Throughput Maximization for UAV-Assisted Data Collection With Hybrid NOMA
Owing to the excellent mobility character, unmanned aerial vehicles (UAVs) show great potentials as a means of data collector in a wireless sensor network (WSN). However, limitations in communication resources require UAVs to collect data from large-scale WSNs with high spectral efficiency. In this...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 23; no. 10; pp. 13068 - 13081 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to the excellent mobility character, unmanned aerial vehicles (UAVs) show great potentials as a means of data collector in a wireless sensor network (WSN). However, limitations in communication resources require UAVs to collect data from large-scale WSNs with high spectral efficiency. In this work, we investigate a UAV-assisted data collection strategy for a WSN enabled by hybrid non-orthogonal multiple access (NOMA). Specifically, the WSN is organized into clusters and each cluster is further subdivided into multiple groups. The sensor nodes in each group transmit data to the UAV using NOMA scheme. To ensure fairness between sensor nodes, we aim to maximize the minimum throughput by jointly optimizing the sensor node pairing, decoding order, transmit power and the UAV waypoints, subject to transmit power and UAV trajectory length constraints. To address the formulated mixed-integer nonlinear programming problem, we first propose an optimization-based algorithm by applying block coordinate descent method where a closed-form solution of the transmit power is derived, and then design a low-complexity heuristic algorithm. In addition, we present an initialization scheme for the proposed algorithms and an implementation strategy for our system. Extensive simulations demonstrate that our proposed UAV-assisted data collection scheme with hybrid NOMA can enhance system performance efficiently. |
---|---|
AbstractList | Owing to the excellent mobility character, unmanned aerial vehicles (UAVs) show great potentials as a means of data collector in a wireless sensor network (WSN). However, limitations in communication resources require UAVs to collect data from large-scale WSNs with high spectral efficiency. In this work, we investigate a UAV-assisted data collection strategy for a WSN enabled by hybrid non-orthogonal multiple access (NOMA). Specifically, the WSN is organized into clusters and each cluster is further subdivided into multiple groups. The sensor nodes in each group transmit data to the UAV using NOMA scheme. To ensure fairness between sensor nodes, we aim to maximize the minimum throughput by jointly optimizing the sensor node pairing, decoding order, transmit power and the UAV waypoints, subject to transmit power and UAV trajectory length constraints. To address the formulated mixed-integer nonlinear programming problem, we first propose an optimization-based algorithm by applying block coordinate descent method where a closed-form solution of the transmit power is derived, and then design a low-complexity heuristic algorithm. In addition, we present an initialization scheme for the proposed algorithms and an implementation strategy for our system. Extensive simulations demonstrate that our proposed UAV-assisted data collection scheme with hybrid NOMA can enhance system performance efficiently. |
Author | Chen, Jie Tang, Jianhua |
Author_xml | – sequence: 1 givenname: Jianhua orcidid: 0000-0002-9870-1686 surname: Tang fullname: Tang, Jianhua email: jtang4@e.ntu.edu.sg organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Jie orcidid: 0000-0002-7398-0906 surname: Chen fullname: Chen, Jie email: jiechean@163.com organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNp9kLlvwjAUh62KSgXavUOHSJ1DfeYYo_QACcoCZbScxC5GIaa2I0H_-oZjqDp0em_4fe_4BqDXmEYCcI_gCCGYPi1W-QhDTEeEpAklyRXoI8aSEGOa9I49iUKE4-gGDJzbQIjiiLE-mCzW1rSf613rg5nY663-Fl6bJlDGBsvsI8yc087LKngWXgS5qWtZngIr7dfB-FBYXQXv81l2C66VqJ28u9QhWL6-LPJxOJ2_TfJsGpY4xT6kChdFVZYFZImkKiFUxjiqRIoRFBVDQsWxkJSmiBaFhJVAkgjBVEmKBKkUkyF4PM_dWfPVSuf5xrS26VZygrqXYxQx2KXgOVVa45yViu-s3gp74AjyozDeCeNHYfwirEOiP0ip_UmGt0LX_4EPZ1BLKX_tYd09NCI_ZfN5-w |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_TVT_2024_3483256 |
Cites_doi | 10.1109/TWC.2019.2940447 10.1109/TCOMM.2021.3124950 10.1109/JIOT.2020.3005271 10.1109/TWC.2023.3235748 10.1109/TVT.2019.2893374 10.1109/TWC.2019.2902559 10.1109/TCOMM.2019.2895831 10.1109/JIOT.2022.3143250 10.1109/TWC.2012.051512.111622 10.1109/TVT.2015.2480766 10.1109/TSP.2014.2354312 10.1109/COMST.2017.2650979 10.1109/MCOM.2016.7470933 10.1109/TWC.2019.2911939 10.1109/TWC.2019.2930190 10.1109/GLOCOM.2016.7841981 10.1109/TCOMM.2020.3025910 10.1109/JIOT.2020.3041303 10.1109/MCOM.2017.1600238CM 10.1109/TWC.2017.2789293 10.1109/TWC.2021.3113640 10.1109/TVT.2018.2816244 10.1109/TVT.2020.3005732 10.1109/TWC.2021.3105821 10.1109/TSP.2017.2673813 10.1109/JIOT.2020.3012835 10.1109/TVT.2019.2959808 10.1109/TWC.2021.3112568 10.1109/JIOT.2018.2878834 10.1109/TWC.2021.3084140 10.1109/TCOMM.2021.3106134 10.1109/JSAC.2017.2725519 10.1109/TWC.2018.2790401 10.1109/LWC.2022.3164784 10.1109/TVT.2022.3203704 10.1109/TCOMM.2019.2962479 10.1109/SURV.2011.060710.00066 10.1109/TWC.2017.2688328 10.1109/TMC.2021.3084972 10.1287/opre.26.4.681 10.1109/TCOMM.2014.2370056 10.1109/GLOBECOM48099.2022.10001477 10.1109/TVT.2021.3086556 10.1109/TCOMM.2019.2906622 10.1109/JSAC.2021.3088688 10.1109/JIOT.2019.2913473 10.1109/TCOMM.2018.2880468 10.1109/CSCN.2017.8088599 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2024.3398438 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 13081 |
ExternalDocumentID | 10_1109_TWC_2024_3398438 10531146 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62001168 funderid: 10.13039/501100001809 – fundername: Department of Science and Technology, Guangdong Province grantid: 2021QN02X491 funderid: 10.13039/501100003453 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-4f2bbdccb058e4f834e726da9210ad51af77ae44914bbe0da1e3aa5fc3b81f923 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 12:25:49 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Tue Jul 01 04:13:40 EDT 2025 Wed Aug 27 02:20:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-4f2bbdccb058e4f834e726da9210ad51af77ae44914bbe0da1e3aa5fc3b81f923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9870-1686 0000-0002-7398-0906 |
PQID | 3115571650 |
PQPubID | 105736 |
PageCount | 14 |
ParticipantIDs | ieee_primary_10531146 crossref_primary_10_1109_TWC_2024_3398438 proquest_journals_3115571650 crossref_citationtrail_10_1109_TWC_2024_3398438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 (ref9) 2017 ref51 ref50 ref46 Diamond (ref48) 2016; 17 ref42 ref41 ref43 Grant (ref47) 2014 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 Bertsekas (ref45) 2016 ref24 ref23 ref26 Hanscom (ref1) 2013 ref25 ref20 ref22 ref21 ref28 ref27 Chen (ref44) 2022 ref29 |
References_xml | – ident: ref12 doi: 10.1109/TWC.2019.2940447 – ident: ref24 doi: 10.1109/TCOMM.2021.3124950 – volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1 year: 2014 ident: ref47 – year: 2013 ident: ref1 article-title: Unmanned aircraft system (UAS) service demand 2015–2035, literature review & projections of future usage – ident: ref35 doi: 10.1109/JIOT.2020.3005271 – ident: ref17 doi: 10.1109/TWC.2023.3235748 – ident: ref21 doi: 10.1109/TVT.2019.2893374 – ident: ref38 doi: 10.1109/TWC.2019.2902559 – ident: ref19 doi: 10.1109/TCOMM.2019.2895831 – ident: ref46 doi: 10.1109/JIOT.2022.3143250 – ident: ref15 doi: 10.1109/TWC.2012.051512.111622 – ident: ref37 doi: 10.1109/TVT.2015.2480766 – ident: ref53 doi: 10.1109/TSP.2014.2354312 – ident: ref8 doi: 10.1109/COMST.2017.2650979 – ident: ref3 doi: 10.1109/MCOM.2016.7470933 – ident: ref28 doi: 10.1109/TWC.2019.2911939 – ident: ref39 doi: 10.1109/TWC.2019.2930190 – ident: ref49 doi: 10.1109/GLOCOM.2016.7841981 – ident: ref40 doi: 10.1109/TCOMM.2020.3025910 – ident: ref29 doi: 10.1109/JIOT.2020.3041303 – ident: ref2 doi: 10.1109/MCOM.2017.1600238CM – ident: ref41 doi: 10.1109/TWC.2017.2789293 – volume-title: Enhanced LTE Support for Aerial Vehicles year: 2017 ident: ref9 – ident: ref36 doi: 10.1109/TWC.2021.3113640 – ident: ref10 doi: 10.1109/TVT.2018.2816244 – year: 2022 ident: ref44 article-title: UAV-assisted data collection for wireless sensor networks with dynamic working modes publication-title: Digit. Commun. Netw. – ident: ref33 doi: 10.1109/TVT.2020.3005732 – ident: ref5 doi: 10.1109/TWC.2021.3105821 – ident: ref50 doi: 10.1109/TSP.2017.2673813 – ident: ref13 doi: 10.1109/JIOT.2020.3012835 – ident: ref22 doi: 10.1109/TVT.2019.2959808 – ident: ref26 doi: 10.1109/TWC.2021.3112568 – ident: ref23 doi: 10.1109/JIOT.2018.2878834 – ident: ref31 doi: 10.1109/TWC.2021.3084140 – ident: ref34 doi: 10.1109/TCOMM.2021.3106134 – ident: ref14 doi: 10.1109/JSAC.2017.2725519 – ident: ref42 doi: 10.1109/TWC.2018.2790401 – ident: ref25 doi: 10.1109/LWC.2022.3164784 – ident: ref6 doi: 10.1109/TVT.2022.3203704 – ident: ref43 doi: 10.1109/TCOMM.2019.2962479 – ident: ref7 doi: 10.1109/SURV.2011.060710.00066 – ident: ref51 doi: 10.1109/TWC.2017.2688328 – ident: ref27 doi: 10.1109/TMC.2021.3084972 – ident: ref52 doi: 10.1287/opre.26.4.681 – ident: ref16 doi: 10.1109/TCOMM.2014.2370056 – ident: ref11 doi: 10.1109/GLOBECOM48099.2022.10001477 – ident: ref18 doi: 10.1109/TVT.2021.3086556 – ident: ref20 doi: 10.1109/TCOMM.2019.2906622 – ident: ref30 doi: 10.1109/JSAC.2021.3088688 – ident: ref32 doi: 10.1109/JIOT.2019.2913473 – volume: 17 start-page: 1 issue: 83 year: 2016 ident: ref48 article-title: CVXPY: A Python-embedded modeling language for convex optimization publication-title: J. Mach. Learn. Res. – ident: ref4 doi: 10.1109/TCOMM.2018.2880468 – volume-title: Nonlinear Programming year: 2016 ident: ref45 – ident: ref54 doi: 10.1109/CSCN.2017.8088599 |
SSID | ssj0017655 |
Score | 2.4932792 |
Snippet | Owing to the excellent mobility character, unmanned aerial vehicles (UAVs) show great potentials as a means of data collector in a wireless sensor network... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13068 |
SubjectTerms | Algorithms Autonomous aerial vehicles Closed form solutions Data collection Decoding Design optimization Heuristic algorithms Heuristic methods Mixed integer Nodes NOMA non-orthogonal multiple access Nonlinear programming Nonorthogonal multiple access Sensors Throughput throughput maximization Trajectory Unmanned aerial vehicles Wireless sensor networks |
Title | Throughput Maximization for UAV-Assisted Data Collection With Hybrid NOMA |
URI | https://ieeexplore.ieee.org/document/10531146 https://www.proquest.com/docview/3115571650 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ekx58YkTR9ODFw8Kyben2SFCCJuAFhNum7U4jUYHokqi_3ra7EKLReNtD2zTz2JnpzDeD0GVKAVqE0kAZBgF1dVTW6KmAC2MkMcC4cQDn_qDVG9G7CZsUYHWPhQEAX3wGdffpc_npXC_dU5nVcCsxVrVLqGQjtxystU4Z8JYfcWo12A2W4eucZCgaw3HHRoIRrRMiYuqgKBs2yA9V-fEn9ualu4cGq4vlVSVP9WWm6vrzW8_Gf998H-0WjiZu55JxgLZgdoh2NtoPHqHbYT6kZ7HMcF--T18KTCa2jiwetR8CyzsnBSm-lpnE_o3BwyDweJo94t6HQ3vhwX2_XUGj7s2w0wuK0QqBjkSUBdRESqVaq5DFQE1MKPColUphI0CZsqY0nEugVDSpUhCmsglESmY0UXHTWKfwGJVn8xmcIBxrEnFOIkNVTJmS1sEQoJWKGAidhmEVNVbETnTRd9yNv3hOfPwRisSyJ3HsSQr2VNHVesci77nxx9qKo_bGupzQVVRbMTQptPItcZ2FmA0QWXj6y7YztO1Oz6v1aqicvS7h3Hodmbrw0vYFd4TSsw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6V9FA4QB9BDYTWh1562GR3bcfrYxSIQpukl6ThtrK9Y4GgAdGNVPj12N5NFBUV9bYHW7bmsTPjmW8G4EvBEHuUsUhbjhHzdVTO6OlISGsVtciF9QDnybQ3mrNvF_yiBqsHLAwihuIz7PjPkMsvbs3KP5U5DXcS41R7B147w8-TCq61SRqIXhhy6nTYj5YRm6xkLLuzxcDFginrUCoz5sEoW1YojFV59i8OBmZ4ANP11aq6kuvOqtQd8_hX18b_vvtb2K9dTdKvZOMdvMLle9jbakD4Ac5n1Zieu1VJJurP1a8alUmcK0vm_Z-R456Xg4KcqlKR8MoQgBBkcVVektGDx3uR6Y9Jvwnz4dlsMIrq4QqRSWVaRsymWhfG6JhnyGxGGYq0VyjpYkBV8ERZIRQyJhOmNcaFSpAqxa2hOkuscwsPobG8XeJHIJmhqRA0tUxnjGvlXAyJRuuUozRFHLeguyZ2burO434Axk0eIpBY5o49uWdPXrOnBV83O-6qrhsvrG16am-tqwjdgvaaoXmtl79z31uIuxCRx0f_2PYZ3oxmk3E-Pp9-P4Zdf1JVu9eGRnm_whPng5T6U5C8J6I31fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Maximization+for+UAV-Assisted+Data+Collection+With+Hybrid+NOMA&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Tang%2C+Jianhua&rft.au=Chen%2C+Jie&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=10&rft.spage=13068&rft_id=info:doi/10.1109%2FTWC.2024.3398438&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |