A Brain-Inspired Spiking Network Framework Based on Multi-Time-Step Self-Attention for Lithium-Ion Batteries Capacity Prediction

Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of related industries. Due to the instability issues which might cause explosion or fire, it is critical to ensure the safety and reliability of Li-io...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on consumer electronics Vol. 70; no. 1; pp. 3008 - 3017
Main Authors Wang, Huan, Sun, Muxia, Li, Yan-Fu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of related industries. Due to the instability issues which might cause explosion or fire, it is critical to ensure the safety and reliability of Li-ion batteries via health monitoring. While artificial neural networks (ANNs) have proven successful in battery health monitoring, they suffer from drawbacks such as high energy consumption and poor generalization. Alternatively, a recent well-developed highly bionic model, i.e., brain-inspired spiking neural networks (SNN), has an excellent simulation of the spatiotemporal feature learning abilities and low power consumption characteristics of biological brains. In this study, we propose a multi-time-step self-attention spiking network framework (MSSA-SNN) for battery monitoring. In particular, the SNN architecture-based self-attention module enables a fully encoding of the global spiking features while optimizes the synaptic weights from a global perspective. This study conducts experiments on two coin Li-ion battery datasets. The results demonstrate that the brain-inspired MSSA-SNN can accurately detect battery degradation trends with an extremely low energy consumption rate, which makes it well-suited for energy-constrained consumer electronics.
AbstractList Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of related industries. Due to the instability issues which might cause explosion or fire, it is critical to ensure the safety and reliability of Li-ion batteries via health monitoring. While artificial neural networks (ANNs) have proven successful in battery health monitoring, they suffer from drawbacks such as high energy consumption and poor generalization. Alternatively, a recent well-developed highly bionic model, i.e., brain-inspired spiking neural networks (SNN), has an excellent simulation of the spatiotemporal feature learning abilities and low power consumption characteristics of biological brains. In this study, we propose a multi-time-step self-attention spiking network framework (MSSA-SNN) for battery monitoring. In particular, the SNN architecture-based self-attention module enables a fully encoding of the global spiking features while optimizes the synaptic weights from a global perspective. This study conducts experiments on two coin Li-ion battery datasets. The results demonstrate that the brain-inspired MSSA-SNN can accurately detect battery degradation trends with an extremely low energy consumption rate, which makes it well-suited for energy-constrained consumer electronics.
Author Wang, Huan
Li, Yan-Fu
Sun, Muxia
Author_xml – sequence: 1
  givenname: Huan
  orcidid: 0000-0002-1403-5314
  surname: Wang
  fullname: Wang, Huan
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Muxia
  surname: Sun
  fullname: Sun, Muxia
  email: muxiasun@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Yan-Fu
  orcidid: 0000-0001-5755-7115
  surname: Li
  fullname: Li, Yan-Fu
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNp9kL1PwzAQxS1UJFpgZ2CwxOzizyQe26qFSuVDapkjJ7mAaZsE2xVi40_HpQyIgeHks957d6ffAPWatgGELhgdMkb19WoyHXLKxVDwVDOhjlCfKZURyXjaQ31KdUYETcQJGnj_SimTimd99DnCY2dsQ-aN76yDCi87u7bNM76H8N66NZ45s4Xvbmx81NsG3-02wZKV3QJZBujwEjY1GYUATbBRrluHFza82N2WzON_bKLkLHg8MZ0pbfjAj3GTLffuM3Rcm42H85_3FD3NpqvJLVk83MwnowUpueaBqERXwhQF0KKgpsyU1BWTlTRZqqmWmcq0YjUUlZAJywoNkiUcUlrzSqhEGXGKrg5zO9e-7cCH_LXduSauzAWVWmqWah5dycFVutZ7B3UezzX7O0OktMkZzfe080g739POf2jHIP0T7JzdGvfxX-TyELEA8MvOBI8lvgBSdIy0
CODEN ITCEDA
CitedBy_id crossref_primary_10_1109_TCE_2024_3445769
crossref_primary_10_3390_batteries10060204
crossref_primary_10_1109_TSG_2024_3507012
crossref_primary_10_3389_fnins_2024_1383844
Cites_doi 10.1109/TIE.2019.2949534
10.3389/fnins.2020.00119
10.1109/TVT.2019.2927120
10.1038/s42256-021-00311-4
10.1016/j.neunet.2018.12.002
10.1038/s41586-019-1424-8
10.1021/acs.chemrev.2c00739
10.1016/j.energy.2023.127033
10.1016/j.jpowsour.2019.03.008
10.1109/TCE.1985.289977
10.1016/j.isci.2021.103265
10.1016/j.neunet.2019.09.004
10.1109/MSP.2019.2931595
10.1038/s41586-019-1677-2
10.1038/s41467-020-15235-7
10.1016/j.jpowsour.2011.10.013
10.1016/j.ress.2022.108561
10.1016/j.energy.2019.116538
10.3390/en12040660
10.1016/j.est.2022.105046
10.1016/j.energy.2021.121712
10.1109/TVT.2021.3071622
10.1016/j.est.2021.103857
10.1016/j.est.2020.101741
10.1016/j.est.2023.106697
10.1038/s42256-021-00397-w
10.1016/j.rser.2019.109405
10.1109/TEC.2021.3052504
10.1109/TTE.2020.3029295
10.1109/TCE.2021.3127494
10.1109/TCE.2022.3190069
10.1016/j.neunet.2019.09.036
10.1016/j.apenergy.2021.118348
10.1038/s41467-022-32422-w
10.1016/j.rser.2022.112282
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2023.3279135
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 3017
ExternalDocumentID 10_1109_TCE_2023_3279135
10132013
Genre orig-research
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation-Rail Transit Joint Research Program
  grantid: L191022
– fundername: National Natural Science Foundation of China
  grantid: 71731008
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c292t-569d3abbe0bb0ac8549d14d4a879094858951febd34618b9e4162e70f2d3565a3
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Mon Jun 30 10:23:13 EDT 2025
Tue Jul 01 00:42:03 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Wed Aug 27 02:06:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-569d3abbe0bb0ac8549d14d4a879094858951febd34618b9e4162e70f2d3565a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1403-5314
0000-0001-5755-7115
PQID 3049491792
PQPubID 85469
PageCount 10
ParticipantIDs proquest_journals_3049491792
crossref_citationtrail_10_1109_TCE_2023_3279135
crossref_primary_10_1109_TCE_2023_3279135
ieee_primary_10132013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Zhang (ref29); 32
Fang (ref31) 2023
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref9
  doi: 10.1109/TIE.2019.2949534
– volume-title: SpikingJelly
  year: 2023
  ident: ref31
– ident: ref28
  doi: 10.3389/fnins.2020.00119
– ident: ref12
  doi: 10.1109/TVT.2019.2927120
– ident: ref27
  doi: 10.1038/s42256-021-00311-4
– ident: ref22
  doi: 10.1016/j.neunet.2018.12.002
– ident: ref24
  doi: 10.1038/s41586-019-1424-8
– ident: ref2
  doi: 10.1021/acs.chemrev.2c00739
– ident: ref14
  doi: 10.1016/j.energy.2023.127033
– ident: ref13
  doi: 10.1016/j.jpowsour.2019.03.008
– ident: ref1
  doi: 10.1109/TCE.1985.289977
– ident: ref4
  doi: 10.1016/j.isci.2021.103265
– ident: ref23
  doi: 10.1016/j.neunet.2019.09.004
– ident: ref30
  doi: 10.1109/MSP.2019.2931595
– ident: ref25
  doi: 10.1038/s41586-019-1677-2
– ident: ref36
  doi: 10.1038/s41467-020-15235-7
– ident: ref10
  doi: 10.1016/j.jpowsour.2011.10.013
– ident: ref32
  doi: 10.1016/j.ress.2022.108561
– ident: ref34
  doi: 10.1016/j.energy.2019.116538
– ident: ref33
  doi: 10.3390/en12040660
– ident: ref18
  doi: 10.1016/j.est.2022.105046
– ident: ref6
  doi: 10.1016/j.energy.2021.121712
– ident: ref35
  doi: 10.1109/TVT.2021.3071622
– ident: ref17
  doi: 10.1016/j.est.2021.103857
– volume: 32
  start-page: 7802
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: Spike-train level backpropagation for training deep recurrent spiking neural networks
– ident: ref19
  doi: 10.1016/j.est.2020.101741
– ident: ref20
  doi: 10.1016/j.est.2023.106697
– ident: ref26
  doi: 10.1038/s42256-021-00397-w
– ident: ref11
  doi: 10.1016/j.rser.2019.109405
– ident: ref5
  doi: 10.1109/TEC.2021.3052504
– ident: ref7
  doi: 10.1109/TTE.2020.3029295
– ident: ref16
  doi: 10.1109/TCE.2021.3127494
– ident: ref15
  doi: 10.1109/TCE.2022.3190069
– ident: ref21
  doi: 10.1016/j.neunet.2019.09.036
– ident: ref8
  doi: 10.1016/j.apenergy.2021.118348
– ident: ref37
  doi: 10.1038/s41467-022-32422-w
– ident: ref3
  doi: 10.1016/j.rser.2022.112282
SSID ssj0014528
Score 2.438639
Snippet Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3008
SubjectTerms Artificial neural networks
battery health monitoring
Biological system modeling
Bionics
Brain
Brain modeling
Computational modeling
Convolution
Encoding
Energy consumption
Lithium-ion batteries
Lithium-ion battery
Neural networks
Neurons
Power consumption
Rechargeable batteries
self-attention
Spiking
spiking neural network
Title A Brain-Inspired Spiking Network Framework Based on Multi-Time-Step Self-Attention for Lithium-Ion Batteries Capacity Prediction
URI https://ieeexplore.ieee.org/document/10132013
https://www.proquest.com/docview/3049491792
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--xfVFDl48pGbTtNsc18VFRRdBBW8laVJc1K5o9-LJn-5M0qooircWJiUwM81MZr5vCNlP0xLyniRlZakMk0KDS2kes8SWBfilKrhE7PDFKD25kWe3yW0DVvdYGOecbz5zET76Wr6dFFO8KgMPR8AvzqidhcwtgLU-SgYyEVlLkAlxcNzWJLk6vB4cRzgmPIpFT3X9ZLfPM8gPVfnxJ_bHy3CJjNqNha6S-2ham6h4_cbZ-O-dL5PFJtCk_WAZK2TGVatk4Qv94Bp569MjnBDBTiustztLr57GeHVOR6E5nA7b1i16BKedpZOKesQuQ-QIww4xeuUeStav69A2SSEGpufj-m48fWSn8B74OyEdpwM4lguI-enlMxaHUHqd3AyPrwcnrJnIwAqhRM2SVNlYG-O4MVwXGSSXtiut1FlPceSZySBgK52xsUy7mVEOwj3herwUFuwh0fEGmasmldskFGQQg5u6FCnqEpMJrbTOQBILdwnvkMNWR3nR0JXj1IyH3KctXOWg1Ry1mjda7ZCDjxVPgarjD9l1VNIXuaCfDtlp7SBvnPklx0qkhLRWia1flm2Tefi6DN3cO2Sufp66XQhWarPnjfQd1MrkMg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUQHNoeoB9UXaCtD71wcPA6djY-LitWu2VZVWKRuEV27Kir0iyC7IUTP50ZOwHUiqq3RBorlmacmfHMe0PItyyrIO9RGasqbZkUBo6U4SlTrirhXOqSS8QOn82zyYX8fqkuW7B6wMJ470PzmU_wMdTy3apc41UZnHAE_OKM2i1w_EpEuNZj0UAqkXcUmRAJp11VkuujxegkwUHhSSoGuh9muz15oTBW5a9_cXAw4x0y77YW-0p-JevGJuXdH6yN_733t2S7DTXpMNrGO7Lh6_fkzTMCwg_kfkiPcUYEm9ZYcfeOnl8v8fKczmN7OB13zVv0GPydo6uaBswuQ-wIwx4xeu6vKjZsmtg4SSEKprNl83O5_s2m8B4ZPCEhpyNwzCVE_fTHDZaHUHqXXIxPFqMJa2cysFJo0TCVaZcaaz23lpsyh_TS9aWTJh9ojkwzOYRslbculVk_t9pDwCf8gFfCgUUok34km_Wq9p8IBRlE4WY-Q5I6ZXNhtDE5SGLpTvEeOep0VJQtYTnOzbgqQuLCdQFaLVCrRavVHjl8XHEdyTr-IbuLSnomF_XTIwedHRTtcb4tsBYpIbHVYu-FZV_Jq8nibFbMpvPTffIaviRjb_cB2Wxu1v4zhC6N_RIM9gHnQed8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Brain-Inspired+Spiking+Network+Framework+Based+on+Multi-Time-Step+Self-Attention+for+Lithium-Ion+Batteries+Capacity+Prediction&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Wang%2C+Huan&rft.au=Sun%2C+Muxia&rft.au=Yan-Fu%2C+Li&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=1&rft.spage=3008&rft_id=info:doi/10.1109%2FTCE.2023.3279135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon