Sweat Wearable Sensor Based on Confined Pt Nanoparticles in 2D Conductive Metal–Organic Frameworks for Continuous Glucose Monitoring

The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro‐oxidizable species, continues to pose significant...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science p. e07212
Main Authors Huang, Wei, Yang, Yong, Xu, Yun, Xiao, Fei, Wang, Lin
Format Journal Article
LanguageEnglish
Published Germany 23.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro‐oxidizable species, continues to pose significant challenges for their long‐term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt‐NPs) confined within phthalocyanine‐based conductive metal–organic frameworks (Pc‐MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc‐MOFs confined Pt‐NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt‐NPs and the confinement effect within the Pc‐MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12‐h period, achieving data as accurate as that obtained using high‐performance liquid chromatography.
AbstractList The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro‐oxidizable species, continues to pose significant challenges for their long‐term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt‐NPs) confined within phthalocyanine‐based conductive metal–organic frameworks (Pc‐MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc‐MOFs confined Pt‐NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt‐NPs and the confinement effect within the Pc‐MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12‐h period, achieving data as accurate as that obtained using high‐performance liquid chromatography.
The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro-oxidizable species, continues to pose significant challenges for their long-term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt-NPs) confined within phthalocyanine-based conductive metal-organic frameworks (Pc-MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc-MOFs confined Pt-NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt-NPs and the confinement effect within the Pc-MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12-h period, achieving data as accurate as that obtained using high-performance liquid chromatography.The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal risk. However, the limited stability of natural enzymes, along with interference from electro-oxidizable species, continues to pose significant challenges for their long-term application. Herein, an integrated wearable system is presented for nonenzymatic glucose monitoring in sweat at the point of care. This system integrates a flexible microfluidic glucose sensor patch for sweat sampling and measurement, using Pt nanoparticles (Pt-NPs) confined within phthalocyanine-based conductive metal-organic frameworks (Pc-MOFs) as electrode materials, and a flexible printed circuit board for signal/analysis and wireless communication. The microfluidic sensor patch based on Pc-MOFs confined Pt-NPs exhibits significantly improved nonenzymatic glucose sensing performances. This is attributed to the ultrasmall size of Pt-NPs and the confinement effect within the Pc-MOF channels, which regulates the glucose adsorption intensity and increases the electrocatalytic activity to glucose oxidation. During the continuous monitoring process, the glucose concentration is calibrated in sweat by accounting for fluctuations in pH and temperature, and evaluated the performance of the wearable device in monitoring sweat glucose levels in human subjects over a 12-h period, achieving data as accurate as that obtained using high-performance liquid chromatography.
Author Wang, Lin
Xiao, Fei
Xu, Yun
Huang, Wei
Yang, Yong
Author_xml – sequence: 1
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan 430074 China
– sequence: 2
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  organization: School of Mechanical Science and Engineering Huazhong University of Science & Technology Wuhan 430074 China
– sequence: 3
  givenname: Yun
  surname: Xu
  fullname: Xu, Yun
  organization: Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
– sequence: 4
  givenname: Fei
  orcidid: 0000-0002-7081-1998
  surname: Xiao
  fullname: Xiao, Fei
  organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan 430074 China
– sequence: 5
  givenname: Lin
  orcidid: 0000-0001-5716-6587
  surname: Wang
  fullname: Wang, Lin
  organization: Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40546120$$D View this record in MEDLINE/PubMed
BookMark eNpNkctOJDEMRSPEiPeWJcqSTTeJk6quXkLzlJgBCRDLkitxoUB10iQp0OxmNT8wf8iXUC0empWv5OMr23eTrfrgibFdKcZSCDhA-5LGIKAQE5CwwjZATquRqrRe_U-vs52UHoUQslATLas1tq5FoUsJYoP9vXklzPyeMGLTEb8hn0LkR5jI8uD5LPjW-UFfZ_4LfVhgzM50lLjzHI6Xfdub7F6I_6SM3duff1fxAb0z_DTinF5DfEq8HSwHMjvfhz7xs643IQ0TwbscovMP2-xHi12inc-6xe5OT25n56PLq7OL2eHlyMAU8kjrxiJVJVooUUhUBiZCYVOZSYtoZQMkGiiH01pUUyzKFq0tjbQN6rLQhdpi-x--ixiee0q5nrtkqOvQ07BZrQCUKrWewoDufaJ9MydbL6KbY_xdf_1uAMYfgIkhpUjtNyJFvcynXuZTf-ej3gEvNYWP
Cites_doi 10.1038/s41551-019-0508-y
10.1002/adfm.202210259
10.1002/adma.202110536
10.1021/acs.analchem.1c00223
10.1126/sciadv.adi6492
10.1021/jacs.8b11257
10.1021/jacs.0c07041
10.1038/nature16521
10.1021/acs.chemrev.3c00078
10.1021/ac400292n
10.1021/jp501849h
10.1016/j.snb.2017.07.147
10.1021/acs.analchem.1c05174
10.1002/anie.201506219
10.1021/jacs.1c03039
10.1002/advs.202203943
10.1002/admt.202200272
10.1149/1.1836536
10.1021/acs.analchem.4c04471
10.1002/anie.202316257
10.1021/acs.analchem.2c02606
10.1016/j.bios.2009.04.045
10.1038/nnano.2016.38
10.1002/adfm.202208344
10.1021/ac701790z
10.1038/s41587-019-0045-y
10.1021/acsenergylett.3c00444
10.1038/s41587-019-0321-x
10.1021/am200563f
10.1021/acs.analchem.1c01491
10.1038/s41563-019-0598-7
10.1039/D0CS01160F
10.1002/admi.202202274
10.1073/pnas.1722042115
10.1021/acs.analchem.1c04912
10.1016/j.bios.2012.08.062
10.1002/adma.202101216
10.1021/acscatal.9b02552
10.2217/pme-2018-0044
10.1021/acsnano.1c10544
10.1126/sciadv.aaw9906
10.1021/acs.analchem.4c04271
10.1021/acsami.8b20583
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/advs.202507212
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
ExternalDocumentID 40546120
10_1002_advs_202507212
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21874051
– fundername: National Natural Science Foundation of China
  grantid: 82272277
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC2408100
– fundername: Hubei Province Science and Technology Innovation Team Project
  grantid: [2022]No.11
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2022CFA031
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAYXX
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
CITATION
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7X8
ID FETCH-LOGICAL-c292t-44bdae86ad26a01a3c2703ab8c7faad1b2e0b26612fa39a56fadd6c1dba465453
ISSN 2198-3844
IngestDate Fri Jul 11 17:01:58 EDT 2025
Tue Jun 24 01:31:57 EDT 2025
Thu Jul 03 08:41:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords confined metal nanoparticles
phthalocyanine‐based metal‐organic framework
nonenzymatic glucose detection
integrated wearable devices
microfluidic electrochemical biosensor
Language English
License 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-44bdae86ad26a01a3c2703ab8c7faad1b2e0b26612fa39a56fadd6c1dba465453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5716-6587
0000-0002-7081-1998
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202507212
PMID 40546120
PQID 3223364492
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3223364492
pubmed_primary_40546120
crossref_primary_10_1002_advs_202507212
PublicationCentury 2000
PublicationDate 2025-06-23
PublicationDateYYYYMMDD 2025-06-23
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-23
  day: 23
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
References Sun L. (e_1_2_8_30_1) 2016; 55
Kim S.‐K. (e_1_2_8_15_1) 2022; 34
Xiao F. (e_1_2_8_20_1) 2013; 41
Yu W. (e_1_2_8_5_1) 2021; 93
Bi S. (e_1_2_8_35_1) 2020; 19
Liu Y. (e_1_2_8_10_1) 2024; 96
Zhang P. (e_1_2_8_26_1) 2021; 143
Zhang Y. (e_1_2_8_17_1) 2024; 96
Yu J. (e_1_2_8_2_1) 2020; 4
Yang Y. (e_1_2_8_42_1) 2020; 38
Wang J. (e_1_2_8_37_1) 2008; 80
Park C. (e_1_2_8_31_1) 2021; 33
Hsiao M. W. (e_1_2_8_25_1) 1996; 143
Zhang J. (e_1_2_8_3_1) 2023; 10
Song Y. (e_1_2_8_43_1) 2023; 10
Xiao F. (e_1_2_8_19_1) 2009; 24
Lee H. (e_1_2_8_1_1) 2016; 11
Saha T. (e_1_2_8_12_1) 2023; 123
Dunn J. (e_1_2_8_7_1) 2018; 15
Zhao P. (e_1_2_8_40_1) 2023; 8
Gao H. (e_1_2_8_38_1) 2011; 3
Kim J. (e_1_2_8_6_1) 2019; 37
Sun M. (e_1_2_8_11_1) 2022; 94
Meng Z. (e_1_2_8_32_1) 2019; 141
Song Y. (e_1_2_8_9_1) 2023; 9
Toi P. T. (e_1_2_8_23_1) 2019; 11
Edington S. C. (e_1_2_8_33_1) 2018; 115
Nyein H. Y. Y. (e_1_2_8_14_1) 2019; 5
Shi X. (e_1_2_8_18_1) 2023; 62
He C. (e_1_2_8_21_1) 2023; 8
Drago N. P. (e_1_2_8_39_1) 2022; 94
Liu A. (e_1_2_8_41_1) 2019; 9
Cao X. (e_1_2_8_22_1) 2013; 85
Xu M. (e_1_2_8_24_1) 2017; 252
Zahed M. A. (e_1_2_8_13_1) 2022; 32
Meng Z. (e_1_2_8_27_1) 2020; 142
Giovanelli L. (e_1_2_8_34_1) 2014; 118
Gao W. (e_1_2_8_8_1) 2016; 529
Wang J.‐H. (e_1_2_8_36_1) 2022; 32
Long B. (e_1_2_8_16_1) 2022; 94
Wang J. (e_1_2_8_4_1) 2021; 93
Zhong H. (e_1_2_8_28_1) 2022; 16
Wang M. (e_1_2_8_29_1) 2021; 50
References_xml – volume: 4
  start-page: 499
  year: 2020
  ident: e_1_2_8_2_1
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0508-y
– volume: 32
  year: 2022
  ident: e_1_2_8_36_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210259
– volume: 34
  year: 2022
  ident: e_1_2_8_15_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110536
– volume: 93
  start-page: 4647
  year: 2021
  ident: e_1_2_8_5_1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c00223
– volume: 9
  year: 2023
  ident: e_1_2_8_9_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adi6492
– volume: 141
  start-page: 2046
  year: 2019
  ident: e_1_2_8_32_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11257
– volume: 142
  year: 2020
  ident: e_1_2_8_27_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07041
– volume: 529
  start-page: 509
  year: 2016
  ident: e_1_2_8_8_1
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 123
  start-page: 7854
  year: 2023
  ident: e_1_2_8_12_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00078
– volume: 85
  start-page: 5040
  year: 2013
  ident: e_1_2_8_22_1
  publication-title: Anal. Chem.
  doi: 10.1021/ac400292n
– volume: 118
  year: 2014
  ident: e_1_2_8_34_1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp501849h
– volume: 252
  start-page: 1187
  year: 2017
  ident: e_1_2_8_24_1
  publication-title: Sens. Actuators, B.
  doi: 10.1016/j.snb.2017.07.147
– volume: 94
  start-page: 1890
  year: 2022
  ident: e_1_2_8_11_1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c05174
– volume: 55
  start-page: 3566
  year: 2016
  ident: e_1_2_8_30_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506219
– volume: 143
  year: 2021
  ident: e_1_2_8_26_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03039
– volume: 10
  year: 2023
  ident: e_1_2_8_3_1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202203943
– volume: 8
  year: 2023
  ident: e_1_2_8_21_1
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202200272
– volume: 143
  start-page: 759
  year: 1996
  ident: e_1_2_8_25_1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836536
– volume: 96
  year: 2024
  ident: e_1_2_8_17_1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.4c04471
– volume: 62
  year: 2023
  ident: e_1_2_8_18_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202316257
– volume: 94
  year: 2022
  ident: e_1_2_8_39_1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c02606
– volume: 24
  start-page: 3481
  year: 2009
  ident: e_1_2_8_19_1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2009.04.045
– volume: 11
  start-page: 566
  year: 2016
  ident: e_1_2_8_1_1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.38
– volume: 32
  year: 2022
  ident: e_1_2_8_13_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202208344
– volume: 80
  start-page: 997
  year: 2008
  ident: e_1_2_8_37_1
  publication-title: Anal. Chem.
  doi: 10.1021/ac701790z
– volume: 37
  start-page: 389
  year: 2019
  ident: e_1_2_8_6_1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0045-y
– volume: 8
  start-page: 1697
  year: 2023
  ident: e_1_2_8_40_1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c00444
– volume: 38
  start-page: 217
  year: 2020
  ident: e_1_2_8_42_1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0321-x
– volume: 3
  start-page: 3049
  year: 2011
  ident: e_1_2_8_38_1
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am200563f
– volume: 93
  year: 2021
  ident: e_1_2_8_4_1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c01491
– volume: 19
  start-page: 552
  year: 2020
  ident: e_1_2_8_35_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0598-7
– volume: 50
  start-page: 2764
  year: 2021
  ident: e_1_2_8_29_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01160F
– volume: 10
  year: 2023
  ident: e_1_2_8_43_1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202202274
– volume: 115
  year: 2018
  ident: e_1_2_8_33_1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1722042115
– volume: 94
  start-page: 1919
  year: 2022
  ident: e_1_2_8_16_1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c04912
– volume: 41
  start-page: 417
  year: 2013
  ident: e_1_2_8_20_1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.08.062
– volume: 33
  year: 2021
  ident: e_1_2_8_31_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101216
– volume: 9
  start-page: 7759
  year: 2019
  ident: e_1_2_8_41_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02552
– volume: 15
  start-page: 429
  year: 2018
  ident: e_1_2_8_7_1
  publication-title: Per. Med.
  doi: 10.2217/pme-2018-0044
– volume: 16
  start-page: 1759
  year: 2022
  ident: e_1_2_8_28_1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10544
– volume: 5
  year: 2019
  ident: e_1_2_8_14_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw9906
– volume: 96
  year: 2024
  ident: e_1_2_8_10_1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.4c04271
– volume: 11
  year: 2019
  ident: e_1_2_8_23_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20583
SSID ssj0001537418
Score 2.3249185
SecondaryResourceType online_first
Snippet The noninvasive glucose sensors with comprehensive functional capabilities can enable wearable glucose monitoring in sweat with high sensitivity and minimal...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e07212
Title Sweat Wearable Sensor Based on Confined Pt Nanoparticles in 2D Conductive Metal–Organic Frameworks for Continuous Glucose Monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/40546120
https://www.proquest.com/docview/3223364492
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeuGCKM8WqAYJCVDlEu_ajn1sSUuFaBWRVg0na3e9lnJxUHBA4sSJP8A_5Jcwsw9boUUqXJxo411vMl_m5ZnPjD1XcVbJQhURrzMdJVKJKDf4fxT1KEtHtaauYKq2OM2Oz5N3s3TWp7Jtd0mr9vS3K_tK_keqOIZypS7Zf5BstygO4HuULx5Rwni8loynXym-v0Cw2gaoKYaki-XuARqmim4CUDcfOpHV7qQlLYrhsa-CoyQHH9PnxPZKtUMnBp3wUPggXIOmJq_WVW5Z0gY6v503Kyqafesr3Z1KWAb7F-hsQ2GBt689dnx2-sLMO3Xjhz4u_Bo4NlvZkVUH3Nlc2pTukZ_n0xQ8pXIq10nstBlqxjwSuSN73DOXxy7pcscNK6svxKqOnhrGqry3WuFO_R_GrCsxdHTMvKT5ZTf_JtvgGE_wAdvYH5-8n_bpuFQQjw89ijBsKlB8Dvnr9U2suzB_iUusf3J2h932gQXsOxFvshumucs2ver-DC89v_ire-yHhQ0E2ICDDVjYwKKBABuYtLAGG5g3wMfQwwYsbH59_-kBAz1gAAEDPWDAAwZ6wNxn50eHZ2-OI_84jkjzgrdRkqhKmjyTFc_kMJZCczQXUuV6VEtZxYqboSJ_j9dSFDLNarSdmY4rJYm0LxUP2KBZNOYRA6GNyIWOdaJMojOTG6F4McLQvJCxkmKLvQi_cPnJsa6UVwt0iz0LAihRMdLdLtkY_F4lWioh0Nsv8JyHTjLdWhilJLjP4fa1r_OY3epR_YQN2uXKPEV3tFU7Hkr4enB4OvmwY9M6vwGJTI8P
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sweat+Wearable+Sensor+Based+on+Confined+Pt+Nanoparticles+in+2D+Conductive+Metal%E2%80%93Organic+Frameworks+for+Continuous+Glucose+Monitoring&rft.jtitle=Advanced+science&rft.au=Huang%2C+Wei&rft.au=Yang%2C+Yong&rft.au=Xu%2C+Yun&rft.au=Xiao%2C+Fei&rft.date=2025-06-23&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002%2Fadvs.202507212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202507212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon