A Surveillance System for Urban Utility Tunnel Subject to Third-Party Threats Based on Fiber-Optic DAS and FPN-BiLSTM Network

Inevitably influenced by the complicated underground geological structure in practical applications, the received signal response of the same disturbance event is inconsistent at different sensor nodes, which is an enormous challenge in large-area safety monitoring applications based on the distribu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 9
Main Authors He, Tao, Li, Hao, Zhang, Shixiong, Zeng, Zhichao, Yan, Zhijun, Sun, Qizhen, Liu, Deming
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inevitably influenced by the complicated underground geological structure in practical applications, the received signal response of the same disturbance event is inconsistent at different sensor nodes, which is an enormous challenge in large-area safety monitoring applications based on the distributed acoustic sensing (DAS) technology. Thus, in this article, the combination of the feature pyramid network and a bidirectional long short-term memory (FPN-BiLSTM) network is first introduced to perform an accuracy and efficiency identification of third-party threats under the complicated underground geological structure. First, the comprehensive spatiotemporal-spectral (STS) 3-D feature map of the signal target is formed from some adjacent sensor nodes. In order to alleviate the high computational burden in the FPN model, the 3-D feature map is segmented into <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> time sequences. Then, the sequences of data are sequentially transmitted to the FPN model for feature extraction. Subsequently, a Bi-LSTM network is applied to further extract the tandem contextual information among the sequences of time-frequency spatial feature vectors obtained by the FPN model. After that, the comprehensive STS multidimension feature vectors are extracted by the FPN-BiLSTM network for the identification of the target events. Finally, the field test results prove that the proposed method can achieve a high recognition accuracy rate of 93.96% for five typical events with a fast response time of 0.463 s, which is superior to the traditional network models.
AbstractList Inevitably influenced by the complicated underground geological structure in practical applications, the received signal response of the same disturbance event is inconsistent at different sensor nodes, which is an enormous challenge in large-area safety monitoring applications based on the distributed acoustic sensing (DAS) technology. Thus, in this article, the combination of the feature pyramid network and a bidirectional long short-term memory (FPN-BiLSTM) network is first introduced to perform an accuracy and efficiency identification of third-party threats under the complicated underground geological structure. First, the comprehensive spatiotemporal–spectral (STS) 3-D feature map of the signal target is formed from some adjacent sensor nodes. In order to alleviate the high computational burden in the FPN model, the 3-D feature map is segmented into [Formula Omitted] time sequences. Then, the sequences of data are sequentially transmitted to the FPN model for feature extraction. Subsequently, a Bi-LSTM network is applied to further extract the tandem contextual information among the sequences of time–frequency spatial feature vectors obtained by the FPN model. After that, the comprehensive STS multidimension feature vectors are extracted by the FPN-BiLSTM network for the identification of the target events. Finally, the field test results prove that the proposed method can achieve a high recognition accuracy rate of 93.96% for five typical events with a fast response time of 0.463 s, which is superior to the traditional network models.
Inevitably influenced by the complicated underground geological structure in practical applications, the received signal response of the same disturbance event is inconsistent at different sensor nodes, which is an enormous challenge in large-area safety monitoring applications based on the distributed acoustic sensing (DAS) technology. Thus, in this article, the combination of the feature pyramid network and a bidirectional long short-term memory (FPN-BiLSTM) network is first introduced to perform an accuracy and efficiency identification of third-party threats under the complicated underground geological structure. First, the comprehensive spatiotemporal-spectral (STS) 3-D feature map of the signal target is formed from some adjacent sensor nodes. In order to alleviate the high computational burden in the FPN model, the 3-D feature map is segmented into <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula> time sequences. Then, the sequences of data are sequentially transmitted to the FPN model for feature extraction. Subsequently, a Bi-LSTM network is applied to further extract the tandem contextual information among the sequences of time-frequency spatial feature vectors obtained by the FPN model. After that, the comprehensive STS multidimension feature vectors are extracted by the FPN-BiLSTM network for the identification of the target events. Finally, the field test results prove that the proposed method can achieve a high recognition accuracy rate of 93.96% for five typical events with a fast response time of 0.463 s, which is superior to the traditional network models.
Author Liu, Deming
He, Tao
Yan, Zhijun
Li, Hao
Zhang, Shixiong
Zeng, Zhichao
Sun, Qizhen
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0009-0004-0879-8405
  surname: He
  fullname: He, Tao
  organization: School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Hao
  orcidid: 0000-0002-8103-5904
  surname: Li
  fullname: Li, Hao
  email: lhbeyond@hust.edu.cn
  organization: School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Shixiong
  orcidid: 0009-0007-7803-2407
  surname: Zhang
  fullname: Zhang, Shixiong
  organization: School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Zhichao
  orcidid: 0009-0003-3187-9038
  surname: Zeng
  fullname: Zeng, Zhichao
  organization: School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Zhijun
  orcidid: 0000-0002-3506-7446
  surname: Yan
  fullname: Yan, Zhijun
  organization: School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
– sequence: 6
  givenname: Qizhen
  orcidid: 0000-0002-2410-6470
  surname: Sun
  fullname: Sun, Qizhen
  organization: School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
– sequence: 7
  givenname: Deming
  orcidid: 0000-0001-5591-2929
  surname: Liu
  fullname: Liu, Deming
  organization: School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kD1PwzAQhi0EEqWwMzBYYk7xV5x4LB8FpNIiNZ0jJ7kIl2AX2wV14L-TqgyIAd1wwz3ve9Jzgg6ts4DQOSUjSom6Kh6fRowwMeJcKpJnB2hA0zRLlJTsEA0IoXmiRCqP0UkIK0JIJkU2QF9jvNj4DzBdp20NeLENEd5w6zxe-kpbvIymM3GLi4210PVwtYI64uhw8WJ8kzxrv7u-eNAx4GsdoMHO4ompwCfzdTQ1vh0vsLYNnjzPkmszXRRPeAbx0_nXU3TU6i7A2c8eouXkrrh5SKbz-8eb8TSpmWIxSXMNjaSEZ7nUSsi2ritOFddcAalSrhqmBYW0n6bNGFWypaBEpXKaEda2fIgu971r7943EGK5chtv-5clU70uIfrunpJ7qvYuBA9tWZuoo3E2em26kpJyp7rsVZc71eWP6j5I_gTX3rxpv_0vcrGPGAD4hQvBFef8Gw2nio4
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_measurement_2025_116921
crossref_primary_10_11648_j_jenr_20241304_14
Cites_doi 10.1109/JSEN.2021.3055346
10.3390/s20226594
10.1109/TIM.2023.3240230
10.1109/TIM.2022.3201229
10.3390/s19092160
10.1109/JLT.2018.2802324
10.1177/1475921720930649
10.3390/s141019307
10.1364/OE.397509
10.3390/s19153421
10.1109/JLT.2020.2985746
10.1109/CVPR.2016.90
10.1109/CVPR.2017.106
10.1109/TIM.2023.3308239
10.1364/OFS.2018.WF42
10.1016/j.ijleo.2020.165373
10.1109/TIM.2016.2639678
10.1109/JLT.2019.2951624
10.1364/OE.390772
10.1364/OL.41.005648
10.1109/ACP55869.2022.10088735
10.1364/OE.27.023682
10.1109/TGRS.2021.3108467
10.1109/JLT.2021.3122738
10.3390/electronics8111248
10.1109/JLT.2022.3222472
10.1109/ACCESS.2018.2889699
10.1109/TIM.2022.3222480
10.1364/OE.387317
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3369087
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 9
ExternalDocumentID 10_1109_TIM_2024_3369087
10443933
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: U22A20206; 61922033; 61922033; 61775072
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB2100902
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-58aed6103786a946fccb3193a39e0b539d2a41e5e5edf72196f1e94b981702ff3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 08:39:52 EDT 2025
Tue Jul 01 03:07:38 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Aug 27 02:17:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-58aed6103786a946fccb3193a39e0b539d2a41e5e5edf72196f1e94b981702ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8103-5904
0000-0002-3506-7446
0009-0007-7803-2407
0000-0002-2410-6470
0009-0003-3187-9038
0000-0001-5591-2929
0009-0004-0879-8405
PQID 2969044037
PQPubID 85462
PageCount 9
ParticipantIDs crossref_primary_10_1109_TIM_2024_3369087
ieee_primary_10443933
crossref_citationtrail_10_1109_TIM_2024_3369087
proquest_journals_2969044037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Wu (ref22) 2019; 46
ref21
Ioffe (ref28) 2015
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/JSEN.2021.3055346
– ident: ref2
  doi: 10.3390/s20226594
– ident: ref23
  doi: 10.1109/TIM.2023.3240230
– ident: ref24
  doi: 10.1109/TIM.2022.3201229
– ident: ref8
  doi: 10.3390/s19092160
– ident: ref10
  doi: 10.1109/JLT.2018.2802324
– ident: ref15
  doi: 10.1177/1475921720930649
– ident: ref1
  doi: 10.3390/s141019307
– ident: ref5
  doi: 10.1364/OE.397509
– ident: ref18
  doi: 10.3390/s19153421
– ident: ref14
  doi: 10.1109/JLT.2020.2985746
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref26
  doi: 10.1109/CVPR.2017.106
– ident: ref3
  doi: 10.1109/TIM.2023.3308239
– volume: 46
  issue: 5
  year: 2019
  ident: ref22
  article-title: Vibration events recognition of optical fiber-based on multi-scale 1-D CNN
  publication-title: Opto-Electron. Eng.
– ident: ref32
  doi: 10.1364/OFS.2018.WF42
– ident: ref17
  doi: 10.1016/j.ijleo.2020.165373
– ident: ref9
  doi: 10.1109/TIM.2016.2639678
– ident: ref31
  doi: 10.1109/JLT.2019.2951624
– ident: ref21
  doi: 10.1109/CVPR.2017.106
– ident: ref6
  doi: 10.1364/OE.390772
– year: 2015
  ident: ref28
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv:1502.03167
– ident: ref30
  doi: 10.1364/OL.41.005648
– ident: ref20
  doi: 10.1109/ACP55869.2022.10088735
– ident: ref19
  doi: 10.1364/OE.27.023682
– ident: ref25
  doi: 10.1109/TGRS.2021.3108467
– ident: ref7
  doi: 10.1109/JLT.2021.3122738
– ident: ref29
  doi: 10.3390/electronics8111248
– ident: ref4
  doi: 10.1109/JLT.2022.3222472
– ident: ref12
  doi: 10.1109/ACCESS.2018.2889699
– ident: ref16
  doi: 10.1109/TIM.2022.3222480
– ident: ref11
  doi: 10.1364/OE.387317
SSID ssj0007647
Score 2.4428127
Snippet Inevitably influenced by the complicated underground geological structure in practical applications, the received signal response of the same disturbance event...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Acoustics
Bidirectional long short-term memory (Bi-LSTM)
distributed acoustic sensing (DAS)
Feature extraction
Feature maps
feature pyramid network (FPN)
Fiber optics
Field tests
Geological mapping
Monitoring
Nodes
Optical fiber networks
Optical fiber sensors
pattern recognition
spatiotemporal–spectral (STS) feature
Surveillance systems
Target recognition
Three dimensional models
Time-frequency analysis
Underground structures
Title A Surveillance System for Urban Utility Tunnel Subject to Third-Party Threats Based on Fiber-Optic DAS and FPN-BiLSTM Network
URI https://ieeexplore.ieee.org/document/10443933
https://www.proquest.com/docview/2969044037
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF9sQdCHqrXiaZV58MWHvSbZzab7eFWPKt5ZuBz0LexXaKnkyl0iKPi_O5PNlUNRJC-B7ISF-d79zQxjb3LlpLZCcV8bOroRCddGCB5MbRPli1DkVJw8m6vzpfx0mV8Oxep9LUwIoQefhTG99nf5fuU6OipDDZfoP4XYY3uYucVirTuzWygZG2SmqMEYFmzvJBN9Un6cYSaYybEQmAwSem7HB_VDVf6wxL17mT5i8-3GIqrkZty1dux-_Naz8b93_pgdDIEmTKJkPGH3QnPIHu60Hzxk93v4p9s8ZT8nsOjW3wKNIEIpgNjHHDCgheXamgaWLWFov0PZES4GF1s6v4F2BeXV9drzC5RA_HpFIegGztA1elg1MCU8Cv-CZsnB-8kCTONhejHnZ9efF-UM5hGDfsSW0w_lu3M-DGbgLtNZy_NTE7yiCsNTZbRUtXMWVVkYoUNic6F9ZmQacnx8jSmmVnUatLSaugFmdS2esf1m1YTnDDzGGwrtQmKQJGjMHtPCeKT1qUy9yEbsZMuqyg1dy2l4xteqz14SXSFzK2JuNTB3xN7eUdzGjh3_WHtEvNpZF9k0YsdbcagGnd5UuFFNA7pF8eIvZC_ZA_p7PKE5ZvvtuguvMGZp7eteVn8BXvblYQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VIgQ98FOKGiiwBzhwcGrv2uvugUNKiRKahEpxpN7MenetVlROldigIvVR-io8G7NeO4pAcKuEfLHkHdtafzs7M_5mBuBNxFUoMsY9nUsbumG-JyRjnpF55nMdmziyycnjCR_Mwk-n0ekG3KxyYYwxNfnMdO1p_S9fz1VlQ2W4wkPcP1nbq_rYXH1HD235fniEn_Mtpf2PyYeB1zQR8BQVtPSiA2k0t9lwB1yKkOdKZQg7JpkwfhYxoakMAxPhoXN0hwTPAyPCTNjKdTTPGd73DtxFQyOiLj1spehjHrqSnAHqDDRE2r-gvthPhmP0PWnYZQzdT8vXW9v16jYuf-j-ekPrP4Kf7VQ4HsvXblVmXfXjtyqR_-1cPYaHjSlNeg77T2DDFNuwtVZgcRvu1QRXtXwK1z0yrRbfjG2yhDgnrlI7QZOdzBaZLMistCzhK5JUlvmDgzMboSLlnCRn5wvtneAaw6tn1shekkPc_DWZF6RvGTfeZ1S8ihz1pkQWmvRPJt7h-WiajMnEsex3YHYrM_EMNot5YXaBaLSoOGo-X6KIEegfB7HUKKuDMNCMdmC_hUaqmrrstj3IRVr7Z75IEUypBVPagKkD71YSl64myT_G7lhsrI1zsOjAXgu_tNFayxRfVNgW5Cx-_hex13B_kIxH6Wg4OX4BD-yTXDxqDzbLRWVeooVWZq_qdULgy22D7ReG-kJE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Surveillance+System+for+Urban+Utility+Tunnel+Subject+to+Third-Party+Threats+Based+on+Fiber-Optic+DAS+and+FPN-BiLSTM+Network&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=He%2C+Tao&rft.au=Li%2C+Hao&rft.au=Zhang%2C+Shixiong&rft.au=Zeng%2C+Zhichao&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2024.3369087&rft.externalDocID=10443933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon