Throughput Maximization With an AoI Constraint in Energy Harvesting D2D-Enabled Cellular Networks: An MSRA-TD3 Approach

The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum utilization. Most of existing works mainly focus on the throughput, while the information freshness, which is critical to the time-sensitive application...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 24; no. 2; pp. 1448 - 1466
Main Authors Liu, Xiaoying, Xu, Jiaxiang, Zheng, Kechen, Zhang, Guanglin, Liu, Jia, Shiratori, Norio
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum utilization. Most of existing works mainly focus on the throughput, while the information freshness, which is critical to the time-sensitive applications, has been rarely explored. Considering above facts, we aim to develop an optimal mode selection and resource allocation (MSRA) policy that maximizes the long-term overall throughput of a time-varying dynamic EH-DCN, subject to an age of information (AoI) constraint. As the MSRA policy involves both continuous variables (i.e., bandwidth, power, and time allocations) and discrete variables (i.e., mode selection and channel allocation), the optimization problem is proved to be nonconvex and NP-hard. To solve the nonconvex NP-hard problem, we exploit a deep reinforcement learning (DRL) approach, called MSRA twin delayed deep deterministic policy gradient (MSRA-TD3). The MSRA-TD3 employs a double critic network structure to better fit the reward function, and could effectively mitigate the overestimation of Q-value in deep deterministic policy gradient (DDPG), which is a classical DRL algorithm. It is worth noting that in the design of the MSRA-TD3, we use the throughput of user equipments (UEs) at the previous time slot as a state to bypass the channel state information estimation resulting from the time-varying dynamic environment, and take the weights of throughput and AoI penalty into the reward function to evaluate two performance. Simulations demonstrate that the established MSRA-TD3 algorithm achieves better performance in terms of throughput and AoI than comparison DRL algorithms.
AbstractList The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum utilization. Most of existing works mainly focus on the throughput, while the information freshness, which is critical to the time-sensitive applications, has been rarely explored. Considering above facts, we aim to develop an optimal mode selection and resource allocation (MSRA) policy that maximizes the long-term overall throughput of a time-varying dynamic EH-DCN, subject to an age of information (AoI) constraint. As the MSRA policy involves both continuous variables (i.e., bandwidth, power, and time allocations) and discrete variables (i.e., mode selection and channel allocation), the optimization problem is proved to be nonconvex and NP-hard. To solve the nonconvex NP-hard problem, we exploit a deep reinforcement learning (DRL) approach, called MSRA twin delayed deep deterministic policy gradient (MSRA-TD3). The MSRA-TD3 employs a double critic network structure to better fit the reward function, and could effectively mitigate the overestimation of Q-value in deep deterministic policy gradient (DDPG), which is a classical DRL algorithm. It is worth noting that in the design of the MSRA-TD3, we use the throughput of user equipments (UEs) at the previous time slot as a state to bypass the channel state information estimation resulting from the time-varying dynamic environment, and take the weights of throughput and AoI penalty into the reward function to evaluate two performance. Simulations demonstrate that the established MSRA-TD3 algorithm achieves better performance in terms of throughput and AoI than comparison DRL algorithms.
Author Liu, Xiaoying
Xu, Jiaxiang
Liu, Jia
Zheng, Kechen
Shiratori, Norio
Zhang, Guanglin
Author_xml – sequence: 1
  givenname: Xiaoying
  orcidid: 0000-0002-4592-0631
  surname: Liu
  fullname: Liu, Xiaoying
  email: xiaoyingliu@zjut.edu.cn
  organization: School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Jiaxiang
  surname: Xu
  fullname: Xu, Jiaxiang
  email: 211122120027@zjut.edu.cn
  organization: School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Kechen
  orcidid: 0000-0003-3886-4288
  surname: Zheng
  fullname: Zheng, Kechen
  email: kechenzheng@zjut.edu.cn
  organization: School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Guanglin
  orcidid: 0000-0003-4095-6843
  surname: Zhang
  fullname: Zhang, Guanglin
  email: glzhang@dhu.edu.cn
  organization: College of Information Science and Technology, Donghua University, Shanghai, China
– sequence: 5
  givenname: Jia
  orcidid: 0000-0002-3424-050X
  surname: Liu
  fullname: Liu, Jia
  email: jliu@nii.ac.jp
  organization: Center for Strategic Cyber Resilience Research and Development, National Institute of Informatics, Tokyo, Japan
– sequence: 6
  givenname: Norio
  orcidid: 0000-0001-9500-3332
  surname: Shiratori
  fullname: Shiratori, Norio
  email: norio.shiratori.e8@tohoku.ac.jp
  organization: Research and Development Initiative, Chuo University, Tokyo, Japan
BookMark eNp9kDtPwzAURi0EEs-dgcESc4ofsZ2wRWmBSi1IUMQYOYnTGIIdHIdSfj0pZUAMTPcO37nf1TkEu8YaBcApRiOMUXyxeEpHBJFwRBmKQ8F2wAFmLAoICaPdzU55gIng--Cw654RwoIzdgBWi9rZflm3vYdz-aFf9af02hr4pH0NpYGJncLUms47qY2H2sCJUW65hjfSvavOa7OEYzIOJkbmjSphqpqmb6SDt8qvrHvpLmFi4PzhPgkWYwqTtnVWFvUx2Ktk06mTn3kEHq8mi_QmmN1dT9NkFhQkJj5gZYzKKC8oplXJeJHnnCpUqlBGRU4rIUokS6xyycOYhXFEMSkQF5JUggoyRI7A-fbuUPvWD_9mz7Z3ZqjMKOY8IozQcEihbapwtuucqrLW6Vfp1hlG2UZvNujNNnqzH70Dwv8ghfbf6jammv_Asy2olVK_ekSMQxrRL0EIiWU
CODEN ITWCAX
CitedBy_id crossref_primary_10_3390_s25061943
crossref_primary_10_1109_ACCESS_2025_3546104
crossref_primary_10_1109_ACCESS_2025_3544962
crossref_primary_10_1109_ACCESS_2025_3550518
crossref_primary_10_1109_ACCESS_2025_3549450
Cites_doi 10.1109/TCOMM.2022.3221422
10.1109/TCOMM.2022.3226193
10.1109/TVT.2021.3095626
10.1109/JIOT.2023.3267456
10.1109/TGCN.2022.3149486
10.1109/TITS.2022.3190799
10.1109/TVT.2018.2853612
10.1109/LCOMM.2015.2478460
10.1109/TMC.2020.3005908
10.1109/TWC.2022.3222864
10.1109/TVT.2019.2903858
10.1109/INFCOM.2012.6195689
10.1109/TVT.2023.3283306
10.1109/TCOMM.2022.3208873
10.1109/JSAC.2021.3065061
10.1109/JSAC.2023.3280990
10.1109/TVT.2022.3182647
10.1109/tvt.2024.3461333
10.1109/TNET.2021.3133022
10.1109/TMC.2021.3106013
10.1109/JIOT.2021.3096652
10.1016/j.comnet.2024.110389
10.1016/j.cor.2021.105692
10.1109/TCOMM.2023.3251353
10.1109/TWC.2019.2933417
10.1109/TCOMM.2023.3274145
10.1109/TWC.2020.3032991
10.1109/INDIN41052.2019.8972306
10.1109/TGCN.2021.3069506
10.1109/JSAC.2023.3240707
10.1109/TWC.2022.3225085
10.1109/JIOT.2022.3229741
10.1109/TWC.2022.3230407
10.1109/JIOT.2022.3151001
10.1109/TWC.2020.3046262
10.1109/jiot.2024.3406044
10.1109/TVT.2023.3297602
10.1109/TVT.2022.3212966
10.1109/JIOT.2022.3201021
10.1109/JSAC.2019.2933764
10.1109/TCOMM.2023.3292282
10.1109/JSAC.2022.3228558
10.1109/TMC.2018.2871073
10.1109/TVT.2022.3181414
10.1109/TWC.2020.3031436
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2024.3509475
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 1466
ExternalDocumentID 10_1109_TWC_2024_3509475
10791438
Genre orig-research
GrantInformation_xml – fundername: JSPS KAKENHI Grant Number
  grantid: JP23K16877
– fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang
  grantid: RF-A2022005
  funderid: 10.13039/100022955
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 23XD1420100
  funderid: 10.13039/501100003399
– fundername: National Natural Science Foundation of China
  grantid: 62372412; 62372413; 62072096
  funderid: 10.13039/501100001809
– fundername: Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning
– fundername: Project of Cyber Security Establishment with Inter-University Cooperation
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-5d90d8bc313fd56cbb63e0de4a8cb3f77d0ad1eba6495498312c067a2f7372cb3
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Tue Jul 22 15:12:36 EDT 2025
Tue Jul 01 05:40:52 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Wed Aug 27 01:50:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-5d90d8bc313fd56cbb63e0de4a8cb3f77d0ad1eba6495498312c067a2f7372cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3886-4288
0000-0002-3424-050X
0000-0003-4095-6843
0000-0002-4592-0631
0000-0001-9500-3332
PQID 3166825234
PQPubID 105736
PageCount 19
ParticipantIDs proquest_journals_3166825234
ieee_primary_10791438
crossref_citationtrail_10_1109_TWC_2024_3509475
crossref_primary_10_1109_TWC_2024_3509475
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Floudas (ref32) 1995
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref25
  doi: 10.1109/TCOMM.2022.3221422
– ident: ref22
  doi: 10.1109/TCOMM.2022.3226193
– ident: ref10
  doi: 10.1109/TVT.2021.3095626
– ident: ref8
  doi: 10.1109/JIOT.2023.3267456
– ident: ref19
  doi: 10.1109/TGCN.2022.3149486
– volume-title: Mixed Integer Nonlinear Programming
  year: 1995
  ident: ref32
– ident: ref40
  doi: 10.1109/TITS.2022.3190799
– ident: ref4
  doi: 10.1109/TVT.2018.2853612
– ident: ref28
  doi: 10.1109/LCOMM.2015.2478460
– ident: ref33
  doi: 10.1109/TMC.2020.3005908
– ident: ref39
  doi: 10.1109/TWC.2022.3222864
– ident: ref2
  doi: 10.1109/TVT.2019.2903858
– ident: ref15
  doi: 10.1109/INFCOM.2012.6195689
– ident: ref6
  doi: 10.1109/TVT.2023.3283306
– ident: ref16
  doi: 10.1109/TCOMM.2022.3208873
– ident: ref20
  doi: 10.1109/JSAC.2021.3065061
– ident: ref31
  doi: 10.1109/JSAC.2023.3280990
– ident: ref45
  doi: 10.1109/TVT.2022.3182647
– ident: ref14
  doi: 10.1109/tvt.2024.3461333
– ident: ref46
  doi: 10.1109/TNET.2021.3133022
– ident: ref29
  doi: 10.1109/TMC.2021.3106013
– ident: ref11
  doi: 10.1109/JIOT.2021.3096652
– ident: ref26
  doi: 10.1016/j.comnet.2024.110389
– ident: ref34
  doi: 10.1016/j.cor.2021.105692
– ident: ref38
  doi: 10.1109/TCOMM.2023.3251353
– ident: ref21
  doi: 10.1109/TWC.2019.2933417
– ident: ref36
  doi: 10.1109/TCOMM.2023.3274145
– ident: ref27
  doi: 10.1109/TWC.2020.3032991
– ident: ref30
  doi: 10.1109/INDIN41052.2019.8972306
– ident: ref42
  doi: 10.1109/TGCN.2021.3069506
– ident: ref43
  doi: 10.1109/JSAC.2023.3240707
– ident: ref9
  doi: 10.1109/TWC.2022.3225085
– ident: ref17
  doi: 10.1109/JIOT.2022.3229741
– ident: ref35
  doi: 10.1109/TWC.2022.3230407
– ident: ref12
  doi: 10.1109/JIOT.2022.3151001
– ident: ref41
  doi: 10.1109/TWC.2020.3046262
– ident: ref18
  doi: 10.1109/jiot.2024.3406044
– ident: ref44
  doi: 10.1109/TVT.2023.3297602
– ident: ref37
  doi: 10.1109/TVT.2022.3212966
– ident: ref1
  doi: 10.1109/JIOT.2022.3201021
– ident: ref5
  doi: 10.1109/JSAC.2019.2933764
– ident: ref7
  doi: 10.1109/TCOMM.2023.3292282
– ident: ref23
  doi: 10.1109/JSAC.2022.3228558
– ident: ref3
  doi: 10.1109/TMC.2018.2871073
– ident: ref13
  doi: 10.1109/TVT.2022.3181414
– ident: ref24
  doi: 10.1109/TWC.2020.3031436
SSID ssj0017655
Score 2.557217
Snippet The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1448
SubjectTerms age of information
Algorithms
Bandwidth
Cellular communication
Constraints
Copper
D2D communication
deep reinforcement learning
Device-to-device communication
Energy harvesting
Interference
Internet of Things
Modal choice
mode selection and resource allocation
Optimization
Performance evaluation
Receivers
Resource allocation
Resource management
RF signals
Throughput
Wireless networks
Title Throughput Maximization With an AoI Constraint in Energy Harvesting D2D-Enabled Cellular Networks: An MSRA-TD3 Approach
URI https://ieeexplore.ieee.org/document/10791438
https://www.proquest.com/docview/3166825234
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLZWTtsBxuhEN0A-7MLBJbEdJ9kt6g8VpPYArcot8q-MipKikYppf_38nLSqmEDccrAlR59f7Jf3vu9D6AdLWeFu1YIkRhnCZSBJypklwoJUTKx4EgE5eTwRoxm_uo1uG7K658JYa33zme3Co6_lm5Vew68yF-FxCnbdLdRymVtN1tqWDGLhLU5dBIOxTLytSQbpxXTec5kg5V0GcnHQUrhzBnlTlf--xP54GR6gyWZhdVfJfXddqa7--0Kz8d0r_4z2m4smzuqdcYg-2PIL-rQjP3iEnqe1Sc_jusJj-Wfx0HAy8XxR3WFZ4mx1icHR0_tIVHhR4oGnCmJwFAJ5jvIX7tM-GXgClsE9u1xCWyue1M3lTz9xVuLxzXVGpn2Gs0a_vI1mw8G0NyKNEQPRNKUViUwamERpFrLCREIrJZgNjOUy0YoVcWwCaUKrpOBQNUxYSLU7BSUtwATHDfmK9spVaY8RDmJNCytjHXLFbZjKUFCuXUpccO42U9RBFxtoct2olMNLLnOfrQRp7sDMAcy8AbODzrczHmuFjjfGtgGbnXE1LB10soE_b2L4KWehEC5_pox_e2Xad_SRgh2wb-I-QXvV77U9dXeUSp35vfkPG4Xhkw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Pb9MwFH4a4wAcxq9NlA3wAQ4c3CW24yRIHKK2U8vWHiDTdgv-Fago6URTbeN_4V_hb8N20qoCwW0StxzsSHY-P7-X9973AbykKS2tV81xoqXGTAQCp4wazI2jioklSyLXnDye8OEpe3cenW_Bj3UvjDHGF5-Zrnv0uXw9V0v3q8ye8Dh1ct1tDeWxub60Edri7ahvP-crQo4GeW-IWxEBrEhKahzpNNCJVDSkpY64kpJTE2jDRKIkLeNYB0KHRgrOXMYroSFR1oILUjoBFzvEvvcW3LaORkSa9rB1kiLmXlTV2gwnZROvs6BBepif9WzsSViXOoI6V8S4cet5GZc_bL-_0I7uw8_VVjR1LF-6y1p21fffWCL_2716ADutK42yBvsPYctUj-DeBsHiY7jMGxmii2WNxuJq-rXtOkVn0_ozEhXK5iPkNEu9UkaNphUa-GZI5DSTHAFJ9Qn1SR8PfIuZRj0zm7nCXTRpyucXb1BWofGH9xnO-xRlLUP7LpzeyMr3YLuaV-YJoCBWpDQiViGTzISpCDlhygb9JWP2uEQdOFxBoVAtD7tb5Kzw8ViQFhY8hQNP0YKnA6_XMy4aDpJ_jN11WNgY18CgAwcruBWtlVoUNOQ8IRGh7Olfpr2AO8N8fFKcjCbH-3CXOPFjX7J-ANv1t6V5Zj2yWj735wLBx5sG1y9tkEBl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Maximization+With+an+AoI+Constraint+in+Energy+Harvesting+D2D-Enabled+Cellular+Networks%3A+An+MSRA-TD3+Approach&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Liu%2C+Xiaoying&rft.au=Xu%2C+Jiaxiang&rft.au=Zheng%2C+Kechen&rft.au=Zhang%2C+Guanglin&rft.date=2025-02-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=24&rft.issue=2&rft.spage=1448&rft.epage=1466&rft_id=info:doi/10.1109%2FTWC.2024.3509475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2024_3509475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon