Next Generation Imaging in Consumer Technology for ERP Detection-Based EEG Cross-Subject Visual Object Recognition

The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the association between variations in brain activity and their prospective application in user-friendly brain-machine interfaces (BMIs) has been growing...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on consumer electronics Vol. 70; no. 1; pp. 3688 - 3696
Main Authors Bhatt, Mohammed Wasim, Sharma, Sparsh
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the association between variations in brain activity and their prospective application in user-friendly brain-machine interfaces (BMIs) has been growing significant momentum. To this end, a novel model is proposing that enhance the detection of event-related potentials (ERP) from EEG signals, particularly for visual object recognition across different subjects, incorporating next generation imaging technology tailored for consumer electronics. It utilizes a graph representation that captures EEG spatial information, across all subjects and tasks. It merges a convolutional neural network (CNN) with a long short-term memory network (LSTM), creating a solid CNN-LSTM architecture followed by dual-attention mechanism. It includes both selective kernel convolution and self-attention mechanisms. They jointly work to precisely capture the unique spatiotemporal characteristics of EEG signals from various subjects. This results in boosting the accuracy of ERP detection for individuals. Experimental validation of the proposed model shows promising results. It was tested on a comprehensive benchmark dataset designed around the rapid serial visual presentation paradigm. The data shows that this new method outperforms seven existing ERP detection techniques in scenarios involving different subjects.
AbstractList The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the association between variations in brain activity and their prospective application in user-friendly brain-machine interfaces (BMIs) has been growing significant momentum. To this end, a novel model is proposing that enhance the detection of event-related potentials (ERP) from EEG signals, particularly for visual object recognition across different subjects, incorporating next generation imaging technology tailored for consumer electronics. It utilizes a graph representation that captures EEG spatial information, across all subjects and tasks. It merges a convolutional neural network (CNN) with a long short-term memory network (LSTM), creating a solid CNN-LSTM architecture followed by dual-attention mechanism. It includes both selective kernel convolution and self-attention mechanisms. They jointly work to precisely capture the unique spatiotemporal characteristics of EEG signals from various subjects. This results in boosting the accuracy of ERP detection for individuals. Experimental validation of the proposed model shows promising results. It was tested on a comprehensive benchmark dataset designed around the rapid serial visual presentation paradigm. The data shows that this new method outperforms seven existing ERP detection techniques in scenarios involving different subjects.
Author Sharma, Sparsh
Bhatt, Mohammed Wasim
Author_xml – sequence: 1
  givenname: Mohammed Wasim
  orcidid: 0000-0003-0542-2790
  surname: Bhatt
  fullname: Bhatt, Mohammed Wasim
  email: wasim_2021phacse004@nitsri.net
  organization: Department of Computer Science and Engineering, National Institute of Technology Srinagar, Srinagar, India
– sequence: 2
  givenname: Sparsh
  orcidid: 0009-0002-5512-6711
  surname: Sharma
  fullname: Sharma, Sparsh
  email: sparsh.sharma@nitsri.net
  organization: Department of Computer Science and Engineering, National Institute of Technology Srinagar, Srinagar, India
BookMark eNp9kT1PwzAQhi0EEqWwMzBYYk7xV9J4hBAKEgJUCmvkOOfiqrXBTiT670koA2JgOp3ufe6sx0do33kHCJ1SMqGUyItFUU4YYWLCeZanmdxDI5qmeSIom-6jESEyTzjJ-CE6inFFCBUpy0coPMBni2fgIKjWeofvNmpp3RJbhwvvYreBgBeg35xf--UWGx9wOX_C19CCHoDkSkVocFnOcBF8jMlzV6_6EX61sVNr_Ljr5qD90tmBOEYHRq0jnPzUMXq5KRfFbXL_OLsrLu8TzSRrEyEFJSLTkhimIDeq1noKdd5QrXhuslQoxriWmgmTkboBVk-VaBQz3OQN03yMznd734P_6CC21cp3wfUnK0767ZIxyftUtkvp4fUBTKVt-62iDcquK0qqwW_V-60Gv9WP3x4kf8D3YDcqbP9DznaIBYBfcdH_BU_5F0EziMM
CODEN ITCEDA
CitedBy_id crossref_primary_10_1109_TCE_2024_3423329
crossref_primary_10_1016_j_neunet_2025_107124
crossref_primary_10_1016_j_neunet_2024_106655
crossref_primary_10_1109_TCE_2024_3475821
Cites_doi 10.1109/TNSRE.2023.3275608
10.1109/tii.2022.3174063
10.1016/j.heliyon.2023.e16927
10.1109/ACCESS.2022.3204739
10.1016/j.bspc.2021.103049
10.1109/tnnls.2014.2302898
10.1109/tbme.2013.2289898
10.1109/access.2020.3012918
10.1109/ACCESS.2019.2912997
10.1109/TNSRE.2022.3150007
10.1109/TBME.2019.2961743
10.1109/TNSRE.2013.2290870
10.1109/TNSRE.2023.3263502
10.1016/j.jneumeth.2022.109621
10.1109/THMS.2022.3225633
10.1109/lsens.2019.2960279
10.1007/s11042-019-7258-4
10.1109/TCYB.2022.3143798
10.1088/1741-2552/ab260c
10.1016/j.clinph.2010.06.033
10.1016/j.asoc.2022.108740
10.1109/TBME.2013.2264956
10.1016/j.dsp.2023.104278
10.1109/access.2023.3322294
10.1109/TNSRE.2019.2953975
10.1109/tla.2020.9400443
10.1109/TITB.2010.2040286
10.1109/tim.2023.3276515
10.1109/tamd.2015.2446499
10.1109/tnsre.2015.2502323
10.3389/fnhum.2020.00296
10.1109/ACCESS.2019.2912273
10.1109/TBME.2021.3138157
10.1109/TNSRE.2022.3184725
10.1109/TNSRE.2020.3009978
10.1016/j.neucom.2023.126262
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2024.3368569
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 3696
ExternalDocumentID 10_1109_TCE_2024_3368569
10445235
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c292t-4941046c90f2ae8fabcc7eb8d1ca38f654a223c9c24f60bde2b7a4da2f3f8d2c3
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Mon Jun 30 14:32:33 EDT 2025
Tue Jul 01 00:42:06 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Aug 27 02:06:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-4941046c90f2ae8fabcc7eb8d1ca38f654a223c9c24f60bde2b7a4da2f3f8d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0542-2790
0009-0002-5512-6711
PQID 3049492293
PQPubID 85469
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TCE_2024_3368569
crossref_primary_10_1109_TCE_2024_3368569
ieee_primary_10445235
proquest_journals_3049492293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1109/TNSRE.2023.3275608
– ident: ref21
  doi: 10.1109/tii.2022.3174063
– ident: ref32
  doi: 10.1016/j.heliyon.2023.e16927
– ident: ref18
  doi: 10.1109/ACCESS.2022.3204739
– ident: ref33
  doi: 10.1016/j.bspc.2021.103049
– ident: ref7
  doi: 10.1109/tnnls.2014.2302898
– ident: ref11
  doi: 10.1109/tbme.2013.2289898
– ident: ref13
  doi: 10.1109/access.2020.3012918
– ident: ref14
  doi: 10.1109/ACCESS.2019.2912997
– ident: ref26
  doi: 10.1109/TNSRE.2022.3150007
– ident: ref2
  doi: 10.1109/TBME.2019.2961743
– ident: ref3
  doi: 10.1109/TNSRE.2013.2290870
– ident: ref12
  doi: 10.1109/TNSRE.2023.3263502
– ident: ref30
  doi: 10.1016/j.jneumeth.2022.109621
– ident: ref9
  doi: 10.1109/THMS.2022.3225633
– ident: ref20
  doi: 10.1109/lsens.2019.2960279
– ident: ref22
  doi: 10.1007/s11042-019-7258-4
– ident: ref29
  doi: 10.1109/TCYB.2022.3143798
– ident: ref24
  doi: 10.1088/1741-2552/ab260c
– ident: ref31
  doi: 10.1016/j.clinph.2010.06.033
– ident: ref36
  doi: 10.1016/j.asoc.2022.108740
– ident: ref1
  doi: 10.1109/TBME.2013.2264956
– ident: ref35
  doi: 10.1016/j.dsp.2023.104278
– ident: ref19
  doi: 10.1109/access.2023.3322294
– ident: ref4
  doi: 10.1109/TNSRE.2019.2953975
– ident: ref5
  doi: 10.1109/tla.2020.9400443
– ident: ref27
  doi: 10.1109/TITB.2010.2040286
– ident: ref17
  doi: 10.1109/tim.2023.3276515
– ident: ref16
  doi: 10.1109/tamd.2015.2446499
– ident: ref23
  doi: 10.1109/tnsre.2015.2502323
– ident: ref25
  doi: 10.3389/fnhum.2020.00296
– ident: ref15
  doi: 10.1109/ACCESS.2019.2912273
– ident: ref10
  doi: 10.1109/TBME.2021.3138157
– ident: ref6
  doi: 10.1109/TNSRE.2022.3184725
– ident: ref8
  doi: 10.1109/TNSRE.2020.3009978
– ident: ref34
  doi: 10.1016/j.neucom.2023.126262
SSID ssj0014528
Score 2.4336834
Snippet The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3688
SubjectTerms Artificial neural networks
Brain
Brain modeling
Consumer electronics
consumer technology
Convolution
Convolutional neural networks
cross-subject analysis
Electroencephalography
Event-related potentials
Feature extraction
graph representation
Graph representations
Graphical representations
Man-machine interfaces
Object recognition
Spatial data
visual object recognition
Visualization
Title Next Generation Imaging in Consumer Technology for ERP Detection-Based EEG Cross-Subject Visual Object Recognition
URI https://ieeexplore.ieee.org/document/10445235
https://www.proquest.com/docview/3049492293
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp3Kg0C5iKVQ-9MIhu8GZ9cZHWMKjUheEoOIW-TGWVrRZBNlLf33HTgIrKhC3RLETR58f8_yGse8otfWIaQIHGhIQME50rkhZ0XKsnfAIGLKRf07l2Q38uB3dtsnqMRcGEWPwGQ7CZfTlu7ldBFMZrXAAUpxGK2yFNLcmWevJZUBP8o4gk-TgrPNJpmp4PSlIExQwyALdeohtXjqDYlGV_3bieLycfGLTbmBNVMndYFGbgf37grPx3SPfYOutoMkPm5mxyT5g9ZmtLdEPfmEPU9qZeUM8HfDh539izSI-q_ikTc3kz7Z3TvItL64u-THWMYCrSo7oDHS8KE75JPxpQttQsOvwX7PHBX38orm76oKU5lWP3ZwU15OzpK3BkFihRJ2AguAFtir1QmPutbF2jCZ3B1ZnuZcj0CRgWGUFeJkah8KMNTgtfOZzJ2y2xVareYXbjJPm5KwUYNFJMDIz3grjAzVplqGRqs-GHSqlbQnKQ52M32VUVFJVEo5lwLFsceyz_ace9w05xxttewGWpXYNIn222yFftsv3sQy-R1CCRKGdV7p9ZR_D25v47V22Wj8scI_Ek9p8i9PyH8AZ4bg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPItYKOADFw7Zps6sNz7CkrKFdkHVFvUW-TGWKmgWtdkLv56xk5QVCMQtUWzZ0Wd7Zjwz3wC8ImVcIMoz3DeYocRpZkrNxopRU-NlIKSYjXy8UPNT_HA2OeuT1VMuDBGl4DMax8fky_crt45XZbzDEdlwmtyEWyz4J7JL17p2GvC3cqDIZE24GLySud5bziq2BSWOi0i4HqObN6RQKqvyx1mcBMzBPVgMU-viSr6O160dux-_sTb-99zvw91e1RRvurXxAG5Q8xC2NwgIH8Hlgs9m0VFPR4TE4UWqWiTOGzHrkzPFr9t3wRquqE4-i3fUphCuJnvLUtCLqnovZvFPMz6I4s2O-HJ-tebBP3VvJ0OY0qrZgdODajmbZ30VhsxJLdsMNUY_sNN5kIbKYKxzU7Kl33emKIOaoGEVw2knMajcepJ2atAbGYpQeumKx7DVrBp6AoJtJ--UREdeoVWFDU7aEMlJi4Ks0iPYG1CpXU9RHitlfKuTqZLrmnGsI451j-MIXl_3-N7Rc_yj7U6EZaNdh8gIdgfk634DX9XR-4hasjL09C_dXsLt-fL4qD46XHx8BnfiSF009y5stZdres7KSmtfpCX6E7EO5QI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next+Generation+Imaging+in+Consumer+Technology+for+ERP+Detection-Based+EEG+Cross-Subject+Visual+Object+Recognition&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Bhatt%2C+Mohammed+Wasim&rft.au=Sharma%2C+Sparsh&rft.date=2024-02-01&rft.pub=IEEE&rft.issn=0098-3063&rft.volume=70&rft.issue=1&rft.spage=3688&rft.epage=3696&rft_id=info:doi/10.1109%2FTCE.2024.3368569&rft.externalDocID=10445235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon