Robust and Remote Photoplethysmography Based on Smartphone Imaging of the Human Palm
Arrhythmia is a marked symptom of many cardiovascular diseases (CVDs). Fast and accurate measurement of heart rate (HR) can lead to prompt detection of arrhythmia, which could be potentially life-threatening. However, it remains a challenge to robustly and remotely measure HR due to the typically ch...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arrhythmia is a marked symptom of many cardiovascular diseases (CVDs). Fast and accurate measurement of heart rate (HR) can lead to prompt detection of arrhythmia, which could be potentially life-threatening. However, it remains a challenge to robustly and remotely measure HR due to the typically changing ambient conditions surrounding human subjects. In this study, we propose a method to accurately measure human HR by simply using a smartphone camera. We use three special approaches for HR estimation. Firstly, we fuse the raw data by subtracting G channel from R channel to enhance the heartbeat signal from video data. Secondly, instead of the entire palm, we select a region of interest (ROI) from the palm for heart rate detection based on signal-to-noise ratio (SNR) maps, which reduces the proportion of the weak signal area. Thirdly, after applying Fast Fourier Transform (FFT) analyses of the time-series data from the video, we set an interval threshold based on the heart rate range to accurately determine heart rate. With a reference HR value measured by electrocardiography (ECG), the detection rate of the proposed method is 95.84% (overall result from 30 test subjects) when used for measurement at an ambient light intensity of 150 lux within a distance of 4.5 meters. The method's strong adaptability to changing ambient conditions and ease of implementation makes it applicable to many scenarios, such as homes of the elderly, classrooms, and other public spaces. |
---|---|
AbstractList | Arrhythmia is a marked symptom of many cardiovascular diseases (CVDs). Fast and accurate measurement of heart rate (HR) can lead to prompt detection of arrhythmia, which could be potentially life-threatening. However, it remains a challenge to robustly and remotely measure HR due to the typically changing ambient conditions surrounding human subjects. In this study, we propose a method to accurately measure human HR by simply using a smartphone camera. We use three special approaches for HR estimation. First, we fuse the raw data by subtracting the [Formula Omitted] channel from the [Formula Omitted] channel to enhance the heartbeat signal from video data. Second, instead of the entire palm, we select a region of interest (ROI) from the palm for HR detection based on signal-to-noise ratio (SNR) maps, which reduces the proportion of the weak signal area. Third, after applying fast Fourier transform (FFT) analyses of the time-series data from the video, we set an interval threshold based on the HR range to accurately determine HR. With a reference HR value measured by electrocardiography (ECG), the detection rate of the proposed method is 95.84% (overall result from 30 test subjects) when used for measurement at an ambient light intensity of 150 lux within a distance of 4.5 m. The method’s strong adaptability to changing ambient conditions and ease of implementation makes it applicable to many scenarios, such as homes of the elderly, classrooms, and other public spaces. Arrhythmia is a marked symptom of many cardiovascular diseases (CVDs). Fast and accurate measurement of heart rate (HR) can lead to prompt detection of arrhythmia, which could be potentially life-threatening. However, it remains a challenge to robustly and remotely measure HR due to the typically changing ambient conditions surrounding human subjects. In this study, we propose a method to accurately measure human HR by simply using a smartphone camera. We use three special approaches for HR estimation. Firstly, we fuse the raw data by subtracting G channel from R channel to enhance the heartbeat signal from video data. Secondly, instead of the entire palm, we select a region of interest (ROI) from the palm for heart rate detection based on signal-to-noise ratio (SNR) maps, which reduces the proportion of the weak signal area. Thirdly, after applying Fast Fourier Transform (FFT) analyses of the time-series data from the video, we set an interval threshold based on the heart rate range to accurately determine heart rate. With a reference HR value measured by electrocardiography (ECG), the detection rate of the proposed method is 95.84% (overall result from 30 test subjects) when used for measurement at an ambient light intensity of 150 lux within a distance of 4.5 meters. The method's strong adaptability to changing ambient conditions and ease of implementation makes it applicable to many scenarios, such as homes of the elderly, classrooms, and other public spaces. |
Author | Li, Wen J. Zhang, Guanglie Lian, Chao Sun, Hui Zhao, Yuliang Yang, Yiming Yu, Xiaodong |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0002-1919-3063 surname: Lian fullname: Lian, Chao organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Yiming orcidid: 0000-0003-1201-9107 surname: Yang fullname: Yang, Yiming organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Xiaodong orcidid: 0000-0003-2432-6171 surname: Yu fullname: Yu, Xiaodong organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 4 givenname: Hui orcidid: 0000-0001-6434-6172 surname: Sun fullname: Sun, Hui organization: City University of Hong Kong Shenzhen Research Institute (CityUSRI), Shenzhen, China – sequence: 5 givenname: Yuliang orcidid: 0000-0002-4519-7404 surname: Zhao fullname: Zhao, Yuliang organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 6 givenname: Guanglie orcidid: 0000-0003-2168-8863 surname: Zhang fullname: Zhang, Guanglie organization: City University of Hong Kong Shenzhen Research Institute (CityUSRI), Shenzhen, China – sequence: 7 givenname: Wen J. orcidid: 0000-0001-9616-6213 surname: Li fullname: Li, Wen J. organization: City University of Hong Kong Shenzhen Research Institute (CityUSRI), Shenzhen, China |
BookMark | eNp9kDtPwzAUhS0EEm1hZ2CwxJziV_wYoQJaqYiqlDlyYqdJ1cTBdob-e1K1A2Jgusv5ztH9xuCyda0F4A6jKcZIPW4W71OCCJ1Swhli-AKMcJqKRHFOLsEIISwTxVJ-DcYh7BBCgjMxApu1y_sQoW4NXNvGRQtXlYuu29tYHULjtl531QE-62ANdC38bLSPXTWMw0Wjt3W7ha6EsbJw3je6hSu9b27AVan3wd6e7wR8vb5sZvNk-fG2mD0tk4IoEhNGhWZWMpSLAlFlpJDSUo6sMcpowYtcEIWxoaU0RSF4SUvD0pTnXDOqckwn4OHU23n33dsQs53rfTtMZkQiKWkqKB1S_JQqvAvB2zIr6qhj7drodb3PMMqOBrPBYHY0mJ0NDiD6A3a-Ht4__Ifcn5DaWvsrjhTmUtAfrPV9lw |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2023_3306832 crossref_primary_10_3390_s23249882 crossref_primary_10_1007_s11042_024_19697_5 crossref_primary_10_1016_j_medengphy_2025_104326 crossref_primary_10_1016_j_neucom_2024_127282 |
Cites_doi | 10.1364/OE.16.021434 10.1109/TBME.2010.2086456 10.1109/TIM.2021.3058983 10.1109/MDM52706.2021.00049 10.1109/TIM.2021.3109398 10.1109/JTEHM.2018.2818687 10.1109/CRV.2012.27 10.1109/TIM.2020.2984168 10.1109/CBMSYS.1989.47380 10.1007/s10015-017-0393-y 10.3758/s13428-019-01256-8 10.1152/japplphysiol.00898.2019 10.1109/TIM.2021.3060572 10.1007/s11042-017-4563-7 10.1109/ACCESS.2019.2922304 10.1093/clinchem/37.9.1633 10.1109/TBME.2013.2288319 10.1109/TBME.2013.2266196 10.1109/EMBC.2017.8037807 10.1109/TBME.2019.2897284 10.1016/j.ijpsycho.2010.04.006 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2023.3264041 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIM_2023_3264041 10091687 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Commission grantid: JCYJ20190808181803703 funderid: 10.13039/501100010877 – fundername: Hong Kong Health and Medical Research Fund grantid: 17181811 – fundername: Hebei Natural Science Foundation grantid: F2020501040; F2021203070; F2022501031 – fundername: Administration of Central Funds Guiding the Local Science and Technology Development grantid: 206Z1702G – fundername: National Natural Science Foundation of China grantid: 61873307 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: N2123004; 2022GFZD014 funderid: 10.13039/501100012226 – fundername: Hong Kong Research Grants Council grantid: T42-717/20-R; C7174-20G |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-437a4e840b7c039d8788e360edd9da76cb72911d3f8dcc76f3fd4556b6a439b13 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:18:20 EDT 2025 Tue Jul 01 03:07:25 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Wed Aug 27 02:25:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-437a4e840b7c039d8788e360edd9da76cb72911d3f8dcc76f3fd4556b6a439b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4519-7404 0000-0003-1201-9107 0000-0003-2432-6171 0000-0001-6434-6172 0000-0003-2168-8863 0000-0002-1919-3063 0000-0001-9616-6213 |
PQID | 2808835733 |
PQPubID | 85462 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1109_TIM_2023_3264041 crossref_primary_10_1109_TIM_2023_3264041 proquest_journals_2808835733 ieee_primary_10091687 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref11 (ref28) 2022 ref10 (ref2) 2022 ref17 ref16 ref19 ref18 pears (ref30) 2022 zhang (ref21) 2020 lewandowska (ref7) 2011 (ref22) 2023 yunitsyna (ref12) 2012 cultur (ref4) 2003; 81 ref24 ref23 ref26 ref25 ref20 ref27 wilkins (ref1) 2017 ref29 ref8 ref9 ref3 ref6 ref5 |
References_xml | – year: 2023 ident: ref22 publication-title: Mediapipe hands – ident: ref8 doi: 10.1364/OE.16.021434 – ident: ref9 doi: 10.1109/TBME.2010.2086456 – ident: ref14 doi: 10.1109/TIM.2021.3058983 – ident: ref10 doi: 10.1109/MDM52706.2021.00049 – year: 2022 ident: ref28 publication-title: Lighting – start-page: 8 year: 2012 ident: ref12 publication-title: Universal space in dwelling-the room for all living needs – ident: ref16 doi: 10.1109/TIM.2021.3109398 – ident: ref24 doi: 10.1109/JTEHM.2018.2818687 – ident: ref20 doi: 10.1109/CRV.2012.27 – volume: 81 start-page: 19 year: 2003 ident: ref4 article-title: Covariance structure analysis of health-related indicators in elderly people at home with a focus on subjective feeling of health publication-title: GEOgraphia – start-page: 405 year: 2011 ident: ref7 article-title: Measuring pulse rate with a webcam-A non-contact method for evaluating cardiac activity publication-title: Proc Federated Conf Comput Sci Inf Syst (FedCSIS) – ident: ref15 doi: 10.1109/TIM.2020.2984168 – ident: ref27 doi: 10.1109/CBMSYS.1989.47380 – year: 2020 ident: ref21 article-title: Mediapipe hands: On-device real-time hand tracking publication-title: arXiv 2006 10214 – ident: ref11 doi: 10.1007/s10015-017-0393-y – ident: ref13 doi: 10.3758/s13428-019-01256-8 – ident: ref29 doi: 10.1152/japplphysiol.00898.2019 – ident: ref19 doi: 10.1109/TIM.2021.3060572 – ident: ref18 doi: 10.1007/s11042-017-4563-7 – ident: ref17 doi: 10.1109/ACCESS.2019.2922304 – ident: ref23 doi: 10.1093/clinchem/37.9.1633 – ident: ref5 doi: 10.1109/TBME.2013.2288319 – ident: ref25 doi: 10.1109/TBME.2013.2266196 – year: 2022 ident: ref2 publication-title: Cardiovascular Diseases (CVDs) – start-page: 94 year: 2017 ident: ref1 publication-title: European cardiovascular disease statistics 2017 – ident: ref26 doi: 10.1109/EMBC.2017.8037807 – ident: ref6 doi: 10.1109/TBME.2019.2897284 – year: 2022 ident: ref30 publication-title: Strategic Study of Household Energy and Greenhouse Issues Australia Sustainable Solutions Report 1998 – ident: ref3 doi: 10.1016/j.ijpsycho.2010.04.006 |
SSID | ssj0007647 |
Score | 2.4232805 |
Snippet | Arrhythmia is a marked symptom of many cardiovascular diseases (CVDs). Fast and accurate measurement of heart rate (HR) can lead to prompt detection of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Arrhythmia Cameras Cardiac arrhythmia Electrocardiography Faces Fast Fourier transformations Fourier transforms Heart rate Heart rate measurement Image color analysis Luminous intensity non-contact photoplethysmography rPPG Signal to noise ratio Skin Smartphones Video data video surveillance |
Title | Robust and Remote Photoplethysmography Based on Smartphone Imaging of the Human Palm |
URI | https://ieeexplore.ieee.org/document/10091687 https://www.proquest.com/docview/2808835733 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50QdCDb3F9kYMXD61tk6bNUUVRQRFdwVtJkymC7lbc7sVf7yTtig8Ubz2kbciXZL7JTL4B2I8TqapS8yA15Ku6EmaB5i7giNbISAspvBzD1bU8vxeXD-lDd1nd34VBRJ98hqF79LF8W5uJOyqjFU7WTebZLMyS59Ze1vrYdjMpWoHMmFYw0YJpTDJSh4OLq9CVCQ-Jq4hIxF9skC-q8mMn9ublbAmupx1rs0qewklThubtm2bjv3u-DIsd0WRH7cxYgRkcrcLCJ_nBVZjz6Z9mvAaD27qcjBumR5bdIqGH7OaxblxyuQNy2Olas2OyeZbVI3Y3pCnn0tqRXQx9oSNWV4zIJPNRAebKsqzD_dnp4OQ86OotBCZRSRMInmmB5PGVmYm4sjkNMnIZobXK6kyakph4HFte5daYTFa8siJNZSk10Zoy5hvQG9GPN4EprDDHSikrEqFlqlBliSZ6Z3IRZ6j7cDhFoDCdGLmrifFceKckUgVhVjjMig6zPhx8vPHSCnH80XbdQfCpXTv6fdiZolx0S3VcJDlttNzJQm798to2zLuvtwcvO9BrXie4S1SkKff8FHwHREbYfg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RUFU48FUQy1d94NJDQhJ7nfgICLRL2RWii8QtcuyJKpXdIDZ74dczdrIIqKi45WDLVp7teeMZvwE4ihOpykLzoGvIV3UlzALNXcARrZGRFlJ4OYbBUPZuxeVd9659rO7fwiCiTz7D0H36WL6tzMxdldEOJ-sms_QLLJHh78bNc62XgzeVopHIjGkPEzGYRyUjdTzqD0JXKDwktiIiEb-xQr6syj9nsTcwF2swnE-tySv5G87qIjRP71QbPz33dVhtqSY7adbGBizgZBNWXgkQbsJXnwBqpt9hdFMVs2nN9MSyGyT8kF3_qWqXXu6gHLfK1uyUrJ5l1YT9HtOic4ntyPpjX-qIVSUjOsl8XIC5wixbcHtxPjrrBW3FhcAkKqkDwVMtkHy-IjURVzYjBxm5jNBaZXUqTUFcPI4tLzNrTCpLXloCQhZSE7EpYr4NixMaeAeYwhIzLJWyIhFadhWqNNFE8Ewm4hR1B47nCOSmlSN3VTHuc--WRConzHKHWd5i1oGfLz0eGimO_7TdchC8atf8_Q7sz1HO2806zZOMjlruhCF3P-j2A771RoOr_Ko__LUHy26k5hpmHxbrxxkeEDGpi0O_HJ8BulDbxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Remote+Photoplethysmography+Based+on+Smartphone+Imaging+of+the+Human+Palm&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Lian%2C+Chao&rft.au=Yang%2C+Yiming&rft.au=Yu%2C+Xiaodong&rft.au=Sun%2C+Hui&rft.date=2023-01-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=72&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2023.3264041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2023_3264041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |