Efficient sparsity adaptive changepoint estimation
We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming the data sequence is Gaussian, we prove that the new method successfully estimates the number and locations of changepoints with a given erro...
Saved in:
Published in | Electronic journal of statistics Vol. 18; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming the data sequence is Gaussian, we prove that the new method successfully estimates the number and locations of changepoints with a given error rate and under minimal conditions for all sparsities of the changing subset. Our method has computational complexity linear up to logarithmic factors in both the length and number of time series, making it applicable to large data sets. Through extensive numerical studies we show that the new methodology is highly competitive in terms of both estimation accuracy and computational cost. The practical usefulness of the method is illustrated by analysing sensor data from a hydro power plant, and an efficient R implementation is available. |
---|---|
AbstractList | We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming the data sequence is Gaussian, we prove that the new method successfully estimates the number and locations of changepoints with a given error rate and under minimal conditions for all sparsities of the changing subset. Our method has computational complexity linear up to logarithmic factors in both the length and number of time series, making it applicable to large data sets. Through extensive numerical studies we show that the new methodology is highly competitive in terms of both estimation accuracy and computational cost. The practical usefulness of the method is illustrated by analysing sensor data from a hydro power plant, and an efficient R implementation is available. |
Author | Glad, Ingrid Kristine Tveten, Martin Moen, Per August Jarval |
Author_xml | – sequence: 1 givenname: Per August Jarval surname: Moen fullname: Moen, Per August Jarval organization: Department of Mathematics, University of Oslo – sequence: 2 givenname: Ingrid Kristine surname: Glad fullname: Glad, Ingrid Kristine organization: Department of Mathematics, University of Oslo – sequence: 3 givenname: Martin surname: Tveten fullname: Tveten, Martin organization: Norwegian Computing Center |
BookMark | eNptkE1LAzEQhoNUsK1e_AV7FlaTycfuHqXULwoe1HOYzSYaqdklCUL_vVEriHiagXlm3nfeBZmFMVhCThk9Z8DEBYh6ffcA0IkDMmcdl3UjQcx-9UdkkdIrpbIFpeYE1s55423IVZowJp93FQ44Zf9uK_OC4dlOoy9Tm7J_w-zHcEwOHW6TPdnXJXm6Wj-uburN_fXt6nJTG-gg14IPhquGSttIlMJw6AduVMN76NFx6KR0kmMR62Bw4KToG0TXMtZii4LxJam-75roi3jQYYyoGW0laMYUKFqQsx9kTClap6dYXMZdwfRnIBqE3gdSYPoHNj5_fZQj-u1_Kx9kCmN7 |
CitedBy_id | crossref_primary_10_1016_j_jocs_2024_102467 |
Cites_doi | 10.5705/ss.202022.0323 10.1214/23-EJS2126 10.1080/01621459.2012.737745 10.32614/CRAN.package.hdbinseg 10.1214/19-AOAS1297 10.1111/rssb.12243 10.1093/biomet/asac052 10.1214/aoms/1177729093 10.1214/20-AOS1994 10.1214/20-EJS1710 10.1007/978-0-387-34675-5 10.32614/CRAN.package.HDCD 10.1111/rssb.12079 10.1214/20-EJS1791 10.1177/0022343319896843 10.1111/rssb.12322 10.1214/lnms/1215090065 10.1214/14-AOS1245 10.1214/16-EJS1155 10.1111/rssa.12695 10.1214/21-AOAS1508 |
ContentType | Journal Article |
Copyright | info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION 3HK |
DOI | 10.1214/24-EJS2294 |
DatabaseName | CrossRef NORA - Norwegian Open Research Archives |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1935-7524 |
ExternalDocumentID | 10852_116260 10_1214_24_EJS2294 |
GroupedDBID | 2WC 5VS AAYXX AENEX AFFOW ALMA_UNASSIGNED_HOLDINGS CITATION CS3 E3Z GR0 GROUPED_DOAJ J9A KQ8 M~E OK1 P2P RBV RPE TR2 3HK C1A |
ID | FETCH-LOGICAL-c292t-43dc36705e75a54c32bd3c673b2baf32955f53aada92df2f54b7aaf8118a8a413 |
ISSN | 1935-7524 |
IngestDate | Fri Feb 28 03:18:25 EST 2025 Thu Apr 24 23:11:19 EDT 2025 Tue Jul 01 04:33:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-43dc36705e75a54c32bd3c673b2baf32955f53aada92df2f54b7aaf8118a8a413 |
Notes | NFR/332645 |
OpenAccessLink | http://dx.doi.org/10.1214/24-EJS2294 |
ParticipantIDs | cristin_nora_10852_116260 crossref_primary_10_1214_24_EJS2294 crossref_citationtrail_10_1214_24_EJS2294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-1-1 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-1-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Electronic journal of statistics |
PublicationYear | 2024 |
References | 11 22 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 10 |
References_xml | – ident: 9 doi: 10.5705/ss.202022.0323 – ident: 15 doi: 10.1214/23-EJS2126 – ident: 18 – ident: 11 doi: 10.1080/01621459.2012.737745 – ident: 5 doi: 10.32614/CRAN.package.hdbinseg – ident: 8 doi: 10.1214/19-AOAS1297 – ident: 21 doi: 10.1111/rssb.12243 – ident: 12 doi: 10.1093/biomet/asac052 – ident: 16 doi: 10.1214/aoms/1177729093 – ident: 13 doi: 10.1214/20-AOS1994 – ident: 22 doi: 10.1214/20-EJS1710 – ident: 17 doi: 10.1007/978-0-387-34675-5 – ident: 14 doi: 10.32614/CRAN.package.HDCD – ident: 4 doi: 10.1111/rssb.12079 – ident: 10 doi: 10.1214/20-EJS1791 – ident: 6 doi: 10.1177/0022343319896843 – ident: 1 doi: 10.1111/rssb.12322 – ident: 2 doi: 10.1214/lnms/1215090065 – ident: 7 doi: 10.1214/14-AOS1245 – ident: 3 doi: 10.1214/16-EJS1155 – ident: 19 doi: 10.1111/rssa.12695 – ident: 20 doi: 10.1214/21-AOAS1508 |
SSID | ssj0058266 |
Score | 2.2959008 |
Snippet | We propose a computationally efficient and sparsity adaptive procedure for estimating changes in unknown subsets of a high-dimensional data sequence. Assuming... |
SourceID | cristin crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
Title | Efficient sparsity adaptive changepoint estimation |
URI | http://hdl.handle.net/10852/116260 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_RBvOK8UdAXkeqaS7c8ikznYCK4wd5KkjZDmN3YOh_89Z4s6QUVUV9KSUPT5gvnkpzzHYTOQQuIEDSVr5imPhWC-7wBd2DdhzQkMpHc5Dv3HsPOgHaHbFjW5ltml2TySr1_m1fyH1ShDXA1WbJ_QLZ4KTTAPeALV0AYrr_CuL3kfzCn-SAXbHSFiMV0GQ1kM3qnkxd4apg0XksI8o34sgJOhT_CZBhZ8uYCi4kVTU8mnH4xWsyzy66pKFTEZtyP7Tp5SEezl9jJjfK4vv9mDHOXGJQzfbuNBpvZ7KQiN7yWzDUlX9u-yGEcUJNqQv129xljTkttk5-wf1JCRWigyYbA4JcYR2sVrWGw_oPcU7YKlsEyCm2wgP0CxzoLY16XI4I_o-zvViyOiunQ30Kbzub3biyA22glneygjV5BmDvfRbiA0suh9HIovQqUXgnlHhrctfu3Hd-Vs_AV5jjzKYmVoctjSZMJRhXBMiYqbBKJpdAEc8Y0IwJeznGssWZUNoXQLXABRUuAsbGPaukkTQ6QpwNOCVaNsAW9mnFLENFQQSIYmJNS66CO6u7noxQkSVSd1Dq6yKcjUo4H3pQjGUfGH4RJjDCN3CTW0VnRd2rZT77pdfjDaEdo3awlu2l1jGrZbJGcgBmXydMlqB9h60eQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+sparsity+adaptive+changepoint+estimation&rft.jtitle=Electronic+journal+of+statistics&rft.au=Moen%2C+Per+August+Jarval&rft.au=Glad%2C+Ingrid+Kristine&rft.au=Tveten%2C+Martin&rft.date=2024&rft.issn=1935-7524&rft.eissn=1935-7524&rft_id=info:doi/10.1214%2F24-EJS2294&rft.externalDBID=n%2Fa&rft.externalDocID=10852_116260 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-7524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-7524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-7524&client=summon |