Throughput Maximization With an AoI Constraint in Energy Harvesting D2D-Enabled Cellular Networks: An MSRA-TD3 Approach
The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum utilization. Most of existing works mainly focus on the throughput, while the information freshness, which is critical to the time-sensitive application...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 24; no. 2; pp. 1448 - 1466 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum utilization. Most of existing works mainly focus on the throughput, while the information freshness, which is critical to the time-sensitive applications, has been rarely explored. Considering above facts, we aim to develop an optimal mode selection and resource allocation (MSRA) policy that maximizes the long-term overall throughput of a time-varying dynamic EH-DCN, subject to an age of information (AoI) constraint. As the MSRA policy involves both continuous variables (i.e., bandwidth, power, and time allocations) and discrete variables (i.e., mode selection and channel allocation), the optimization problem is proved to be nonconvex and NP-hard. To solve the nonconvex NP-hard problem, we exploit a deep reinforcement learning (DRL) approach, called MSRA twin delayed deep deterministic policy gradient (MSRA-TD3). The MSRA-TD3 employs a double critic network structure to better fit the reward function, and could effectively mitigate the overestimation of Q-value in deep deterministic policy gradient (DDPG), which is a classical DRL algorithm. It is worth noting that in the design of the MSRA-TD3, we use the throughput of user equipments (UEs) at the previous time slot as a state to bypass the channel state information estimation resulting from the time-varying dynamic environment, and take the weights of throughput and AoI penalty into the reward function to evaluate two performance. Simulations demonstrate that the established MSRA-TD3 algorithm achieves better performance in terms of throughput and AoI than comparison DRL algorithms. |
---|---|
AbstractList | The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum utilization. Most of existing works mainly focus on the throughput, while the information freshness, which is critical to the time-sensitive applications, has been rarely explored. Considering above facts, we aim to develop an optimal mode selection and resource allocation (MSRA) policy that maximizes the long-term overall throughput of a time-varying dynamic EH-DCN, subject to an age of information (AoI) constraint. As the MSRA policy involves both continuous variables (i.e., bandwidth, power, and time allocations) and discrete variables (i.e., mode selection and channel allocation), the optimization problem is proved to be nonconvex and NP-hard. To solve the nonconvex NP-hard problem, we exploit a deep reinforcement learning (DRL) approach, called MSRA twin delayed deep deterministic policy gradient (MSRA-TD3). The MSRA-TD3 employs a double critic network structure to better fit the reward function, and could effectively mitigate the overestimation of Q-value in deep deterministic policy gradient (DDPG), which is a classical DRL algorithm. It is worth noting that in the design of the MSRA-TD3, we use the throughput of user equipments (UEs) at the previous time slot as a state to bypass the channel state information estimation resulting from the time-varying dynamic environment, and take the weights of throughput and AoI penalty into the reward function to evaluate two performance. Simulations demonstrate that the established MSRA-TD3 algorithm achieves better performance in terms of throughput and AoI than comparison DRL algorithms. |
Author | Liu, Xiaoying Xu, Jiaxiang Liu, Jia Zheng, Kechen Shiratori, Norio Zhang, Guanglin |
Author_xml | – sequence: 1 givenname: Xiaoying orcidid: 0000-0002-4592-0631 surname: Liu fullname: Liu, Xiaoying email: xiaoyingliu@zjut.edu.cn organization: School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Jiaxiang surname: Xu fullname: Xu, Jiaxiang email: 211122120027@zjut.edu.cn organization: School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 3 givenname: Kechen orcidid: 0000-0003-3886-4288 surname: Zheng fullname: Zheng, Kechen email: kechenzheng@zjut.edu.cn organization: School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 4 givenname: Guanglin orcidid: 0000-0003-4095-6843 surname: Zhang fullname: Zhang, Guanglin email: glzhang@dhu.edu.cn organization: College of Information Science and Technology, Donghua University, Shanghai, China – sequence: 5 givenname: Jia orcidid: 0000-0002-3424-050X surname: Liu fullname: Liu, Jia email: jliu@nii.ac.jp organization: Center for Strategic Cyber Resilience Research and Development, National Institute of Informatics, Tokyo, Japan – sequence: 6 givenname: Norio orcidid: 0000-0001-9500-3332 surname: Shiratori fullname: Shiratori, Norio email: norio.shiratori.e8@tohoku.ac.jp organization: Research and Development Initiative, Chuo University, Tokyo, Japan |
BookMark | eNp9kDtPwzAURi0EEs-dgcESc4ofsZ2wRWmBSi1IUMQYOYnTGIIdHIdSfj0pZUAMTPcO37nf1TkEu8YaBcApRiOMUXyxeEpHBJFwRBmKQ8F2wAFmLAoICaPdzU55gIng--Cw654RwoIzdgBWi9rZflm3vYdz-aFf9af02hr4pH0NpYGJncLUms47qY2H2sCJUW65hjfSvavOa7OEYzIOJkbmjSphqpqmb6SDt8qvrHvpLmFi4PzhPgkWYwqTtnVWFvUx2Ktk06mTn3kEHq8mi_QmmN1dT9NkFhQkJj5gZYzKKC8oplXJeJHnnCpUqlBGRU4rIUokS6xyycOYhXFEMSkQF5JUggoyRI7A-fbuUPvWD_9mz7Z3ZqjMKOY8IozQcEihbapwtuucqrLW6Vfp1hlG2UZvNujNNnqzH70Dwv8ghfbf6jammv_Asy2olVK_ekSMQxrRL0EIiWU |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_3390_s25061943 crossref_primary_10_1109_ACCESS_2025_3546104 crossref_primary_10_1109_ACCESS_2025_3544962 crossref_primary_10_1109_ACCESS_2025_3550518 crossref_primary_10_1109_ACCESS_2025_3549450 |
Cites_doi | 10.1109/TCOMM.2022.3221422 10.1109/TCOMM.2022.3226193 10.1109/TVT.2021.3095626 10.1109/JIOT.2023.3267456 10.1109/TGCN.2022.3149486 10.1109/TITS.2022.3190799 10.1109/TVT.2018.2853612 10.1109/LCOMM.2015.2478460 10.1109/TMC.2020.3005908 10.1109/TWC.2022.3222864 10.1109/TVT.2019.2903858 10.1109/INFCOM.2012.6195689 10.1109/TVT.2023.3283306 10.1109/TCOMM.2022.3208873 10.1109/JSAC.2021.3065061 10.1109/JSAC.2023.3280990 10.1109/TVT.2022.3182647 10.1109/tvt.2024.3461333 10.1109/TNET.2021.3133022 10.1109/TMC.2021.3106013 10.1109/JIOT.2021.3096652 10.1016/j.comnet.2024.110389 10.1016/j.cor.2021.105692 10.1109/TCOMM.2023.3251353 10.1109/TWC.2019.2933417 10.1109/TCOMM.2023.3274145 10.1109/TWC.2020.3032991 10.1109/INDIN41052.2019.8972306 10.1109/TGCN.2021.3069506 10.1109/JSAC.2023.3240707 10.1109/TWC.2022.3225085 10.1109/JIOT.2022.3229741 10.1109/TWC.2022.3230407 10.1109/JIOT.2022.3151001 10.1109/TWC.2020.3046262 10.1109/jiot.2024.3406044 10.1109/TVT.2023.3297602 10.1109/TVT.2022.3212966 10.1109/JIOT.2022.3201021 10.1109/JSAC.2019.2933764 10.1109/TCOMM.2023.3292282 10.1109/JSAC.2022.3228558 10.1109/TMC.2018.2871073 10.1109/TVT.2022.3181414 10.1109/TWC.2020.3031436 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2024.3509475 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 1466 |
ExternalDocumentID | 10_1109_TWC_2024_3509475 10791438 |
Genre | orig-research |
GrantInformation_xml | – fundername: JSPS KAKENHI Grant Number grantid: JP23K16877 – fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang grantid: RF-A2022005 funderid: 10.13039/100022955 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 23XD1420100 funderid: 10.13039/501100003399 – fundername: National Natural Science Foundation of China grantid: 62372412; 62372413; 62072096 funderid: 10.13039/501100001809 – fundername: Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning – fundername: Project of Cyber Security Establishment with Inter-University Cooperation |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-5d90d8bc313fd56cbb63e0de4a8cb3f77d0ad1eba6495498312c067a2f7372cb3 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Tue Jul 22 15:12:36 EDT 2025 Tue Jul 01 05:40:52 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Wed Aug 27 01:50:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-5d90d8bc313fd56cbb63e0de4a8cb3f77d0ad1eba6495498312c067a2f7372cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3886-4288 0000-0002-3424-050X 0000-0003-4095-6843 0000-0002-4592-0631 0000-0001-9500-3332 |
PQID | 3166825234 |
PQPubID | 105736 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3166825234 ieee_primary_10791438 crossref_citationtrail_10_1109_TWC_2024_3509475 crossref_primary_10_1109_TWC_2024_3509475 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Floudas (ref32) 1995 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref25 doi: 10.1109/TCOMM.2022.3221422 – ident: ref22 doi: 10.1109/TCOMM.2022.3226193 – ident: ref10 doi: 10.1109/TVT.2021.3095626 – ident: ref8 doi: 10.1109/JIOT.2023.3267456 – ident: ref19 doi: 10.1109/TGCN.2022.3149486 – volume-title: Mixed Integer Nonlinear Programming year: 1995 ident: ref32 – ident: ref40 doi: 10.1109/TITS.2022.3190799 – ident: ref4 doi: 10.1109/TVT.2018.2853612 – ident: ref28 doi: 10.1109/LCOMM.2015.2478460 – ident: ref33 doi: 10.1109/TMC.2020.3005908 – ident: ref39 doi: 10.1109/TWC.2022.3222864 – ident: ref2 doi: 10.1109/TVT.2019.2903858 – ident: ref15 doi: 10.1109/INFCOM.2012.6195689 – ident: ref6 doi: 10.1109/TVT.2023.3283306 – ident: ref16 doi: 10.1109/TCOMM.2022.3208873 – ident: ref20 doi: 10.1109/JSAC.2021.3065061 – ident: ref31 doi: 10.1109/JSAC.2023.3280990 – ident: ref45 doi: 10.1109/TVT.2022.3182647 – ident: ref14 doi: 10.1109/tvt.2024.3461333 – ident: ref46 doi: 10.1109/TNET.2021.3133022 – ident: ref29 doi: 10.1109/TMC.2021.3106013 – ident: ref11 doi: 10.1109/JIOT.2021.3096652 – ident: ref26 doi: 10.1016/j.comnet.2024.110389 – ident: ref34 doi: 10.1016/j.cor.2021.105692 – ident: ref38 doi: 10.1109/TCOMM.2023.3251353 – ident: ref21 doi: 10.1109/TWC.2019.2933417 – ident: ref36 doi: 10.1109/TCOMM.2023.3274145 – ident: ref27 doi: 10.1109/TWC.2020.3032991 – ident: ref30 doi: 10.1109/INDIN41052.2019.8972306 – ident: ref42 doi: 10.1109/TGCN.2021.3069506 – ident: ref43 doi: 10.1109/JSAC.2023.3240707 – ident: ref9 doi: 10.1109/TWC.2022.3225085 – ident: ref17 doi: 10.1109/JIOT.2022.3229741 – ident: ref35 doi: 10.1109/TWC.2022.3230407 – ident: ref12 doi: 10.1109/JIOT.2022.3151001 – ident: ref41 doi: 10.1109/TWC.2020.3046262 – ident: ref18 doi: 10.1109/jiot.2024.3406044 – ident: ref44 doi: 10.1109/TVT.2023.3297602 – ident: ref37 doi: 10.1109/TVT.2022.3212966 – ident: ref1 doi: 10.1109/JIOT.2022.3201021 – ident: ref5 doi: 10.1109/JSAC.2019.2933764 – ident: ref7 doi: 10.1109/TCOMM.2023.3292282 – ident: ref23 doi: 10.1109/JSAC.2022.3228558 – ident: ref3 doi: 10.1109/TMC.2018.2871073 – ident: ref13 doi: 10.1109/TVT.2022.3181414 – ident: ref24 doi: 10.1109/TWC.2020.3031436 |
SSID | ssj0017655 |
Score | 2.557217 |
Snippet | The energy harvesting D2D-enabled cellular network (EH-DCN) has emerged as a promising approach to address the issues of energy supply and spectrum... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1448 |
SubjectTerms | age of information Algorithms Bandwidth Cellular communication Constraints Copper D2D communication deep reinforcement learning Device-to-device communication Energy harvesting Interference Internet of Things Modal choice mode selection and resource allocation Optimization Performance evaluation Receivers Resource allocation Resource management RF signals Throughput Wireless networks |
Title | Throughput Maximization With an AoI Constraint in Energy Harvesting D2D-Enabled Cellular Networks: An MSRA-TD3 Approach |
URI | https://ieeexplore.ieee.org/document/10791438 https://www.proquest.com/docview/3166825234 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLZWTtsBxuhEN0A-7MLBJbEdJ9kt6g8VpPYArcot8q-MipKikYppf_38nLSqmEDccrAlR59f7Jf3vu9D6AdLWeFu1YIkRhnCZSBJypklwoJUTKx4EgE5eTwRoxm_uo1uG7K658JYa33zme3Co6_lm5Vew68yF-FxCnbdLdRymVtN1tqWDGLhLU5dBIOxTLytSQbpxXTec5kg5V0GcnHQUrhzBnlTlf--xP54GR6gyWZhdVfJfXddqa7--0Kz8d0r_4z2m4smzuqdcYg-2PIL-rQjP3iEnqe1Sc_jusJj-Wfx0HAy8XxR3WFZ4mx1icHR0_tIVHhR4oGnCmJwFAJ5jvIX7tM-GXgClsE9u1xCWyue1M3lTz9xVuLxzXVGpn2Gs0a_vI1mw8G0NyKNEQPRNKUViUwamERpFrLCREIrJZgNjOUy0YoVcWwCaUKrpOBQNUxYSLU7BSUtwATHDfmK9spVaY8RDmJNCytjHXLFbZjKUFCuXUpccO42U9RBFxtoct2olMNLLnOfrQRp7sDMAcy8AbODzrczHmuFjjfGtgGbnXE1LB10soE_b2L4KWehEC5_pox_e2Xad_SRgh2wb-I-QXvV77U9dXeUSp35vfkPG4Xhkw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Pb9MwFH4a4wAcxq9NlA3wAQ4c3CW24yRIHKK2U8vWHiDTdgv-Fago6URTbeN_4V_hb8N20qoCwW0StxzsSHY-P7-X9973AbykKS2tV81xoqXGTAQCp4wazI2jioklSyLXnDye8OEpe3cenW_Bj3UvjDHGF5-Zrnv0uXw9V0v3q8ye8Dh1ct1tDeWxub60Edri7ahvP-crQo4GeW-IWxEBrEhKahzpNNCJVDSkpY64kpJTE2jDRKIkLeNYB0KHRgrOXMYroSFR1oILUjoBFzvEvvcW3LaORkSa9rB1kiLmXlTV2gwnZROvs6BBepif9WzsSViXOoI6V8S4cet5GZc_bL-_0I7uw8_VVjR1LF-6y1p21fffWCL_2716ADutK42yBvsPYctUj-DeBsHiY7jMGxmii2WNxuJq-rXtOkVn0_ozEhXK5iPkNEu9UkaNphUa-GZI5DSTHAFJ9Qn1SR8PfIuZRj0zm7nCXTRpyucXb1BWofGH9xnO-xRlLUP7LpzeyMr3YLuaV-YJoCBWpDQiViGTzISpCDlhygb9JWP2uEQdOFxBoVAtD7tb5Kzw8ViQFhY8hQNP0YKnA6_XMy4aDpJ_jN11WNgY18CgAwcruBWtlVoUNOQ8IRGh7Olfpr2AO8N8fFKcjCbH-3CXOPFjX7J-ANv1t6V5Zj2yWj735wLBx5sG1y9tkEBl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Maximization+With+an+AoI+Constraint+in+Energy+Harvesting+D2D-Enabled+Cellular+Networks%3A+An+MSRA-TD3+Approach&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Liu%2C+Xiaoying&rft.au=Xu%2C+Jiaxiang&rft.au=Zheng%2C+Kechen&rft.au=Zhang%2C+Guanglin&rft.date=2025-02-01&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=24&rft.issue=2&rft.spage=1448&rft.epage=1466&rft_id=info:doi/10.1109%2FTWC.2024.3509475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TWC_2024_3509475 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |