Flow Ripple Reduction of Axial-Piston Pump by Structure Optimizing of Outlet Triangular Damping Groove

The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will directly affect the pump’s dynamic characteristics. Herein, a multi-parameter data-based structure optimizing method of the triangular damping g...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 8; no. 12; p. 1664
Main Authors Hong, Haocen, Zhao, Chunxiao, Zhang, Bin, Bai, Dapeng, Yang, Huayong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will directly affect the pump’s dynamic characteristics. Herein, a multi-parameter data-based structure optimizing method of the triangular damping groove is investigated using numerical models and simulation results. The mathematical models of a nine-piston pump are proposed and developed by MATLAB/Simulink, and the simulation results are verified by experimental results. Then, the effects of width angle and depth angle on discharge flow are analyzed. Based on the analysis of groove parameters, an optimizing index, which considering the time domain characteristics of discharge flow, is proposed. As results show, comparing with the initial specific groove structure, the amplitude of flow ripple is reduced from 14.6% to 9.8% with the optimized structure. The results demonstrate that the outlet flow ripple can be significantly reduced by the optimized structure, and the proposed multi-parameter optimizing method can play a guiding significance in the design of low-ripple axial piston pumps.
AbstractList The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will directly affect the pump’s dynamic characteristics. Herein, a multi-parameter data-based structure optimizing method of the triangular damping groove is investigated using numerical models and simulation results. The mathematical models of a nine-piston pump are proposed and developed by MATLAB/Simulink, and the simulation results are verified by experimental results. Then, the effects of width angle and depth angle on discharge flow are analyzed. Based on the analysis of groove parameters, an optimizing index, which considering the time domain characteristics of discharge flow, is proposed. As results show, comparing with the initial specific groove structure, the amplitude of flow ripple is reduced from 14.6% to 9.8% with the optimized structure. The results demonstrate that the outlet flow ripple can be significantly reduced by the optimized structure, and the proposed multi-parameter optimizing method can play a guiding significance in the design of low-ripple axial piston pumps.
Author Hong, Haocen
Yang, Huayong
Bai, Dapeng
Zhang, Bin
Zhao, Chunxiao
Author_xml – sequence: 1
  givenname: Haocen
  orcidid: 0000-0002-6902-6685
  surname: Hong
  fullname: Hong, Haocen
– sequence: 2
  givenname: Chunxiao
  surname: Zhao
  fullname: Zhao, Chunxiao
– sequence: 3
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
– sequence: 4
  givenname: Dapeng
  surname: Bai
  fullname: Bai, Dapeng
– sequence: 5
  givenname: Huayong
  surname: Yang
  fullname: Yang, Huayong
BookMark eNpNkFFLwzAUhYNMcM49-A8CPvlQbZI2aR7HdFMYbMz5XJI2GRltE9NEnb_eDkU8L_cc7se9cC7BqLOdAuAapXeE8PTe-QJhRGl2BsYYY5Zwhtjon78A074_pIM4IkVOx0AvGvsBt8a5RsGtqmMVjO2g1XD2aUSTbEwfhryJrYPyCF-CH4joFVy7YFrzZbr9CV7H0KgAd96Ibh8b4eGDaN1pufTWvqsrcK5F06vp75yA18Xjbv6UrNbL5_lslVSY45DkSnApi1wWNS1SSvOMKlbnDBOiMiZJlssa80pXmkuqCZKcUlmnKakkZbRQZAJufu46b9-i6kN5sNF3w8sSZwxRhFnBB-r2h6q87XuvdOm8aYU_ligtT02Wf02Sb1sjZ_U
CitedBy_id crossref_primary_10_1016_j_aej_2024_05_005
crossref_primary_10_3390_pr12071378
crossref_primary_10_1016_j_aej_2022_07_046
crossref_primary_10_3390_en14133764
crossref_primary_10_3390_coatings14040415
crossref_primary_10_3390_pr10061077
crossref_primary_10_1080_10402004_2024_2320693
crossref_primary_10_3390_fluids9010014
crossref_primary_10_1016_j_wear_2023_205113
crossref_primary_10_3390_s23156967
crossref_primary_10_1016_j_triboint_2024_109838
crossref_primary_10_1063_5_0188659
crossref_primary_10_3390_machines10060411
Cites_doi 10.1007/s11012-009-9277-0
10.1631/jzus.A1400266
10.1080/14399776.2002.10781124
10.1299/jsmeb.37.83
10.1007/s12206-016-0515-9
10.1115/1.3153051
10.1115/1.482452
10.1177/0954406219840379
10.1109/FPM45753.2019.9035827
10.1299/jsme1958.9.305
10.1631/jzus.A0900417
10.1016/j.apm.2011.09.016
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr8121664
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr8121664
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PIMPY
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c292t-5ea9bb85b8d68066546e7d57233e47b345bd29cfcf9b6f31b966bd003cb6768e3
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Thu Oct 10 19:48:00 EDT 2024
Thu Aug 22 11:29:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-5ea9bb85b8d68066546e7d57233e47b345bd29cfcf9b6f31b966bd003cb6768e3
ORCID 0000-0002-6902-6685
OpenAccessLink https://www.proquest.com/docview/2471612789?pq-origsite=%requestingapplication%
PQID 2471612789
PQPubID 2032344
ParticipantIDs proquest_journals_2471612789
crossref_primary_10_3390_pr8121664
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Edge (ref_3) 1989; 111
Mandal (ref_12) 2011; 226
Wieczorek (ref_14) 2002; 3
Yamaguchi (ref_1) 1966; 9
Maring (ref_4) 1998; 122
Mandal (ref_11) 2008; 222
Xu (ref_13) 2016; 30
ref_20
Yin (ref_9) 2016; 230
Xinjie (ref_17) 2019; 47
Bergada (ref_6) 2010; 45
Lijian (ref_10) 2020; 13
ref_19
Ma (ref_5) 2010; 11
Xu (ref_8) 2015; 16
ref_16
ref_15
Yamaguchi (ref_2) 1994; 37
Bergada (ref_7) 2012; 36
Pan (ref_18) 2019; 233
References_xml – volume: 45
  start-page: 585
  year: 2010
  ident: ref_6
  article-title: The hydrostatic/hydrodynamic behaviour of an axial-piston pump slipper with multiple lands
  publication-title: Meccanica
  doi: 10.1007/s11012-009-9277-0
  contributor:
    fullname: Bergada
– volume: 16
  start-page: 229
  year: 2015
  ident: ref_8
  article-title: A new design method for the transition region of the valve plate for an axial-piston pump
  publication-title: J. Zhejiang Univ. Sci. A Appl. Phys. Eng.
  doi: 10.1631/jzus.A1400266
  contributor:
    fullname: Xu
– volume: 3
  start-page: 7
  year: 2002
  ident: ref_14
  article-title: Computer aided optimization of bearing and sealing gaps in hydrostatic machines—The simulation tool Caspar
  publication-title: Int. J. Fluid Power
  doi: 10.1080/14399776.2002.10781124
  contributor:
    fullname: Wieczorek
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_10
  article-title: Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model
  publication-title: Energies
  contributor:
    fullname: Lijian
– volume: 37
  start-page: 83
  year: 1994
  ident: ref_2
  article-title: Motion of the Piston in Piston Pumps and Motors. (Experiments and Theoretical Discussion)
  publication-title: Int. J. Ser. B Fluids Therm. Eng.
  doi: 10.1299/jsmeb.37.83
  contributor:
    fullname: Yamaguchi
– volume: 226
  start-page: 451
  year: 2011
  ident: ref_12
  article-title: Effects of flow inertia modelling and valve-plate geometry on swash-plate axialpiston pump performance
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
  contributor:
    fullname: Mandal
– volume: 30
  start-page: 2531
  year: 2016
  ident: ref_13
  article-title: Flow ripple reduction of an axial-piston pump by a combination of cross-angle and pressure relief grooves: Analysis and optimization
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-016-0515-9
  contributor:
    fullname: Xu
– volume: 230
  start-page: 716
  year: 2016
  ident: ref_9
  article-title: Numerical and experimental study of cavitation performance in sea water hydraulic axial-piston pump
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
  contributor:
    fullname: Yin
– volume: 222
  start-page: 557
  year: 2008
  ident: ref_11
  article-title: Theoretical simulation of ripples for different leading-side groove volumes on manifolds in fixed-displacement axial-piston pump
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
  contributor:
    fullname: Mandal
– ident: ref_16
– ident: ref_15
– volume: 47
  start-page: 144
  year: 2019
  ident: ref_17
  article-title: Application of Virtual Prototype Technology in the Simulation and Analysis of Axial Piston Pump
  publication-title: Mach. Tool Hydraul.
  contributor:
    fullname: Xinjie
– volume: 111
  start-page: 307
  year: 1989
  ident: ref_3
  article-title: The Pumping Dynamics of Swash Plate Piston Pumps
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.3153051
  contributor:
    fullname: Edge
– volume: 122
  start-page: 263
  year: 1998
  ident: ref_4
  article-title: The Discharge Flow Ripple of an Axial-Piston Swash Plate Type Hydrostatic Pump
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.482452
  contributor:
    fullname: Maring
– volume: 233
  start-page: 095440621984037
  year: 2019
  ident: ref_18
  article-title: The influence of dynamic swash plate vibration on outlet flow ripple in constant power variable-displacement piston pump
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/0954406219840379
  contributor:
    fullname: Pan
– ident: ref_19
  doi: 10.1109/FPM45753.2019.9035827
– volume: 9
  start-page: 305
  year: 1966
  ident: ref_1
  article-title: Studies on the Characteristics of Axial Plunger Pumps and Motors: 1st Report, Effects of Trapping Phenomena on the Characteristics
  publication-title: Bull. JSME
  doi: 10.1299/jsme1958.9.305
  contributor:
    fullname: Yamaguchi
– volume: 11
  start-page: 181
  year: 2010
  ident: ref_5
  article-title: Optimization of cross angle based on the pumping dynamics model
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A0900417
  contributor:
    fullname: Ma
– ident: ref_20
– volume: 36
  start-page: 1731
  year: 2012
  ident: ref_7
  article-title: A complete analysis of axial-piston pump leakage and output flow ripples
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.09.016
  contributor:
    fullname: Bergada
SSID ssj0000913856
Score 2.2853436
Snippet The triangular damping groove on the valve plate can effectively reduce the discharge flow ripple of an axial piston pump, which structural parameters will...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 1664
SubjectTerms Axial flow pumps
Cavitation
Damping
Design
Discharge
Dynamic characteristics
Fluid dynamics
Friction
Grooves
Mathematical models
Numerical models
Optimization
Outlet flow
Parameters
Piston pumps
Ripples
Simulation
Turbulence models
Title Flow Ripple Reduction of Axial-Piston Pump by Structure Optimizing of Outlet Triangular Damping Groove
URI https://www.proquest.com/docview/2471612789
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ELnowghpRJI3xoIcFtnXdejKoIDHhIwgJt2Vd24RENgT8PPi3-zoKysXLkmXNDu_7177-HkKXCoxC1nlsMcjVFlGKWhEJ6vBgwrU9AWFTX07udGl7RB7H3thsuC1MW-U6JmaBWqSx3iOvORBFIRv7AbuZvVh6apQ-XTUjNHKo4NhEH9MWbpvd_mCzy6JZLwOPriiFXMD3tdkcUppNKdlORNtxOEsurQO0b6pC3FipsYh2ZFJCe3-4AkuoaLxwga8MVfT1IVKt5_QdDyZQSko80CysWs44VbjxAYZl9TVxQIL7oDPMP_FTRhb7Ope4B5FiOvmCP-vFPd0VtMRDMMZEj6af4_toqi9S4QcorN_kERq1msO7tmUmJ1ixw5yl5cmIcR54PBA0yAYMU-kLz3dcVxKfu8TjwmGxihXjVLk2B9DDBTh4zCngD-keo3ySJvIEYSqciNgqAqjDCFUxI7Ggrg8oUnBu27KMLtZiDGcrgowQgIWWdbiRdRlV1gIOjY8swl-Nnv7_-QztOhrlZk0kFZQHWclzKAWWvIpyQeuharQOb53v5g_Er7eL
link.rule.ids 315,786,790,12792,21416,27955,27956,33406,33777,43633,43838,74390,74657
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oHtSDUdT4QN0YD3posO122z0ZfCC-kCAk3Jpudzch0YKAz1_vbFlQLl56abOHeX_T2W8AjjQahToVqcMxVztUa-YkNDrFB5e-G0gMm-Zy8kOd1dr0thN0bMNtaMcqJzExD9Syl5oeednDKIrZOIz4Wf_VMVujzN9Vu0JjHhYM5WZUgIXzq3qjOe2yGNbLKGBjSiEf8X25P8CU5jJGZxPRbBzOk0t1FVZsVUgqYzWuwZzKirD8hyuwCGvWC4fk2FJFn6yDrj73Pkizi6WkIk3DwmrkTHqaVD7RsJyGIQ7ISAN1RsQXecrJYt8GijxipHjpfuPJ5uNHMxU0Ii00xsysph-Qy-TFXKQi11hYv6sNaFevWhc1x25OcFKPeyMnUAkXIgpEJFmULxhmKpRB6Pm-oqHwaSCkx1Odai6Y9l2BoEdIdPBUMMQfyt-EQtbL1BYQJr2EujpBqMMp0ymnqWR-iChSCuG6ahsOJ2KM-2OCjBiBhZF1PJX1NpQmAo6tjwzjX43u_P_6ABZrrYf7-P6mfrcLS55BvPlASQkKKDe1h2XBSOxb3f8A9JK4ag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UE6MHI6gRRW2MBz0ssK3r1pMh4sAvIAgJt2Vd24REBgJ-_vW-joJy8bJLlx3e6_v4da-_H0IXCjaFrPDEYlCrLaIUtWISVODBhGt7AtKmvpz81KSNHrnve30z_zQ1Y5WLnJglajFK9Bl52YEsCtXYD1hZmbGIdi28Hr9aWkFK_2k1chrraEM32VrGIQjry_MWzX8ZeHROLuTCenk8geJmU0pWS9JqRs7KTLiLdkx_iKtzh-bRmkwLaPsPa2AB5U08TvGlIY2-2kMqfBl94M4AmkqJO5qPVVscjxSufsIWs9qaQiDFbfAe5l_4OaONfZtI3IKcMRx8w5f1yy09HzTDXdiWqRapn-BaPNRXqnAdWux3uY964W33pmEZDQUrcZgzszwZM84DjweCBpnUMJW-8HzHdSXxuUs8LhyWqEQxTpVrc4A_XECoJ5wCEpHuAcqlo1QeIkyFExNbxQB6GKEqYSQR1PUBTwrObVsW0fnCjNF4TpURAcTQto6Wti6i0sLAkYmWafTr26P_l8_QJjg9erxrPhyjLUdD32yypIRyYDZ5Av3BjJ9mjv8BCn-7MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+Ripple+Reduction+of+Axial-Piston+Pump+by+Structure+Optimizing+of+Outlet+Triangular+Damping+Groove&rft.jtitle=Processes&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=8&rft.issue=12&rft.spage=1664&rft_id=info:doi/10.3390%2Fpr8121664&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon