A Brain-Inspired Spiking Network Framework Based on Multi-Time-Step Self-Attention for Lithium-Ion Batteries Capacity Prediction
Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of related industries. Due to the instability issues which might cause explosion or fire, it is critical to ensure the safety and reliability of Li-io...
Saved in:
Published in | IEEE transactions on consumer electronics Vol. 70; no. 1; pp. 3008 - 3017 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of related industries. Due to the instability issues which might cause explosion or fire, it is critical to ensure the safety and reliability of Li-ion batteries via health monitoring. While artificial neural networks (ANNs) have proven successful in battery health monitoring, they suffer from drawbacks such as high energy consumption and poor generalization. Alternatively, a recent well-developed highly bionic model, i.e., brain-inspired spiking neural networks (SNN), has an excellent simulation of the spatiotemporal feature learning abilities and low power consumption characteristics of biological brains. In this study, we propose a multi-time-step self-attention spiking network framework (MSSA-SNN) for battery monitoring. In particular, the SNN architecture-based self-attention module enables a fully encoding of the global spiking features while optimizes the synaptic weights from a global perspective. This study conducts experiments on two coin Li-ion battery datasets. The results demonstrate that the brain-inspired MSSA-SNN can accurately detect battery degradation trends with an extremely low energy consumption rate, which makes it well-suited for energy-constrained consumer electronics. |
---|---|
AbstractList | Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of related industries. Due to the instability issues which might cause explosion or fire, it is critical to ensure the safety and reliability of Li-ion batteries via health monitoring. While artificial neural networks (ANNs) have proven successful in battery health monitoring, they suffer from drawbacks such as high energy consumption and poor generalization. Alternatively, a recent well-developed highly bionic model, i.e., brain-inspired spiking neural networks (SNN), has an excellent simulation of the spatiotemporal feature learning abilities and low power consumption characteristics of biological brains. In this study, we propose a multi-time-step self-attention spiking network framework (MSSA-SNN) for battery monitoring. In particular, the SNN architecture-based self-attention module enables a fully encoding of the global spiking features while optimizes the synaptic weights from a global perspective. This study conducts experiments on two coin Li-ion battery datasets. The results demonstrate that the brain-inspired MSSA-SNN can accurately detect battery degradation trends with an extremely low energy consumption rate, which makes it well-suited for energy-constrained consumer electronics. |
Author | Wang, Huan Li, Yan-Fu Sun, Muxia |
Author_xml | – sequence: 1 givenname: Huan orcidid: 0000-0002-1403-5314 surname: Wang fullname: Wang, Huan organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Muxia surname: Sun fullname: Sun, Muxia email: muxiasun@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Yan-Fu orcidid: 0000-0001-5755-7115 surname: Li fullname: Li, Yan-Fu organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
BookMark | eNp9kL1PwzAQxS1UJFpgZ2CwxOzizyQe26qFSuVDapkjJ7mAaZsE2xVi40_HpQyIgeHks957d6ffAPWatgGELhgdMkb19WoyHXLKxVDwVDOhjlCfKZURyXjaQ31KdUYETcQJGnj_SimTimd99DnCY2dsQ-aN76yDCi87u7bNM76H8N66NZ45s4Xvbmx81NsG3-02wZKV3QJZBujwEjY1GYUATbBRrluHFza82N2WzON_bKLkLHg8MZ0pbfjAj3GTLffuM3Rcm42H85_3FD3NpqvJLVk83MwnowUpueaBqERXwhQF0KKgpsyU1BWTlTRZqqmWmcq0YjUUlZAJywoNkiUcUlrzSqhEGXGKrg5zO9e-7cCH_LXduSauzAWVWmqWah5dycFVutZ7B3UezzX7O0OktMkZzfe080g739POf2jHIP0T7JzdGvfxX-TyELEA8MvOBI8lvgBSdIy0 |
CODEN | ITCEDA |
CitedBy_id | crossref_primary_10_1109_TCE_2024_3445769 crossref_primary_10_3390_batteries10060204 crossref_primary_10_1109_TSG_2024_3507012 crossref_primary_10_3389_fnins_2024_1383844 |
Cites_doi | 10.1109/TIE.2019.2949534 10.3389/fnins.2020.00119 10.1109/TVT.2019.2927120 10.1038/s42256-021-00311-4 10.1016/j.neunet.2018.12.002 10.1038/s41586-019-1424-8 10.1021/acs.chemrev.2c00739 10.1016/j.energy.2023.127033 10.1016/j.jpowsour.2019.03.008 10.1109/TCE.1985.289977 10.1016/j.isci.2021.103265 10.1016/j.neunet.2019.09.004 10.1109/MSP.2019.2931595 10.1038/s41586-019-1677-2 10.1038/s41467-020-15235-7 10.1016/j.jpowsour.2011.10.013 10.1016/j.ress.2022.108561 10.1016/j.energy.2019.116538 10.3390/en12040660 10.1016/j.est.2022.105046 10.1016/j.energy.2021.121712 10.1109/TVT.2021.3071622 10.1016/j.est.2021.103857 10.1016/j.est.2020.101741 10.1016/j.est.2023.106697 10.1038/s42256-021-00397-w 10.1016/j.rser.2019.109405 10.1109/TEC.2021.3052504 10.1109/TTE.2020.3029295 10.1109/TCE.2021.3127494 10.1109/TCE.2022.3190069 10.1016/j.neunet.2019.09.036 10.1016/j.apenergy.2021.118348 10.1038/s41467-022-32422-w 10.1016/j.rser.2022.112282 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
DOI | 10.1109/TCE.2023.3279135 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-4127 |
EndPage | 3017 |
ExternalDocumentID | 10_1109_TCE_2023_3279135 10132013 |
Genre | orig-research |
GrantInformation_xml | – fundername: Beijing Municipal Natural Science Foundation-Rail Transit Joint Research Program grantid: L191022 – fundername: National Natural Science Foundation of China grantid: 71731008 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SP 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c292t-569d3abbe0bb0ac8549d14d4a879094858951febd34618b9e4162e70f2d3565a3 |
IEDL.DBID | RIE |
ISSN | 0098-3063 |
IngestDate | Mon Jun 30 10:23:13 EDT 2025 Tue Jul 01 00:42:03 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Wed Aug 27 02:06:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-569d3abbe0bb0ac8549d14d4a879094858951febd34618b9e4162e70f2d3565a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1403-5314 0000-0001-5755-7115 |
PQID | 3049491792 |
PQPubID | 85469 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3049491792 crossref_citationtrail_10_1109_TCE_2023_3279135 crossref_primary_10_1109_TCE_2023_3279135 ieee_primary_10132013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on consumer electronics |
PublicationTitleAbbrev | T-CE |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Zhang (ref29); 32 Fang (ref31) 2023 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.1109/TIE.2019.2949534 – volume-title: SpikingJelly year: 2023 ident: ref31 – ident: ref28 doi: 10.3389/fnins.2020.00119 – ident: ref12 doi: 10.1109/TVT.2019.2927120 – ident: ref27 doi: 10.1038/s42256-021-00311-4 – ident: ref22 doi: 10.1016/j.neunet.2018.12.002 – ident: ref24 doi: 10.1038/s41586-019-1424-8 – ident: ref2 doi: 10.1021/acs.chemrev.2c00739 – ident: ref14 doi: 10.1016/j.energy.2023.127033 – ident: ref13 doi: 10.1016/j.jpowsour.2019.03.008 – ident: ref1 doi: 10.1109/TCE.1985.289977 – ident: ref4 doi: 10.1016/j.isci.2021.103265 – ident: ref23 doi: 10.1016/j.neunet.2019.09.004 – ident: ref30 doi: 10.1109/MSP.2019.2931595 – ident: ref25 doi: 10.1038/s41586-019-1677-2 – ident: ref36 doi: 10.1038/s41467-020-15235-7 – ident: ref10 doi: 10.1016/j.jpowsour.2011.10.013 – ident: ref32 doi: 10.1016/j.ress.2022.108561 – ident: ref34 doi: 10.1016/j.energy.2019.116538 – ident: ref33 doi: 10.3390/en12040660 – ident: ref18 doi: 10.1016/j.est.2022.105046 – ident: ref6 doi: 10.1016/j.energy.2021.121712 – ident: ref35 doi: 10.1109/TVT.2021.3071622 – ident: ref17 doi: 10.1016/j.est.2021.103857 – volume: 32 start-page: 7802 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. ident: ref29 article-title: Spike-train level backpropagation for training deep recurrent spiking neural networks – ident: ref19 doi: 10.1016/j.est.2020.101741 – ident: ref20 doi: 10.1016/j.est.2023.106697 – ident: ref26 doi: 10.1038/s42256-021-00397-w – ident: ref11 doi: 10.1016/j.rser.2019.109405 – ident: ref5 doi: 10.1109/TEC.2021.3052504 – ident: ref7 doi: 10.1109/TTE.2020.3029295 – ident: ref16 doi: 10.1109/TCE.2021.3127494 – ident: ref15 doi: 10.1109/TCE.2022.3190069 – ident: ref21 doi: 10.1016/j.neunet.2019.09.036 – ident: ref8 doi: 10.1016/j.apenergy.2021.118348 – ident: ref37 doi: 10.1038/s41467-022-32422-w – ident: ref3 doi: 10.1016/j.rser.2022.112282 |
SSID | ssj0014528 |
Score | 2.438639 |
Snippet | Lithium-ion (Li-ion) batteries have gained widespread usage in numerous consumer electronic products and have significantly contributed to the growth of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3008 |
SubjectTerms | Artificial neural networks battery health monitoring Biological system modeling Bionics Brain Brain modeling Computational modeling Convolution Encoding Energy consumption Lithium-ion batteries Lithium-ion battery Neural networks Neurons Power consumption Rechargeable batteries self-attention Spiking spiking neural network |
Title | A Brain-Inspired Spiking Network Framework Based on Multi-Time-Step Self-Attention for Lithium-Ion Batteries Capacity Prediction |
URI | https://ieeexplore.ieee.org/document/10132013 https://www.proquest.com/docview/3049491792 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ--xfVFDl48pGbTtNsc18VFRRdBBW8laVJc1K5o9-LJn-5M0qooircWJiUwM81MZr5vCNlP0xLyniRlZakMk0KDS2kes8SWBfilKrhE7PDFKD25kWe3yW0DVvdYGOecbz5zET76Wr6dFFO8KgMPR8AvzqidhcwtgLU-SgYyEVlLkAlxcNzWJLk6vB4cRzgmPIpFT3X9ZLfPM8gPVfnxJ_bHy3CJjNqNha6S-2ham6h4_cbZ-O-dL5PFJtCk_WAZK2TGVatk4Qv94Bp569MjnBDBTiustztLr57GeHVOR6E5nA7b1i16BKedpZOKesQuQ-QIww4xeuUeStav69A2SSEGpufj-m48fWSn8B74OyEdpwM4lguI-enlMxaHUHqd3AyPrwcnrJnIwAqhRM2SVNlYG-O4MVwXGSSXtiut1FlPceSZySBgK52xsUy7mVEOwj3herwUFuwh0fEGmasmldskFGQQg5u6FCnqEpMJrbTOQBILdwnvkMNWR3nR0JXj1IyH3KctXOWg1Ry1mjda7ZCDjxVPgarjD9l1VNIXuaCfDtlp7SBvnPklx0qkhLRWia1flm2Tefi6DN3cO2Sufp66XQhWarPnjfQd1MrkMg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUQHNoeoB9UXaCtD71wcPA6djY-LitWu2VZVWKRuEV27Kir0iyC7IUTP50ZOwHUiqq3RBorlmacmfHMe0PItyyrIO9RGasqbZkUBo6U4SlTrirhXOqSS8QOn82zyYX8fqkuW7B6wMJ470PzmU_wMdTy3apc41UZnHAE_OKM2i1w_EpEuNZj0UAqkXcUmRAJp11VkuujxegkwUHhSSoGuh9muz15oTBW5a9_cXAw4x0y77YW-0p-JevGJuXdH6yN_733t2S7DTXpMNrGO7Lh6_fkzTMCwg_kfkiPcUYEm9ZYcfeOnl8v8fKczmN7OB13zVv0GPydo6uaBswuQ-wIwx4xeu6vKjZsmtg4SSEKprNl83O5_s2m8B4ZPCEhpyNwzCVE_fTHDZaHUHqXXIxPFqMJa2cysFJo0TCVaZcaaz23lpsyh_TS9aWTJh9ojkwzOYRslbculVk_t9pDwCf8gFfCgUUok34km_Wq9p8IBRlE4WY-Q5I6ZXNhtDE5SGLpTvEeOep0VJQtYTnOzbgqQuLCdQFaLVCrRavVHjl8XHEdyTr-IbuLSnomF_XTIwedHRTtcb4tsBYpIbHVYu-FZV_Jq8nibFbMpvPTffIaviRjb_cB2Wxu1v4zhC6N_RIM9gHnQed8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Brain-Inspired+Spiking+Network+Framework+Based+on+Multi-Time-Step+Self-Attention+for+Lithium-Ion+Batteries+Capacity+Prediction&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Wang%2C+Huan&rft.au=Sun%2C+Muxia&rft.au=Yan-Fu%2C+Li&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=1&rft.spage=3008&rft_id=info:doi/10.1109%2FTCE.2023.3279135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |