Sweat Wearable Sensor Based on Confined Pt Nanoparticles in 2D Conductive Metal–Organic Frameworks for Continuous Glucose Monitoring
The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro‐oxidizable species, continues to pose significant...
Saved in:
Published in | Advanced science p. e07212 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
23.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro‐oxidizable species, continues to pose significant challenges for their long‐term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt‐NPs) confined within phthalocyanine‐based conductive metal–organic frameworks (Pc‐MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc‐MOFs confined Pt‐NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt‐NPs and the confinement effect within the Pc‐MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12‐h period, achieving data as accurate as that obtained using high‐performance liquid chromatography. |
---|---|
AbstractList | The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro‐oxidizable species, continues to pose significant challenges for their long‐term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt‐NPs) confined within phthalocyanine‐based conductive metal–organic frameworks (Pc‐MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc‐MOFs confined Pt‐NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt‐NPs and the confinement effect within the Pc‐MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12‐h period, achieving data as accurate as that obtained using high‐performance liquid chromatography. The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro-oxidizable species, continues to pose significant challenges for their long-term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt-NPs) confined within phthalocyanine-based conductive metal-organic frameworks (Pc-MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc-MOFs confined Pt-NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt-NPs and the confinement effect within the Pc-MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12-h period, achieving data as accurate as that obtained using high-performance liquid chromatography.The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro-oxidizable species, continues to pose significant challenges for their long-term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt-NPs) confined within phthalocyanine-based conductive metal-organic frameworks (Pc-MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc-MOFs confined Pt-NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt-NPs and the confinement effect within the Pc-MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12-h period, achieving data as accurate as that obtained using high-performance liquid chromatography. |
Author | Wang, Lin Xiao, Fei Xu, Yun Huang, Wei Yang, Yong |
Author_xml | – sequence: 1 givenname: Wei surname: Huang fullname: Huang, Wei organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan 430074 China – sequence: 2 givenname: Yong surname: Yang fullname: Yang, Yong organization: School of Mechanical Science and Engineering Huazhong University of Science & Technology Wuhan 430074 China – sequence: 3 givenname: Yun surname: Xu fullname: Xu, Yun organization: Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China – sequence: 4 givenname: Fei orcidid: 0000-0002-7081-1998 surname: Xiao fullname: Xiao, Fei organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan 430074 China – sequence: 5 givenname: Lin orcidid: 0000-0001-5716-6587 surname: Wang fullname: Wang, Lin organization: Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40546120$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkctOJDEMRSPEiPeWJcqSTTeJk6quXkLzlJgBCRDLkitxoUB10iQp0OxmNT8wf8iXUC0empWv5OMr23eTrfrgibFdKcZSCDhA-5LGIKAQE5CwwjZATquRqrRe_U-vs52UHoUQslATLas1tq5FoUsJYoP9vXklzPyeMGLTEb8hn0LkR5jI8uD5LPjW-UFfZ_4LfVhgzM50lLjzHI6Xfdub7F6I_6SM3duff1fxAb0z_DTinF5DfEq8HSwHMjvfhz7xs643IQ0TwbscovMP2-xHi12inc-6xe5OT25n56PLq7OL2eHlyMAU8kjrxiJVJVooUUhUBiZCYVOZSYtoZQMkGiiH01pUUyzKFq0tjbQN6rLQhdpi-x--ixiee0q5nrtkqOvQ07BZrQCUKrWewoDufaJ9MydbL6KbY_xdf_1uAMYfgIkhpUjtNyJFvcynXuZTf-ej3gEvNYWP |
Cites_doi | 10.1038/s41551-019-0508-y 10.1002/adfm.202210259 10.1002/adma.202110536 10.1021/acs.analchem.1c00223 10.1126/sciadv.adi6492 10.1021/jacs.8b11257 10.1021/jacs.0c07041 10.1038/nature16521 10.1021/acs.chemrev.3c00078 10.1021/ac400292n 10.1021/jp501849h 10.1016/j.snb.2017.07.147 10.1021/acs.analchem.1c05174 10.1002/anie.201506219 10.1021/jacs.1c03039 10.1002/advs.202203943 10.1002/admt.202200272 10.1149/1.1836536 10.1021/acs.analchem.4c04471 10.1002/anie.202316257 10.1021/acs.analchem.2c02606 10.1016/j.bios.2009.04.045 10.1038/nnano.2016.38 10.1002/adfm.202208344 10.1021/ac701790z 10.1038/s41587-019-0045-y 10.1021/acsenergylett.3c00444 10.1038/s41587-019-0321-x 10.1021/am200563f 10.1021/acs.analchem.1c01491 10.1038/s41563-019-0598-7 10.1039/D0CS01160F 10.1002/admi.202202274 10.1073/pnas.1722042115 10.1021/acs.analchem.1c04912 10.1016/j.bios.2012.08.062 10.1002/adma.202101216 10.1021/acscatal.9b02552 10.2217/pme-2018-0044 10.1021/acsnano.1c10544 10.1126/sciadv.aaw9906 10.1021/acs.analchem.4c04271 10.1021/acsami.8b20583 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/advs.202507212 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
ExternalDocumentID | 40546120 10_1002_advs_202507212 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21874051 – fundername: National Natural Science Foundation of China grantid: 82272277 – fundername: National Key Research and Development Program of China grantid: 2022YFC2408100 – fundername: Hubei Province Science and Technology Innovation Team Project grantid: [2022]No.11 – fundername: Natural Science Foundation of Hubei Province grantid: 2022CFA031 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAYXX AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU CITATION DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE NPM 7X8 |
ID | FETCH-LOGICAL-c292t-44bdae86ad26a01a3c2703ab8c7faad1b2e0b26612fa39a56fadd6c1dba465453 |
ISSN | 2198-3844 |
IngestDate | Fri Jul 11 17:01:58 EDT 2025 Tue Jun 24 01:31:57 EDT 2025 Thu Jul 03 08:41:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | confined metal nanoparticles phthalocyanine‐based metal‐organic framework nonenzymatic glucose detection integrated wearable devices microfluidic electrochemical biosensor |
Language | English |
License | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-44bdae86ad26a01a3c2703ab8c7faad1b2e0b26612fa39a56fadd6c1dba465453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5716-6587 0000-0002-7081-1998 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202507212 |
PMID | 40546120 |
PQID | 3223364492 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3223364492 pubmed_primary_40546120 crossref_primary_10_1002_advs_202507212 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-23 |
PublicationDateYYYYMMDD | 2025-06-23 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
References | Sun L. (e_1_2_8_30_1) 2016; 55 Kim S.‐K. (e_1_2_8_15_1) 2022; 34 Xiao F. (e_1_2_8_20_1) 2013; 41 Yu W. (e_1_2_8_5_1) 2021; 93 Bi S. (e_1_2_8_35_1) 2020; 19 Liu Y. (e_1_2_8_10_1) 2024; 96 Zhang P. (e_1_2_8_26_1) 2021; 143 Zhang Y. (e_1_2_8_17_1) 2024; 96 Yu J. (e_1_2_8_2_1) 2020; 4 Yang Y. (e_1_2_8_42_1) 2020; 38 Wang J. (e_1_2_8_37_1) 2008; 80 Park C. (e_1_2_8_31_1) 2021; 33 Hsiao M. W. (e_1_2_8_25_1) 1996; 143 Zhang J. (e_1_2_8_3_1) 2023; 10 Song Y. (e_1_2_8_43_1) 2023; 10 Xiao F. (e_1_2_8_19_1) 2009; 24 Lee H. (e_1_2_8_1_1) 2016; 11 Saha T. (e_1_2_8_12_1) 2023; 123 Dunn J. (e_1_2_8_7_1) 2018; 15 Zhao P. (e_1_2_8_40_1) 2023; 8 Gao H. (e_1_2_8_38_1) 2011; 3 Kim J. (e_1_2_8_6_1) 2019; 37 Sun M. (e_1_2_8_11_1) 2022; 94 Meng Z. (e_1_2_8_32_1) 2019; 141 Song Y. (e_1_2_8_9_1) 2023; 9 Toi P. T. (e_1_2_8_23_1) 2019; 11 Edington S. C. (e_1_2_8_33_1) 2018; 115 Nyein H. Y. Y. (e_1_2_8_14_1) 2019; 5 Shi X. (e_1_2_8_18_1) 2023; 62 He C. (e_1_2_8_21_1) 2023; 8 Drago N. P. (e_1_2_8_39_1) 2022; 94 Liu A. (e_1_2_8_41_1) 2019; 9 Cao X. (e_1_2_8_22_1) 2013; 85 Xu M. (e_1_2_8_24_1) 2017; 252 Zahed M. A. (e_1_2_8_13_1) 2022; 32 Meng Z. (e_1_2_8_27_1) 2020; 142 Giovanelli L. (e_1_2_8_34_1) 2014; 118 Gao W. (e_1_2_8_8_1) 2016; 529 Wang J.‐H. (e_1_2_8_36_1) 2022; 32 Long B. (e_1_2_8_16_1) 2022; 94 Wang J. (e_1_2_8_4_1) 2021; 93 Zhong H. (e_1_2_8_28_1) 2022; 16 Wang M. (e_1_2_8_29_1) 2021; 50 |
References_xml | – volume: 4 start-page: 499 year: 2020 ident: e_1_2_8_2_1 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0508-y – volume: 32 year: 2022 ident: e_1_2_8_36_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210259 – volume: 34 year: 2022 ident: e_1_2_8_15_1 publication-title: Adv. Mater. doi: 10.1002/adma.202110536 – volume: 93 start-page: 4647 year: 2021 ident: e_1_2_8_5_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00223 – volume: 9 year: 2023 ident: e_1_2_8_9_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.adi6492 – volume: 141 start-page: 2046 year: 2019 ident: e_1_2_8_32_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11257 – volume: 142 year: 2020 ident: e_1_2_8_27_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07041 – volume: 529 start-page: 509 year: 2016 ident: e_1_2_8_8_1 publication-title: Nature doi: 10.1038/nature16521 – volume: 123 start-page: 7854 year: 2023 ident: e_1_2_8_12_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00078 – volume: 85 start-page: 5040 year: 2013 ident: e_1_2_8_22_1 publication-title: Anal. Chem. doi: 10.1021/ac400292n – volume: 118 year: 2014 ident: e_1_2_8_34_1 publication-title: J. Phys. Chem. C doi: 10.1021/jp501849h – volume: 252 start-page: 1187 year: 2017 ident: e_1_2_8_24_1 publication-title: Sens. Actuators, B. doi: 10.1016/j.snb.2017.07.147 – volume: 94 start-page: 1890 year: 2022 ident: e_1_2_8_11_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c05174 – volume: 55 start-page: 3566 year: 2016 ident: e_1_2_8_30_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506219 – volume: 143 year: 2021 ident: e_1_2_8_26_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03039 – volume: 10 year: 2023 ident: e_1_2_8_3_1 publication-title: Adv. Sci. doi: 10.1002/advs.202203943 – volume: 8 year: 2023 ident: e_1_2_8_21_1 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202200272 – volume: 143 start-page: 759 year: 1996 ident: e_1_2_8_25_1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836536 – volume: 96 year: 2024 ident: e_1_2_8_17_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c04471 – volume: 62 year: 2023 ident: e_1_2_8_18_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202316257 – volume: 94 year: 2022 ident: e_1_2_8_39_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c02606 – volume: 24 start-page: 3481 year: 2009 ident: e_1_2_8_19_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.04.045 – volume: 11 start-page: 566 year: 2016 ident: e_1_2_8_1_1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.38 – volume: 32 year: 2022 ident: e_1_2_8_13_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202208344 – volume: 80 start-page: 997 year: 2008 ident: e_1_2_8_37_1 publication-title: Anal. Chem. doi: 10.1021/ac701790z – volume: 37 start-page: 389 year: 2019 ident: e_1_2_8_6_1 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0045-y – volume: 8 start-page: 1697 year: 2023 ident: e_1_2_8_40_1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c00444 – volume: 38 start-page: 217 year: 2020 ident: e_1_2_8_42_1 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0321-x – volume: 3 start-page: 3049 year: 2011 ident: e_1_2_8_38_1 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am200563f – volume: 93 year: 2021 ident: e_1_2_8_4_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01491 – volume: 19 start-page: 552 year: 2020 ident: e_1_2_8_35_1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0598-7 – volume: 50 start-page: 2764 year: 2021 ident: e_1_2_8_29_1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01160F – volume: 10 year: 2023 ident: e_1_2_8_43_1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202202274 – volume: 115 year: 2018 ident: e_1_2_8_33_1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1722042115 – volume: 94 start-page: 1919 year: 2022 ident: e_1_2_8_16_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c04912 – volume: 41 start-page: 417 year: 2013 ident: e_1_2_8_20_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.08.062 – volume: 33 year: 2021 ident: e_1_2_8_31_1 publication-title: Adv. Mater. doi: 10.1002/adma.202101216 – volume: 9 start-page: 7759 year: 2019 ident: e_1_2_8_41_1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02552 – volume: 15 start-page: 429 year: 2018 ident: e_1_2_8_7_1 publication-title: Per. Med. doi: 10.2217/pme-2018-0044 – volume: 16 start-page: 1759 year: 2022 ident: e_1_2_8_28_1 publication-title: ACS Nano doi: 10.1021/acsnano.1c10544 – volume: 5 year: 2019 ident: e_1_2_8_14_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw9906 – volume: 96 year: 2024 ident: e_1_2_8_10_1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c04271 – volume: 11 year: 2019 ident: e_1_2_8_23_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20583 |
SSID | ssj0001537418 |
Score | 2.3249185 |
SecondaryResourceType | online_first |
Snippet | The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e07212 |
Title | Sweat Wearable Sensor Based on Confined Pt Nanoparticles in 2D Conductive Metal–Organic Frameworks for Continuous Glucose Monitoring |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40546120 https://www.proquest.com/docview/3223364492 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeuGCKM8WqAYJCVDlEu_ajn1sSUuFaBWRVg0na3e9lnJxUHBA4sSJP8A_5Jcwsw9boUUqXJxo411vMl_m5ZnPjD1XcVbJQhURrzMdJVKJKDf4fxT1KEtHtaauYKq2OM2Oz5N3s3TWp7Jtd0mr9vS3K_tK_keqOIZypS7Zf5BstygO4HuULx5Rwni8loynXym-v0Cw2gaoKYaki-XuARqmim4CUDcfOpHV7qQlLYrhsa-CoyQHH9PnxPZKtUMnBp3wUPggXIOmJq_WVW5Z0gY6v503Kyqafesr3Z1KWAb7F-hsQ2GBt689dnx2-sLMO3Xjhz4u_Bo4NlvZkVUH3Nlc2pTukZ_n0xQ8pXIq10nstBlqxjwSuSN73DOXxy7pcscNK6svxKqOnhrGqry3WuFO_R_GrCsxdHTMvKT5ZTf_JtvgGE_wAdvYH5-8n_bpuFQQjw89ijBsKlB8Dvnr9U2suzB_iUusf3J2h932gQXsOxFvshumucs2ver-DC89v_ire-yHhQ0E2ICDDVjYwKKBABuYtLAGG5g3wMfQwwYsbH59_-kBAz1gAAEDPWDAAwZ6wNxn50eHZ2-OI_84jkjzgrdRkqhKmjyTFc_kMJZCczQXUuV6VEtZxYqboSJ_j9dSFDLNarSdmY4rJYm0LxUP2KBZNOYRA6GNyIWOdaJMojOTG6F4McLQvJCxkmKLvQi_cPnJsa6UVwt0iz0LAihRMdLdLtkY_F4lWioh0Nsv8JyHTjLdWhilJLjP4fa1r_OY3epR_YQN2uXKPEV3tFU7Hkr4enB4OvmwY9M6vwGJTI8P |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sweat+Wearable+Sensor+Based+on+Confined+Pt+Nanoparticles+in+2D+Conductive+Metal%E2%80%93Organic+Frameworks+for+Continuous+Glucose+Monitoring&rft.jtitle=Advanced+science&rft.au=Huang%2C+Wei&rft.au=Yang%2C+Yong&rft.au=Xu%2C+Yun&rft.au=Xiao%2C+Fei&rft.date=2025-06-23&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002%2Fadvs.202507212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202507212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |