Efficient sparsity adaptive changepoint estimation

We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming the data sequence is Gaussian, we prove that the new method successfully estimates the number and locations of changepoints with a given erro...

Full description

Saved in:
Bibliographic Details
Published inElectronic journal of statistics Vol. 18; no. 2
Main Authors Moen, Per August Jarval, Glad, Ingrid Kristine, Tveten, Martin
Format Journal Article
LanguageEnglish
Published 01.01.2024
Online AccessGet full text

Cover

Loading…
Abstract We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming the data sequence is Gaussian, we prove that the new method successfully estimates the number and locations of changepoints with a given error rate and under minimal conditions for all sparsities of the changing subset. Our method has computational complexity linear up to logarithmic factors in both the length and number of time series, making it applicable to large data sets. Through extensive numerical studies we show that the new methodology is highly competitive in terms of both estimation accuracy and computational cost. The practical usefulness of the method is illustrated by analysing sensor data from a hydro power plant, and an efficient R implementation is available.
AbstractList We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming the data sequence is Gaussian, we prove that the new method successfully estimates the number and locations of changepoints with a given error rate and under minimal conditions for all sparsities of the changing subset. Our method has computational complexity linear up to logarithmic factors in both the length and number of time series, making it applicable to large data sets. Through extensive numerical studies we show that the new methodology is highly competitive in terms of both estimation accuracy and computational cost. The practical usefulness of the method is illustrated by analysing sensor data from a hydro power plant, and an efficient R implementation is available.
Author Glad, Ingrid Kristine
Tveten, Martin
Moen, Per August Jarval
Author_xml – sequence: 1
  givenname: Per August Jarval
  surname: Moen
  fullname: Moen, Per August Jarval
  organization: Department of Mathematics, University of Oslo
– sequence: 2
  givenname: Ingrid Kristine
  surname: Glad
  fullname: Glad, Ingrid Kristine
  organization: Department of Mathematics, University of Oslo
– sequence: 3
  givenname: Martin
  surname: Tveten
  fullname: Tveten, Martin
  organization: Norwegian Computing Center
BookMark eNptkE1LAzEQhoNUsK1e_AV7FlaTycfuHqXULwoe1HOYzSYaqdklCUL_vVEriHiagXlm3nfeBZmFMVhCThk9Z8DEBYh6ffcA0IkDMmcdl3UjQcx-9UdkkdIrpbIFpeYE1s55423IVZowJp93FQ44Zf9uK_OC4dlOoy9Tm7J_w-zHcEwOHW6TPdnXJXm6Wj-uburN_fXt6nJTG-gg14IPhquGSttIlMJw6AduVMN76NFx6KR0kmMR62Bw4KToG0TXMtZii4LxJam-75roi3jQYYyoGW0laMYUKFqQsx9kTClap6dYXMZdwfRnIBqE3gdSYPoHNj5_fZQj-u1_Kx9kCmN7
CitedBy_id crossref_primary_10_1016_j_jocs_2024_102467
Cites_doi 10.5705/ss.202022.0323
10.1214/23-EJS2126
10.1080/01621459.2012.737745
10.32614/CRAN.package.hdbinseg
10.1214/19-AOAS1297
10.1111/rssb.12243
10.1093/biomet/asac052
10.1214/aoms/1177729093
10.1214/20-AOS1994
10.1214/20-EJS1710
10.1007/978-0-387-34675-5
10.32614/CRAN.package.HDCD
10.1111/rssb.12079
10.1214/20-EJS1791
10.1177/0022343319896843
10.1111/rssb.12322
10.1214/lnms/1215090065
10.1214/14-AOS1245
10.1214/16-EJS1155
10.1111/rssa.12695
10.1214/21-AOAS1508
ContentType Journal Article
Copyright info:eu-repo/semantics/openAccess
Copyright_xml – notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
3HK
DOI 10.1214/24-EJS2294
DatabaseName CrossRef
NORA - Norwegian Open Research Archives
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1935-7524
ExternalDocumentID 10852_116260
10_1214_24_EJS2294
GroupedDBID 2WC
5VS
AAYXX
AENEX
AFFOW
ALMA_UNASSIGNED_HOLDINGS
CITATION
CS3
E3Z
GR0
GROUPED_DOAJ
J9A
KQ8
M~E
OK1
P2P
RBV
RPE
TR2
3HK
C1A
ID FETCH-LOGICAL-c292t-43dc36705e75a54c32bd3c673b2baf32955f53aada92df2f54b7aaf8118a8a413
ISSN 1935-7524
IngestDate Fri Feb 28 03:18:25 EST 2025
Thu Apr 24 23:11:19 EDT 2025
Tue Jul 01 04:33:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-43dc36705e75a54c32bd3c673b2baf32955f53aada92df2f54b7aaf8118a8a413
Notes NFR/332645
OpenAccessLink http://dx.doi.org/10.1214/24-EJS2294
ParticipantIDs cristin_nora_10852_116260
crossref_primary_10_1214_24_EJS2294
crossref_citationtrail_10_1214_24_EJS2294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-1-1
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-1-1
  day: 01
PublicationDecade 2020
PublicationTitle Electronic journal of statistics
PublicationYear 2024
References 11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
10
References_xml – ident: 9
  doi: 10.5705/ss.202022.0323
– ident: 15
  doi: 10.1214/23-EJS2126
– ident: 18
– ident: 11
  doi: 10.1080/01621459.2012.737745
– ident: 5
  doi: 10.32614/CRAN.package.hdbinseg
– ident: 8
  doi: 10.1214/19-AOAS1297
– ident: 21
  doi: 10.1111/rssb.12243
– ident: 12
  doi: 10.1093/biomet/asac052
– ident: 16
  doi: 10.1214/aoms/1177729093
– ident: 13
  doi: 10.1214/20-AOS1994
– ident: 22
  doi: 10.1214/20-EJS1710
– ident: 17
  doi: 10.1007/978-0-387-34675-5
– ident: 14
  doi: 10.32614/CRAN.package.HDCD
– ident: 4
  doi: 10.1111/rssb.12079
– ident: 10
  doi: 10.1214/20-EJS1791
– ident: 6
  doi: 10.1177/0022343319896843
– ident: 1
  doi: 10.1111/rssb.12322
– ident: 2
  doi: 10.1214/lnms/1215090065
– ident: 7
  doi: 10.1214/14-AOS1245
– ident: 3
  doi: 10.1214/16-EJS1155
– ident: 19
  doi: 10.1111/rssa.12695
– ident: 20
  doi: 10.1214/21-AOAS1508
SSID ssj0058266
Score 2.2959008
Snippet We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming...
SourceID cristin
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
Title Efficient sparsity adaptive changepoint estimation
URI http://hdl.handle.net/10852/116260
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_RBvOK8UdAXkeqaS7c8ikznYCK4wd5KkjZDmN3YOh_89Z4s6QUVUV9KSUPT5gvnkpzzHYTOQQuIEDSVr5imPhWC-7wBd2DdhzQkMpHc5Dv3HsPOgHaHbFjW5ltml2TySr1_m1fyH1ShDXA1WbJ_QLZ4KTTAPeALV0AYrr_CuL3kfzCn-SAXbHSFiMV0GQ1kM3qnkxd4apg0XksI8o34sgJOhT_CZBhZ8uYCi4kVTU8mnH4xWsyzy66pKFTEZtyP7Tp5SEezl9jJjfK4vv9mDHOXGJQzfbuNBpvZ7KQiN7yWzDUlX9u-yGEcUJNqQv129xljTkttk5-wf1JCRWigyYbA4JcYR2sVrWGw_oPcU7YKlsEyCm2wgP0CxzoLY16XI4I_o-zvViyOiunQ30Kbzub3biyA22glneygjV5BmDvfRbiA0suh9HIovQqUXgnlHhrctfu3Hd-Vs_AV5jjzKYmVoctjSZMJRhXBMiYqbBKJpdAEc8Y0IwJeznGssWZUNoXQLXABRUuAsbGPaukkTQ6QpwNOCVaNsAW9mnFLENFQQSIYmJNS66CO6u7noxQkSVSd1Dq6yKcjUo4H3pQjGUfGH4RJjDCN3CTW0VnRd2rZT77pdfjDaEdo3awlu2l1jGrZbJGcgBmXydMlqB9h60eQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+sparsity+adaptive+changepoint+estimation&rft.jtitle=Electronic+journal+of+statistics&rft.au=Moen%2C+Per+August+Jarval&rft.au=Glad%2C+Ingrid+Kristine&rft.au=Tveten%2C+Martin&rft.date=2024&rft.issn=1935-7524&rft.eissn=1935-7524&rft_id=info:doi/10.1214%2F24-EJS2294&rft.externalDBID=n%2Fa&rft.externalDocID=10852_116260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-7524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-7524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-7524&client=summon