Roboat III: An autonomous surface vessel for urban transportation
In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking a...
Saved in:
Published in | Journal of field robotics Vol. 40; no. 8; pp. 1996 - 2009 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-4959 1556-4967 |
DOI | 10.1002/rob.22237 |
Cover
Loading…
Abstract | In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking and interconnectivity between Roboats. We build an adaptive nonlinear model predictive controller for trajectory tracking to account for payload changes while transporting passengers. We use a sparse directed graph to represent the canal topological map and then find the most time‐efficient global path in a city‐scale environment using the algorithm. We then employ a multiobjective algorithm's lexicographic search to generate an obstacle‐free path using a point‐cloud projected two‐dimensional occupancy grid map. We also develop a docking mechanism to allow Roboat to “grasp” the docking station. Extensive experiments in Amsterdam waterways demonstrate that Roboat can (1) successfully track the optimal trajectories generated by the planner with varying numbers of passengers on board; (2) autonomously dock to the station without human intervention; (3) execute an autonomous water taxi task where it docks to pick up passengers, drive passengers to the destination while planning its path to avoid obstacles, and finally dock to drop off passengers. |
---|---|
AbstractList | In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking and interconnectivity between Roboats. We build an adaptive nonlinear model predictive controller for trajectory tracking to account for payload changes while transporting passengers. We use a sparse directed graph to represent the canal topological map and then find the most time‐efficient global path in a city‐scale environment using the algorithm. We then employ a multiobjective algorithm's lexicographic search to generate an obstacle‐free path using a point‐cloud projected two‐dimensional occupancy grid map. We also develop a docking mechanism to allow Roboat to “grasp” the docking station. Extensive experiments in Amsterdam waterways demonstrate that Roboat can (1) successfully track the optimal trajectories generated by the planner with varying numbers of passengers on board; (2) autonomously dock to the station without human intervention; (3) execute an autonomous water taxi task where it docks to pick up passengers, drive passengers to the destination while planning its path to avoid obstacles, and finally dock to drop off passengers. In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking and interconnectivity between Roboats. We build an adaptive nonlinear model predictive controller for trajectory tracking to account for payload changes while transporting passengers. We use a sparse directed graph to represent the canal topological map and then find the most time‐efficient global path in a city‐scale environment using the A* ${A}^{* }$ algorithm. We then employ a multiobjective algorithm's lexicographic search to generate an obstacle‐free path using a point‐cloud projected two‐dimensional occupancy grid map. We also develop a docking mechanism to allow Roboat to “grasp” the docking station. Extensive experiments in Amsterdam waterways demonstrate that Roboat can (1) successfully track the optimal trajectories generated by the planner with varying numbers of passengers on board; (2) autonomously dock to the station without human intervention; (3) execute an autonomous water taxi task where it docks to pick up passengers, drive passengers to the destination while planning its path to avoid obstacles, and finally dock to drop off passengers. |
Author | Doornbusch, Rens Leoni, Pietro Jordan, Joshua Wang, Wei Fernández‐Gutiérrez, David Shan, Tixiao Ratti, Carlo Schiphorst, Jonathan Klein Hagemann, Niklas Duarte, Fabio Rus, Daniela |
Author_xml | – sequence: 1 givenname: Wei surname: Wang fullname: Wang, Wei organization: Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology Cambridge Massachusetts USA, SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA – sequence: 2 givenname: David surname: Fernández‐Gutiérrez fullname: Fernández‐Gutiérrez, David organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA – sequence: 3 givenname: Rens surname: Doornbusch fullname: Doornbusch, Rens organization: Amsterdam Institute for Advanced Metropolitan Solutions (AMS) Amsterdam The Netherlands – sequence: 4 givenname: Joshua surname: Jordan fullname: Jordan, Joshua organization: Amsterdam Institute for Advanced Metropolitan Solutions (AMS) Amsterdam The Netherlands – sequence: 5 givenname: Tixiao surname: Shan fullname: Shan, Tixiao organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA – sequence: 6 givenname: Pietro surname: Leoni fullname: Leoni, Pietro organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA – sequence: 7 givenname: Niklas surname: Hagemann fullname: Hagemann, Niklas organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA – sequence: 8 givenname: Jonathan Klein surname: Schiphorst fullname: Schiphorst, Jonathan Klein organization: Amsterdam Institute for Advanced Metropolitan Solutions (AMS) Amsterdam The Netherlands – sequence: 9 givenname: Fabio surname: Duarte fullname: Duarte, Fabio organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA – sequence: 10 givenname: Carlo surname: Ratti fullname: Ratti, Carlo organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA – sequence: 11 givenname: Daniela surname: Rus fullname: Rus, Daniela organization: Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology Cambridge Massachusetts USA |
BookMark | eNptkMtKAzEUhoNUsK0ufIOAKxdjk0wuE3eleBkoCNJ9OEkzMKVNapIRfHtHKy7E1TmL71z-b4YmIQaP0DUld5QQtkjR3jHGanWGplQIWXEt1eS3F_oCzXLeEcLrRospWr5GG6Hgtm3v8TJgGEoM8RCHjPOQOnAev_uc_R53MeEhWQi4JAj5GFOB0sdwic472Gd_9VPnaPP4sFk9V-uXp3a1XFeOaVYqrngDAIwr56mzgku13TZMKssUkPEzJ7mgnKut7LT2UgKrtVWeWEUk5_Uc3ZzWHlN8G3wuZheHFMaLhjWNoIQpXY_U7YlyKeacfGeOqT9A-jCUmC9BZhRkvgWN7OIP6_pTpDFgv_9n4hPEe2kq |
CitedBy_id | crossref_primary_10_1115_1_4067370 crossref_primary_10_3390_jmse12040627 crossref_primary_10_3390_computation11110216 crossref_primary_10_1016_j_ifacol_2024_10_091 crossref_primary_10_1177_09596518251322245 |
Cites_doi | 10.1016/j.arcontrol.2016.04.018 10.1109/ICRA.2018.8460632 10.1109/ICRA.2019.8793525 10.1109/ROBOT.2007.364181 10.1109/OCEANS.2008.5289429 10.1109/ICRA48506.2021.9561331 10.1109/IROS45743.2020.9340743 10.1109/CDC42340.2020.9304298 10.1109/IROS.2007.4399056 10.1109/IROS45743.2020.9340712 10.1002/rob.21767 10.1109/JOE.2016.2571158 10.1109/ICRA.2014.6907011 10.1109/IROS45743.2020.9341176 10.1109/ROBOT.2010.5509538 10.1109/ICRA.2011.5980509 10.1109/TCST.2014.2303805 10.1109/ICRA.2011.5979561 10.1109/ROBOT.2007.364249 10.1109/JOE.2021.3059210 10.1109/TIE.2008.2005933 10.1109/IROS40897.2019.8968131 10.1109/MRS.2019.8901054 10.1109/IROS.2016.7759617 10.1109/CDC.2015.7402330 10.1115/1.3662552 10.1109/JOE.2013.2278891 10.4173/mic.2004.1.1 10.1007/978-3-319-68496-3_16 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.22237 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 2009 |
ExternalDocumentID | 10_1002_rob_22237 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT 1OB 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c292t-4748aaa247ce1cb5467dd8267b27a0495c6451447d6f99e66a239b7e0b706443 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 08:51:27 EDT 2025 Tue Jul 01 04:33:53 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-4748aaa247ce1cb5467dd8267b27a0495c6451447d6f99e66a239b7e0b706443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rob.22237 |
PQID | 2885102793 |
PQPubID | 1006410 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2885102793 crossref_primary_10_1002_rob_22237 crossref_citationtrail_10_1002_rob_22237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 Khalil H.K. (e_1_2_10_11_1) 1996 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – ident: e_1_2_10_13_1 doi: 10.1016/j.arcontrol.2016.04.018 – ident: e_1_2_10_30_1 doi: 10.1109/ICRA.2018.8460632 – ident: e_1_2_10_17_1 doi: 10.1109/ICRA.2019.8793525 – ident: e_1_2_10_3_1 doi: 10.1109/ROBOT.2007.364181 – ident: e_1_2_10_15_1 doi: 10.1109/OCEANS.2008.5289429 – ident: e_1_2_10_29_1 doi: 10.1109/ICRA48506.2021.9561331 – ident: e_1_2_10_33_1 doi: 10.1109/IROS45743.2020.9340743 – ident: e_1_2_10_25_1 doi: 10.1109/CDC42340.2020.9304298 – ident: e_1_2_10_5_1 doi: 10.1109/IROS.2007.4399056 – ident: e_1_2_10_32_1 doi: 10.1109/IROS45743.2020.9340712 – ident: e_1_2_10_21_1 – ident: e_1_2_10_14_1 doi: 10.1002/rob.21767 – ident: e_1_2_10_12_1 doi: 10.1109/JOE.2016.2571158 – ident: e_1_2_10_18_1 doi: 10.1109/ICRA.2014.6907011 – ident: e_1_2_10_24_1 doi: 10.1109/IROS45743.2020.9341176 – ident: e_1_2_10_6_1 doi: 10.1109/ROBOT.2010.5509538 – ident: e_1_2_10_9_1 doi: 10.1109/ICRA.2011.5980509 – ident: e_1_2_10_8_1 doi: 10.1109/TCST.2014.2303805 – start-page: 5 volume-title: Noninear systems year: 1996 ident: e_1_2_10_11_1 – ident: e_1_2_10_19_1 doi: 10.1109/ICRA.2011.5979561 – ident: e_1_2_10_16_1 doi: 10.1109/ROBOT.2007.364249 – ident: e_1_2_10_7_1 doi: 10.1109/JOE.2021.3059210 – ident: e_1_2_10_2_1 doi: 10.1109/TIE.2008.2005933 – ident: e_1_2_10_28_1 doi: 10.1109/IROS40897.2019.8968131 – ident: e_1_2_10_31_1 doi: 10.1109/MRS.2019.8901054 – ident: e_1_2_10_4_1 – ident: e_1_2_10_27_1 doi: 10.1109/IROS.2016.7759617 – ident: e_1_2_10_23_1 doi: 10.1109/CDC.2015.7402330 – ident: e_1_2_10_10_1 doi: 10.1115/1.3662552 – ident: e_1_2_10_20_1 doi: 10.1109/JOE.2013.2278891 – ident: e_1_2_10_26_1 doi: 10.4173/mic.2004.1.1 – ident: e_1_2_10_22_1 doi: 10.1007/978-3-319-68496-3_16 |
SSID | ssj0043895 |
Score | 2.4818254 |
Snippet | In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1996 |
SubjectTerms | Algorithms Docking Graph theory Nonlinear control Obstacle avoidance Predictive control Seats Tracking control Trajectory control Trajectory optimization Tunnel thrusters Urban transportation Vessels Waterways |
Title | Roboat III: An autonomous surface vessel for urban transportation |
URI | https://www.proquest.com/docview/2885102793 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYKvIyHaWNDwNhkoT1MqgKN48TJ3qoNRhEDqQqib5GduBrSlKA04YE_sb-840su3SpuL1HrJlbq89nn4uPvIPQ5lIHigXMBvG7oUCLVJiF8dX0uaaT42bkK6P-8CE6v6NnMnw0Gf3pZS3UlDtP7ledKXiJVaAO5qlOyz5Bs2yk0wGeQL1xBwnB9koynhSjAwZ9MJja-x-tKHVJQaa2LupxzmLR3ihxcH1Ic1qWA2Vw1dOadTP43TnVi27CE_qteOvy1DS5fy5suwn13kw1VNFpvubs6JN0kUPyA_2524stS3rePFEWZi3philBNZd5lMYInbAKyZ8XiV837IQni_ZPe8fjC119w_cABJ80sm7LfZsp0NKu0IXWyaAx7S65Ko-6pb7Xbs1I1GKpZGLhDZRKxTv81e_4Xl8nJ1fl5Eh_P4jW0QcDvUCUxvk9bPjJVKd7XBLz2pRuqqhE5ajteNnCW9bs2WuI36LUVKB4b6LxFA5lvoc0eB-U7NDYgwgCir3ic4w5C2EIIGwhhgBDWEMLLEHqP4pPj-NupY-tqOCmJSOVQRkPOOaEslW4qfNCVWQZuJhOEcfAY_TSgYEdTlgXzKJJBwIkXCSZHgoEBS71ttJ4XudxBOFDtwvWyeQhmohBRJmQo4SFPpiyLRrvoSzMWSWo551Xpk9-JYcsmCQxboodtFx20t94aopVVN-03A5rYebhISAhew4iAotl7-OcP6FWH1n20XpW1_AgmZSU-aTH_BYtWdr8 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roboat+III%3A+An+autonomous+surface+vessel+for+urban+transportation&rft.jtitle=Journal+of+field+robotics&rft.au=Wang%2C+Wei&rft.au=David+Fern%C3%A1ndez%E2%80%90Guti%C3%A9rrez&rft.au=Doornbusch%2C+Rens&rft.au=Jordan%2C+Joshua&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=40&rft.issue=8&rft.spage=1996&rft.epage=2009&rft_id=info:doi/10.1002%2Frob.22237&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |