Roboat III: An autonomous surface vessel for urban transportation

In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking a...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 40; no. 8; pp. 1996 - 2009
Main Authors Wang, Wei, Fernández‐Gutiérrez, David, Doornbusch, Rens, Jordan, Joshua, Shan, Tixiao, Leoni, Pietro, Hagemann, Niklas, Schiphorst, Jonathan Klein, Duarte, Fabio, Ratti, Carlo, Rus, Daniela
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
DOI10.1002/rob.22237

Cover

Loading…
Abstract In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking and interconnectivity between Roboats. We build an adaptive nonlinear model predictive controller for trajectory tracking to account for payload changes while transporting passengers. We use a sparse directed graph to represent the canal topological map and then find the most time‐efficient global path in a city‐scale environment using the algorithm. We then employ a multiobjective algorithm's lexicographic search to generate an obstacle‐free path using a point‐cloud projected two‐dimensional occupancy grid map. We also develop a docking mechanism to allow Roboat to “grasp” the docking station. Extensive experiments in Amsterdam waterways demonstrate that Roboat can (1) successfully track the optimal trajectories generated by the planner with varying numbers of passengers on board; (2) autonomously dock to the station without human intervention; (3) execute an autonomous water taxi task where it docks to pick up passengers, drive passengers to the destination while planning its path to avoid obstacles, and finally dock to drop off passengers.
AbstractList In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking and interconnectivity between Roboats. We build an adaptive nonlinear model predictive controller for trajectory tracking to account for payload changes while transporting passengers. We use a sparse directed graph to represent the canal topological map and then find the most time‐efficient global path in a city‐scale environment using the algorithm. We then employ a multiobjective algorithm's lexicographic search to generate an obstacle‐free path using a point‐cloud projected two‐dimensional occupancy grid map. We also develop a docking mechanism to allow Roboat to “grasp” the docking station. Extensive experiments in Amsterdam waterways demonstrate that Roboat can (1) successfully track the optimal trajectories generated by the planner with varying numbers of passengers on board; (2) autonomously dock to the station without human intervention; (3) execute an autonomous water taxi task where it docks to pick up passengers, drive passengers to the destination while planning its path to avoid obstacles, and finally dock to drop off passengers.
In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six seats and can carry a payload of up to 1000 kg. Roboat has two main thrusters for cruising and two tunnel thrusters to accommodate docking and interconnectivity between Roboats. We build an adaptive nonlinear model predictive controller for trajectory tracking to account for payload changes while transporting passengers. We use a sparse directed graph to represent the canal topological map and then find the most time‐efficient global path in a city‐scale environment using the A* ${A}^{* }$ algorithm. We then employ a multiobjective algorithm's lexicographic search to generate an obstacle‐free path using a point‐cloud projected two‐dimensional occupancy grid map. We also develop a docking mechanism to allow Roboat to “grasp” the docking station. Extensive experiments in Amsterdam waterways demonstrate that Roboat can (1) successfully track the optimal trajectories generated by the planner with varying numbers of passengers on board; (2) autonomously dock to the station without human intervention; (3) execute an autonomous water taxi task where it docks to pick up passengers, drive passengers to the destination while planning its path to avoid obstacles, and finally dock to drop off passengers.
Author Doornbusch, Rens
Leoni, Pietro
Jordan, Joshua
Wang, Wei
Fernández‐Gutiérrez, David
Shan, Tixiao
Ratti, Carlo
Schiphorst, Jonathan Klein
Hagemann, Niklas
Duarte, Fabio
Rus, Daniela
Author_xml – sequence: 1
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology Cambridge Massachusetts USA, SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA
– sequence: 2
  givenname: David
  surname: Fernández‐Gutiérrez
  fullname: Fernández‐Gutiérrez, David
  organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA
– sequence: 3
  givenname: Rens
  surname: Doornbusch
  fullname: Doornbusch, Rens
  organization: Amsterdam Institute for Advanced Metropolitan Solutions (AMS) Amsterdam The Netherlands
– sequence: 4
  givenname: Joshua
  surname: Jordan
  fullname: Jordan, Joshua
  organization: Amsterdam Institute for Advanced Metropolitan Solutions (AMS) Amsterdam The Netherlands
– sequence: 5
  givenname: Tixiao
  surname: Shan
  fullname: Shan, Tixiao
  organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA
– sequence: 6
  givenname: Pietro
  surname: Leoni
  fullname: Leoni, Pietro
  organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA
– sequence: 7
  givenname: Niklas
  surname: Hagemann
  fullname: Hagemann, Niklas
  organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA
– sequence: 8
  givenname: Jonathan Klein
  surname: Schiphorst
  fullname: Schiphorst, Jonathan Klein
  organization: Amsterdam Institute for Advanced Metropolitan Solutions (AMS) Amsterdam The Netherlands
– sequence: 9
  givenname: Fabio
  surname: Duarte
  fullname: Duarte, Fabio
  organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA
– sequence: 10
  givenname: Carlo
  surname: Ratti
  fullname: Ratti, Carlo
  organization: SENSEable City Laboratory Massachusetts Institute of Technology Cambridge Massachusetts USA
– sequence: 11
  givenname: Daniela
  surname: Rus
  fullname: Rus, Daniela
  organization: Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology Cambridge Massachusetts USA
BookMark eNptkMtKAzEUhoNUsK0ufIOAKxdjk0wuE3eleBkoCNJ9OEkzMKVNapIRfHtHKy7E1TmL71z-b4YmIQaP0DUld5QQtkjR3jHGanWGplQIWXEt1eS3F_oCzXLeEcLrRospWr5GG6Hgtm3v8TJgGEoM8RCHjPOQOnAev_uc_R53MeEhWQi4JAj5GFOB0sdwic472Gd_9VPnaPP4sFk9V-uXp3a1XFeOaVYqrngDAIwr56mzgku13TZMKssUkPEzJ7mgnKut7LT2UgKrtVWeWEUk5_Uc3ZzWHlN8G3wuZheHFMaLhjWNoIQpXY_U7YlyKeacfGeOqT9A-jCUmC9BZhRkvgWN7OIP6_pTpDFgv_9n4hPEe2kq
CitedBy_id crossref_primary_10_1115_1_4067370
crossref_primary_10_3390_jmse12040627
crossref_primary_10_3390_computation11110216
crossref_primary_10_1016_j_ifacol_2024_10_091
crossref_primary_10_1177_09596518251322245
Cites_doi 10.1016/j.arcontrol.2016.04.018
10.1109/ICRA.2018.8460632
10.1109/ICRA.2019.8793525
10.1109/ROBOT.2007.364181
10.1109/OCEANS.2008.5289429
10.1109/ICRA48506.2021.9561331
10.1109/IROS45743.2020.9340743
10.1109/CDC42340.2020.9304298
10.1109/IROS.2007.4399056
10.1109/IROS45743.2020.9340712
10.1002/rob.21767
10.1109/JOE.2016.2571158
10.1109/ICRA.2014.6907011
10.1109/IROS45743.2020.9341176
10.1109/ROBOT.2010.5509538
10.1109/ICRA.2011.5980509
10.1109/TCST.2014.2303805
10.1109/ICRA.2011.5979561
10.1109/ROBOT.2007.364249
10.1109/JOE.2021.3059210
10.1109/TIE.2008.2005933
10.1109/IROS40897.2019.8968131
10.1109/MRS.2019.8901054
10.1109/IROS.2016.7759617
10.1109/CDC.2015.7402330
10.1115/1.3662552
10.1109/JOE.2013.2278891
10.4173/mic.2004.1.1
10.1007/978-3-319-68496-3_16
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.22237
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 2009
ExternalDocumentID 10_1002_rob_22237
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
1OB
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-4748aaa247ce1cb5467dd8267b27a0495c6451447d6f99e66a239b7e0b706443
ISSN 1556-4959
IngestDate Wed Aug 13 08:51:27 EDT 2025
Tue Jul 01 04:33:53 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-4748aaa247ce1cb5467dd8267b27a0495c6451447d6f99e66a239b7e0b706443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rob.22237
PQID 2885102793
PQPubID 1006410
PageCount 14
ParticipantIDs proquest_journals_2885102793
crossref_primary_10_1002_rob_22237
crossref_citationtrail_10_1002_rob_22237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
Khalil H.K. (e_1_2_10_11_1) 1996
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_13_1
  doi: 10.1016/j.arcontrol.2016.04.018
– ident: e_1_2_10_30_1
  doi: 10.1109/ICRA.2018.8460632
– ident: e_1_2_10_17_1
  doi: 10.1109/ICRA.2019.8793525
– ident: e_1_2_10_3_1
  doi: 10.1109/ROBOT.2007.364181
– ident: e_1_2_10_15_1
  doi: 10.1109/OCEANS.2008.5289429
– ident: e_1_2_10_29_1
  doi: 10.1109/ICRA48506.2021.9561331
– ident: e_1_2_10_33_1
  doi: 10.1109/IROS45743.2020.9340743
– ident: e_1_2_10_25_1
  doi: 10.1109/CDC42340.2020.9304298
– ident: e_1_2_10_5_1
  doi: 10.1109/IROS.2007.4399056
– ident: e_1_2_10_32_1
  doi: 10.1109/IROS45743.2020.9340712
– ident: e_1_2_10_21_1
– ident: e_1_2_10_14_1
  doi: 10.1002/rob.21767
– ident: e_1_2_10_12_1
  doi: 10.1109/JOE.2016.2571158
– ident: e_1_2_10_18_1
  doi: 10.1109/ICRA.2014.6907011
– ident: e_1_2_10_24_1
  doi: 10.1109/IROS45743.2020.9341176
– ident: e_1_2_10_6_1
  doi: 10.1109/ROBOT.2010.5509538
– ident: e_1_2_10_9_1
  doi: 10.1109/ICRA.2011.5980509
– ident: e_1_2_10_8_1
  doi: 10.1109/TCST.2014.2303805
– start-page: 5
  volume-title: Noninear systems
  year: 1996
  ident: e_1_2_10_11_1
– ident: e_1_2_10_19_1
  doi: 10.1109/ICRA.2011.5979561
– ident: e_1_2_10_16_1
  doi: 10.1109/ROBOT.2007.364249
– ident: e_1_2_10_7_1
  doi: 10.1109/JOE.2021.3059210
– ident: e_1_2_10_2_1
  doi: 10.1109/TIE.2008.2005933
– ident: e_1_2_10_28_1
  doi: 10.1109/IROS40897.2019.8968131
– ident: e_1_2_10_31_1
  doi: 10.1109/MRS.2019.8901054
– ident: e_1_2_10_4_1
– ident: e_1_2_10_27_1
  doi: 10.1109/IROS.2016.7759617
– ident: e_1_2_10_23_1
  doi: 10.1109/CDC.2015.7402330
– ident: e_1_2_10_10_1
  doi: 10.1115/1.3662552
– ident: e_1_2_10_20_1
  doi: 10.1109/JOE.2013.2278891
– ident: e_1_2_10_26_1
  doi: 10.4173/mic.2004.1.1
– ident: e_1_2_10_22_1
  doi: 10.1007/978-3-319-68496-3_16
SSID ssj0043895
Score 2.4818254
Snippet In this paper, we present our novel autonomous surface vessel platform, a full‐scale Roboat for urban transportation. This 4‐m‐long Roboat is designed with six...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1996
SubjectTerms Algorithms
Docking
Graph theory
Nonlinear control
Obstacle avoidance
Predictive control
Seats
Tracking control
Trajectory control
Trajectory optimization
Tunnel thrusters
Urban transportation
Vessels
Waterways
Title Roboat III: An autonomous surface vessel for urban transportation
URI https://www.proquest.com/docview/2885102793
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYKvIyHaWNDwNhkoT1MqgKN48TJ3qoNRhEDqQqib5GduBrSlKA04YE_sb-840su3SpuL1HrJlbq89nn4uPvIPQ5lIHigXMBvG7oUCLVJiF8dX0uaaT42bkK6P-8CE6v6NnMnw0Gf3pZS3UlDtP7ledKXiJVaAO5qlOyz5Bs2yk0wGeQL1xBwnB9koynhSjAwZ9MJja-x-tKHVJQaa2LupxzmLR3ihxcH1Ic1qWA2Vw1dOadTP43TnVi27CE_qteOvy1DS5fy5suwn13kw1VNFpvubs6JN0kUPyA_2524stS3rePFEWZi3philBNZd5lMYInbAKyZ8XiV837IQni_ZPe8fjC119w_cABJ80sm7LfZsp0NKu0IXWyaAx7S65Ko-6pb7Xbs1I1GKpZGLhDZRKxTv81e_4Xl8nJ1fl5Eh_P4jW0QcDvUCUxvk9bPjJVKd7XBLz2pRuqqhE5ajteNnCW9bs2WuI36LUVKB4b6LxFA5lvoc0eB-U7NDYgwgCir3ic4w5C2EIIGwhhgBDWEMLLEHqP4pPj-NupY-tqOCmJSOVQRkPOOaEslW4qfNCVWQZuJhOEcfAY_TSgYEdTlgXzKJJBwIkXCSZHgoEBS71ttJ4XudxBOFDtwvWyeQhmohBRJmQo4SFPpiyLRrvoSzMWSWo551Xpk9-JYcsmCQxboodtFx20t94aopVVN-03A5rYebhISAhew4iAotl7-OcP6FWH1n20XpW1_AgmZSU-aTH_BYtWdr8
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roboat+III%3A+An+autonomous+surface+vessel+for+urban+transportation&rft.jtitle=Journal+of+field+robotics&rft.au=Wang%2C+Wei&rft.au=David+Fern%C3%A1ndez%E2%80%90Guti%C3%A9rrez&rft.au=Doornbusch%2C+Rens&rft.au=Jordan%2C+Joshua&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=40&rft.issue=8&rft.spage=1996&rft.epage=2009&rft_id=info:doi/10.1002%2Frob.22237&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon