Next Generation Imaging in Consumer Technology for ERP Detection-Based EEG Cross-Subject Visual Object Recognition
The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the association between variations in brain activity and their prospective application in user-friendly brain-machine interfaces (BMIs) has been growing...
Saved in:
Published in | IEEE transactions on consumer electronics Vol. 70; no. 1; pp. 3688 - 3696 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the association between variations in brain activity and their prospective application in user-friendly brain-machine interfaces (BMIs) has been growing significant momentum. To this end, a novel model is proposing that enhance the detection of event-related potentials (ERP) from EEG signals, particularly for visual object recognition across different subjects, incorporating next generation imaging technology tailored for consumer electronics. It utilizes a graph representation that captures EEG spatial information, across all subjects and tasks. It merges a convolutional neural network (CNN) with a long short-term memory network (LSTM), creating a solid CNN-LSTM architecture followed by dual-attention mechanism. It includes both selective kernel convolution and self-attention mechanisms. They jointly work to precisely capture the unique spatiotemporal characteristics of EEG signals from various subjects. This results in boosting the accuracy of ERP detection for individuals. Experimental validation of the proposed model shows promising results. It was tested on a comprehensive benchmark dataset designed around the rapid serial visual presentation paradigm. The data shows that this new method outperforms seven existing ERP detection techniques in scenarios involving different subjects. |
---|---|
AbstractList | The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the association between variations in brain activity and their prospective application in user-friendly brain-machine interfaces (BMIs) has been growing significant momentum. To this end, a novel model is proposing that enhance the detection of event-related potentials (ERP) from EEG signals, particularly for visual object recognition across different subjects, incorporating next generation imaging technology tailored for consumer electronics. It utilizes a graph representation that captures EEG spatial information, across all subjects and tasks. It merges a convolutional neural network (CNN) with a long short-term memory network (LSTM), creating a solid CNN-LSTM architecture followed by dual-attention mechanism. It includes both selective kernel convolution and self-attention mechanisms. They jointly work to precisely capture the unique spatiotemporal characteristics of EEG signals from various subjects. This results in boosting the accuracy of ERP detection for individuals. Experimental validation of the proposed model shows promising results. It was tested on a comprehensive benchmark dataset designed around the rapid serial visual presentation paradigm. The data shows that this new method outperforms seven existing ERP detection techniques in scenarios involving different subjects. |
Author | Sharma, Sparsh Bhatt, Mohammed Wasim |
Author_xml | – sequence: 1 givenname: Mohammed Wasim orcidid: 0000-0003-0542-2790 surname: Bhatt fullname: Bhatt, Mohammed Wasim email: wasim_2021phacse004@nitsri.net organization: Department of Computer Science and Engineering, National Institute of Technology Srinagar, Srinagar, India – sequence: 2 givenname: Sparsh orcidid: 0009-0002-5512-6711 surname: Sharma fullname: Sharma, Sparsh email: sparsh.sharma@nitsri.net organization: Department of Computer Science and Engineering, National Institute of Technology Srinagar, Srinagar, India |
BookMark | eNp9kT1PwzAQhi0EEqWwMzBYYk7xV9J4hBAKEgJUCmvkOOfiqrXBTiT670koA2JgOp3ufe6sx0do33kHCJ1SMqGUyItFUU4YYWLCeZanmdxDI5qmeSIom-6jESEyTzjJ-CE6inFFCBUpy0coPMBni2fgIKjWeofvNmpp3RJbhwvvYreBgBeg35xf--UWGx9wOX_C19CCHoDkSkVocFnOcBF8jMlzV6_6EX61sVNr_Ljr5qD90tmBOEYHRq0jnPzUMXq5KRfFbXL_OLsrLu8TzSRrEyEFJSLTkhimIDeq1noKdd5QrXhuslQoxriWmgmTkboBVk-VaBQz3OQN03yMznd734P_6CC21cp3wfUnK0767ZIxyftUtkvp4fUBTKVt-62iDcquK0qqwW_V-60Gv9WP3x4kf8D3YDcqbP9DznaIBYBfcdH_BU_5F0EziMM |
CODEN | ITCEDA |
CitedBy_id | crossref_primary_10_1109_TCE_2024_3423329 crossref_primary_10_1016_j_neunet_2025_107124 crossref_primary_10_1016_j_neunet_2024_106655 crossref_primary_10_1109_TCE_2024_3475821 |
Cites_doi | 10.1109/TNSRE.2023.3275608 10.1109/tii.2022.3174063 10.1016/j.heliyon.2023.e16927 10.1109/ACCESS.2022.3204739 10.1016/j.bspc.2021.103049 10.1109/tnnls.2014.2302898 10.1109/tbme.2013.2289898 10.1109/access.2020.3012918 10.1109/ACCESS.2019.2912997 10.1109/TNSRE.2022.3150007 10.1109/TBME.2019.2961743 10.1109/TNSRE.2013.2290870 10.1109/TNSRE.2023.3263502 10.1016/j.jneumeth.2022.109621 10.1109/THMS.2022.3225633 10.1109/lsens.2019.2960279 10.1007/s11042-019-7258-4 10.1109/TCYB.2022.3143798 10.1088/1741-2552/ab260c 10.1016/j.clinph.2010.06.033 10.1016/j.asoc.2022.108740 10.1109/TBME.2013.2264956 10.1016/j.dsp.2023.104278 10.1109/access.2023.3322294 10.1109/TNSRE.2019.2953975 10.1109/tla.2020.9400443 10.1109/TITB.2010.2040286 10.1109/tim.2023.3276515 10.1109/tamd.2015.2446499 10.1109/tnsre.2015.2502323 10.3389/fnhum.2020.00296 10.1109/ACCESS.2019.2912273 10.1109/TBME.2021.3138157 10.1109/TNSRE.2022.3184725 10.1109/TNSRE.2020.3009978 10.1016/j.neucom.2023.126262 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
DOI | 10.1109/TCE.2024.3368569 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-4127 |
EndPage | 3696 |
ExternalDocumentID | 10_1109_TCE_2024_3368569 10445235 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SP 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c292t-4941046c90f2ae8fabcc7eb8d1ca38f654a223c9c24f60bde2b7a4da2f3f8d2c3 |
IEDL.DBID | RIE |
ISSN | 0098-3063 |
IngestDate | Mon Jun 30 14:32:33 EDT 2025 Tue Jul 01 00:42:06 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 02:06:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-4941046c90f2ae8fabcc7eb8d1ca38f654a223c9c24f60bde2b7a4da2f3f8d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0542-2790 0009-0002-5512-6711 |
PQID | 3049492293 |
PQPubID | 85469 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TCE_2024_3368569 crossref_primary_10_1109_TCE_2024_3368569 ieee_primary_10445235 proquest_journals_3049492293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on consumer electronics |
PublicationTitleAbbrev | T-CE |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref28 doi: 10.1109/TNSRE.2023.3275608 – ident: ref21 doi: 10.1109/tii.2022.3174063 – ident: ref32 doi: 10.1016/j.heliyon.2023.e16927 – ident: ref18 doi: 10.1109/ACCESS.2022.3204739 – ident: ref33 doi: 10.1016/j.bspc.2021.103049 – ident: ref7 doi: 10.1109/tnnls.2014.2302898 – ident: ref11 doi: 10.1109/tbme.2013.2289898 – ident: ref13 doi: 10.1109/access.2020.3012918 – ident: ref14 doi: 10.1109/ACCESS.2019.2912997 – ident: ref26 doi: 10.1109/TNSRE.2022.3150007 – ident: ref2 doi: 10.1109/TBME.2019.2961743 – ident: ref3 doi: 10.1109/TNSRE.2013.2290870 – ident: ref12 doi: 10.1109/TNSRE.2023.3263502 – ident: ref30 doi: 10.1016/j.jneumeth.2022.109621 – ident: ref9 doi: 10.1109/THMS.2022.3225633 – ident: ref20 doi: 10.1109/lsens.2019.2960279 – ident: ref22 doi: 10.1007/s11042-019-7258-4 – ident: ref29 doi: 10.1109/TCYB.2022.3143798 – ident: ref24 doi: 10.1088/1741-2552/ab260c – ident: ref31 doi: 10.1016/j.clinph.2010.06.033 – ident: ref36 doi: 10.1016/j.asoc.2022.108740 – ident: ref1 doi: 10.1109/TBME.2013.2264956 – ident: ref35 doi: 10.1016/j.dsp.2023.104278 – ident: ref19 doi: 10.1109/access.2023.3322294 – ident: ref4 doi: 10.1109/TNSRE.2019.2953975 – ident: ref5 doi: 10.1109/tla.2020.9400443 – ident: ref27 doi: 10.1109/TITB.2010.2040286 – ident: ref17 doi: 10.1109/tim.2023.3276515 – ident: ref16 doi: 10.1109/tamd.2015.2446499 – ident: ref23 doi: 10.1109/tnsre.2015.2502323 – ident: ref25 doi: 10.3389/fnhum.2020.00296 – ident: ref15 doi: 10.1109/ACCESS.2019.2912273 – ident: ref10 doi: 10.1109/TBME.2021.3138157 – ident: ref6 doi: 10.1109/TNSRE.2022.3184725 – ident: ref8 doi: 10.1109/TNSRE.2020.3009978 – ident: ref34 doi: 10.1016/j.neucom.2023.126262 |
SSID | ssj0014528 |
Score | 2.4336834 |
Snippet | The perception and recognition of objects are essential for meeting consumer needs in the realm of consumer technology. Current research exploring the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3688 |
SubjectTerms | Artificial neural networks Brain Brain modeling Consumer electronics consumer technology Convolution Convolutional neural networks cross-subject analysis Electroencephalography Event-related potentials Feature extraction graph representation Graph representations Graphical representations Man-machine interfaces Object recognition Spatial data visual object recognition Visualization |
Title | Next Generation Imaging in Consumer Technology for ERP Detection-Based EEG Cross-Subject Visual Object Recognition |
URI | https://ieeexplore.ieee.org/document/10445235 https://www.proquest.com/docview/3049492293 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKp3Kg0C5iKVQ-9MIhu8GZ9cZHWMKjUheEoOIW-TGWVrRZBNlLf33HTgIrKhC3RLETR58f8_yGse8otfWIaQIHGhIQME50rkhZ0XKsnfAIGLKRf07l2Q38uB3dtsnqMRcGEWPwGQ7CZfTlu7ldBFMZrXAAUpxGK2yFNLcmWevJZUBP8o4gk-TgrPNJpmp4PSlIExQwyALdeohtXjqDYlGV_3bieLycfGLTbmBNVMndYFGbgf37grPx3SPfYOutoMkPm5mxyT5g9ZmtLdEPfmEPU9qZeUM8HfDh539izSI-q_ikTc3kz7Z3TvItL64u-THWMYCrSo7oDHS8KE75JPxpQttQsOvwX7PHBX38orm76oKU5lWP3ZwU15OzpK3BkFihRJ2AguAFtir1QmPutbF2jCZ3B1ZnuZcj0CRgWGUFeJkah8KMNTgtfOZzJ2y2xVareYXbjJPm5KwUYNFJMDIz3grjAzVplqGRqs-GHSqlbQnKQ52M32VUVFJVEo5lwLFsceyz_ace9w05xxttewGWpXYNIn222yFftsv3sQy-R1CCRKGdV7p9ZR_D25v47V22Wj8scI_Ek9p8i9PyH8AZ4bg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPPItYKOADFw7Zps6sNz7CkrKFdkHVFvUW-TGWKmgWtdkLv56xk5QVCMQtUWzZ0Wd7Zjwz3wC8ImVcIMoz3DeYocRpZkrNxopRU-NlIKSYjXy8UPNT_HA2OeuT1VMuDBGl4DMax8fky_crt45XZbzDEdlwmtyEWyz4J7JL17p2GvC3cqDIZE24GLySud5bziq2BSWOi0i4HqObN6RQKqvyx1mcBMzBPVgMU-viSr6O160dux-_sTb-99zvw91e1RRvurXxAG5Q8xC2NwgIH8Hlgs9m0VFPR4TE4UWqWiTOGzHrkzPFr9t3wRquqE4-i3fUphCuJnvLUtCLqnovZvFPMz6I4s2O-HJ-tebBP3VvJ0OY0qrZgdODajmbZ30VhsxJLdsMNUY_sNN5kIbKYKxzU7Kl33emKIOaoGEVw2knMajcepJ2atAbGYpQeumKx7DVrBp6AoJtJ--UREdeoVWFDU7aEMlJi4Ks0iPYG1CpXU9RHitlfKuTqZLrmnGsI451j-MIXl_3-N7Rc_yj7U6EZaNdh8gIdgfk634DX9XR-4hasjL09C_dXsLt-fL4qD46XHx8BnfiSF009y5stZdres7KSmtfpCX6E7EO5QI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next+Generation+Imaging+in+Consumer+Technology+for+ERP+Detection-Based+EEG+Cross-Subject+Visual+Object+Recognition&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Bhatt%2C+Mohammed+Wasim&rft.au=Sharma%2C+Sparsh&rft.date=2024-02-01&rft.pub=IEEE&rft.issn=0098-3063&rft.volume=70&rft.issue=1&rft.spage=3688&rft.epage=3696&rft_id=info:doi/10.1109%2FTCE.2024.3368569&rft.externalDocID=10445235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |