC03859C – volume: 304 start-page: 1650 year: 2004 ident: 2024060520164330700_c6 publication-title: Science doi: 10.1126/science.1098252 – volume: 23 start-page: 20 year: 1995 ident: 2024060520164330700_c64 publication-title: SIGARCH Comput. Archit. News doi: 10.1145/216585.216588 – volume: 31 start-page: 10143 year: 2019 ident: 2024060520164330700_c43 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03499 – volume: 31 start-page: 1901300 year: 2019 ident: 2024060520164330700_c42 publication-title: Adv. Mater. doi: 10.1002/adma.201901300 – volume: 2 start-page: 499 year: 2020 ident: 2024060520164330700_c66 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0208-2 – volume: 86 start-page: 82 year: 1998 ident: 2024060520164330700_c88 publication-title: Proceedings of the IEEE. doi: 10.1109/JPROC.1998.65 – volume: 8 start-page: 25 year: 2022 ident: 2024060520164330700_c80 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00484-3 – volume: 10 start-page: 338 year: 1963 ident: 2024060520164330700_c38 publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1963.15245 – volume: 20 start-page: 480 year: 2021 ident: 2024060520164330700_c40 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00873-5 – volume: 7 start-page: eabl8419 year: 2022 ident: 2024060520164330700_c77 publication-title: Sci. Robot. doi: 10.1126/scirobotics.abl8419 – volume: 18 start-page: 2203611 year: 2022 ident: 2024060520164330700_c87 publication-title: Small doi: 10.1002/smll.202203611 – volume: 9 start-page: 020902 year: 2021 ident: 2024060520164330700_c24 publication-title: APL Mater. doi: 10.1063/5.0032954 – volume-title: Semiconductor Advanced Packaging year: 2021 ident: 2024060520164330700_c92 doi: 10.1007/978-981-16-1376-0 – volume: 304 start-page: 1606 year: 2004 ident: 2024060520164330700_c9 publication-title: Science doi: 10.1126/science.1099822 – volume: 8 start-page: 52 year: 2022 ident: 2024060520164330700_c52 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00738-2 – volume: 14 start-page: 5668 year: 2020 ident: 2024060520164330700_c100 publication-title: ACS Nano doi: 10.1021/acsnano.0c00180 – volume: 17 start-page: 475 year: 1921 ident: 2024060520164330700_c36 publication-title: Phys. Rev. doi: 10.1103/PhysRev.17.475 – volume: 5 start-page: 1109 year: 2023 ident: 2024060520164330700_c62 publication-title: Acs. Mater. Lett. doi: 10.1021/acsmaterialslett.2c01026 – volume: 15 start-page: 7905 year: 2015 ident: 2024060520164330700_c22 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03768 |
SSID | ssj0005233 |
Score | 2.45163 |
Snippet | With the gradual decline in Moore's law, traditional silicon-based technologies have encountered numerous challenges and limitations, prompting researchers to... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics CMOS Computer memory Ferroelectric materials Ferroelectricity Field effect transistors Moore's law Nanoelectronics Neuromorphic computing Power consumption Semiconductor devices Transistors |
Title | Two-dimensional van der Waals ferroelectric field-effect transistors toward nonvolatile memory and neuromorphic computing |
URI | http://dx.doi.org/10.1063/5.0165837 https://www.proquest.com/docview/2883944866 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJsR4QDBAFAaygAekKizEsZM8TrBpQt0A0Yq-RY5jr0VdOrWpELzxn3P-kcaBgoCXKLXck-X7cjlf7r5D6LkqOeMRZ0EpmQrA_1dBRgHLmSQqTgtO7eeCs3N2Oo7fTuik1_vuV5fUxUvxbWtdyf9oFcZAr7pK9h80uxEKA3AP-oUraBiuf6fjL4ug1PT8llrD9ODV3BCfuCZFVnK5XNg2NzMxMKlqgU3f0I0h4D8r02mnNomzg2pRgaUCwXM5uNTpt5aYyfBdwq-rKcgQpgVE87JruGudH2tjJKvB3BQIrVq8uIj0ZH2hb3-JVH_wADqcrU04diqri-mat8MwFyZ-nkk_ShGZfDf3waUtDOBVNwXivV1Yxz6TgGWOglZakxwmOpLqrHRjs22RcgPOdOvLALwv0KCmZQU3y1LLdAm3z9_lJ-PhMB8dT0bX0G4EJw0wlbtHb86GH708IUKatot6aQ09FSOHG9Fdp6Y9qdwAN8ZmVHhOy-g2uuVOG_jIQucO6slqH930OCj30XW3PXfR15_ghAFOGOCEDZxwB07YhxP24IQtnLAHJ2zhhAFO2IcT3sDpHhqfHI9enwauM0cgoiyqA8ZSAo58mAlVCKVEGdIwZjLiXMfUS1VmRSw08VFMU54UhKlXIuFEgDOZahNA7qMdWId8gHCWEMqziEkWqpiAeHBg0wReKzQRtKRlH71otjZvNlN3T5nnJn2CkZzmTgt99HQz9cpytWybdNDoJ3eP8irXLbdhsSljffRso7PfC3n4ZyGP0F77DBygnXq5lo_Bd62LJw5dPwBtVqIU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+van+der+Waals+ferroelectric+field-effect+transistors+toward+nonvolatile+memory+and+neuromorphic+computing&rft.jtitle=Applied+physics+letters&rft.au=Huang%2C+Xuguang&rft.au=Zhang%2C+Qian&rft.au=Liu%2C+Shenghua&rft.au=Liang+Qijie&rft.date=2023-10-30&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=123&rft.issue=18&rft_id=info:doi/10.1063%2F5.0165837&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |