Ion‐Pair Interactions in Polyphenylene‐Based Quaternized Membranes Designed for Phosphoric Acid‐Doped Proton Exchange Membranes for High‐Temperature Fuel Cells
Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion‐pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene‐based quaternized...
Saved in:
Published in | Advanced science p. e09467 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
03.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion‐pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene‐based quaternized membranes (BAF‐QAF and C7‐QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane‐2,2‐diyl)dibenzene and C7 = 1,1‐diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA‐doped PEMs with low or no fluorine contents to realize high‐temperature and low‐humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA‐doped membranes PA‐C7‐QAF and PA‐BAF‐QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm −1 at 160 °C, respectively. PA‐C7‐QAF and PA‐BAF‐QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm −2 at 140 °C and 0.706 and 0.640 W cm −2 at 160 °C, respectively, under dehumidified conditions. The PA‐C7‐QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h −1 (140 °C, 0.15 A cm −2 ) after an initial voltage drop. These findings underscore PA‐C7‐QAF and PA‐BAF‐QAF membranes as promising components in high‐temperature fuel cells. |
---|---|
AbstractList | Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion-pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene-based quaternized membranes (BAF-QAF and C7-QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane-2,2-diyl)dibenzene and C7 = 1,1-diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA-doped PEMs with low or no fluorine contents to realize high-temperature and low-humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA-doped membranes PA-C7-QAF and PA-BAF-QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm-1 at 160 °C, respectively. PA-C7-QAF and PA-BAF-QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm-2 at 140 °C and 0.706 and 0.640 W cm-2 at 160 °C, respectively, under dehumidified conditions. The PA-C7-QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h-1 (140 °C, 0.15 A cm-2) after an initial voltage drop. These findings underscore PA-C7-QAF and PA-BAF-QAF membranes as promising components in high-temperature fuel cells.Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion-pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene-based quaternized membranes (BAF-QAF and C7-QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane-2,2-diyl)dibenzene and C7 = 1,1-diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA-doped PEMs with low or no fluorine contents to realize high-temperature and low-humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA-doped membranes PA-C7-QAF and PA-BAF-QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm-1 at 160 °C, respectively. PA-C7-QAF and PA-BAF-QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm-2 at 140 °C and 0.706 and 0.640 W cm-2 at 160 °C, respectively, under dehumidified conditions. The PA-C7-QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h-1 (140 °C, 0.15 A cm-2) after an initial voltage drop. These findings underscore PA-C7-QAF and PA-BAF-QAF membranes as promising components in high-temperature fuel cells. Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion-pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene-based quaternized membranes (BAF-QAF and C7-QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane-2,2-diyl)dibenzene and C7 = 1,1-diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA-doped PEMs with low or no fluorine contents to realize high-temperature and low-humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA-doped membranes PA-C7-QAF and PA-BAF-QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm at 160 °C, respectively. PA-C7-QAF and PA-BAF-QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm at 140 °C and 0.706 and 0.640 W cm at 160 °C, respectively, under dehumidified conditions. The PA-C7-QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h (140 °C, 0.15 A cm ) after an initial voltage drop. These findings underscore PA-C7-QAF and PA-BAF-QAF membranes as promising components in high-temperature fuel cells. Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion‐pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene‐based quaternized membranes (BAF‐QAF and C7‐QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane‐2,2‐diyl)dibenzene and C7 = 1,1‐diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA‐doped PEMs with low or no fluorine contents to realize high‐temperature and low‐humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA‐doped membranes PA‐C7‐QAF and PA‐BAF‐QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm −1 at 160 °C, respectively. PA‐C7‐QAF and PA‐BAF‐QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm −2 at 140 °C and 0.706 and 0.640 W cm −2 at 160 °C, respectively, under dehumidified conditions. The PA‐C7‐QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h −1 (140 °C, 0.15 A cm −2 ) after an initial voltage drop. These findings underscore PA‐C7‐QAF and PA‐BAF‐QAF membranes as promising components in high‐temperature fuel cells. |
Author | Yadav, Vikrant Meng, Yuezhong Mahmoud, Ahmed Mohamed Ahmed Liu, Fanghua Hao, Xiaofeng Miyatake, Kenji Guo, Lin Xian, Fang Wang, Shuanjin |
Author_xml | – sequence: 1 givenname: Lin surname: Guo fullname: Guo, Lin organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan – sequence: 2 givenname: Kenji orcidid: 0000-0001-5713-2635 surname: Miyatake fullname: Miyatake, Kenji organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan, Hydrogen and Fuel Cell Nanomaterials Center University of Yamanashi Kofu Yamanashi 400–8510 Japan, Department of Applied Chemistry Waseda University Tokyo 169–8555 Japan – sequence: 3 givenname: Ahmed Mohamed Ahmed surname: Mahmoud fullname: Mahmoud, Ahmed Mohamed Ahmed organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan – sequence: 4 givenname: Fanghua surname: Liu fullname: Liu, Fanghua organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan – sequence: 5 givenname: Fang surname: Xian fullname: Xian, Fang organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan – sequence: 6 givenname: Vikrant surname: Yadav fullname: Yadav, Vikrant organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan – sequence: 7 givenname: Xiaofeng surname: Hao fullname: Hao, Xiaofeng organization: School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 China, Institute of Chemistry Henan Provincial Academy of Science Zhengzhou 450000 China – sequence: 8 givenname: Shuanjin surname: Wang fullname: Wang, Shuanjin organization: School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 China – sequence: 9 givenname: Yuezhong surname: Meng fullname: Meng, Yuezhong organization: School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 China, Institute of Chemistry Henan Provincial Academy of Science Zhengzhou 450000 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40605498$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkctOwzAQRS0E4lHYskResmnxq0m8hPKqVESRYB25zqQxSuxgJ4iy4hP4C_6LL8EVD7Ga0cy5o6u5e2jTOgsIHVIyooSwE1U8hxEjbEykSNINtMuozIY8E2LzX7-DDkJ4JITQMU8FzbbRjiAJGQuZ7aKPqbOfb-9zZTye2g680p1xNmBj8dzVq7YCu6rBQoTOVIAC3_UqYta8xv4GmoVXFgI-h2CWNo5K5_G8cqGtnDcan2pTROm5a-Nu7l3nLL540ZWyS_gnX6uuzbKK6D00bbTR9R7wZQ81nkBdh320Vao6wMFPHaCHy4v7yfVwdns1nZzOhppJ1g15KXUiqZZJQnlKBFGl4lmaFlQwxkkihQQhF0mqpOC01GJcchWlVBTAy0zwATr-vtt699RD6PLGBB0dRJuuDzlnLElp_GoW0aMftF80UOStN43yq_z3uREYfQPauxA8lH8IJfk6wHwdYP4XIP8CEuyTYA |
Cites_doi | 10.1016/j.jpowsour.2020.227813 10.1038/s41467-024-47627-4 10.1002/celc.202000588 10.1016/j.memsci.2020.118873 10.1002/aenm.202400751 10.1038/nenergy.2016.120 10.1021/jp952465v 10.1016/j.memsci.2023.121982 10.1016/j.cej.2020.127541 10.3390/nano13020266 10.3390/en13081924 10.1021/acsami.9b06808 10.1002/pen.20394 10.1039/C6RA10622F 10.1039/C6CP05331A 10.1016/j.ijhydene.2016.09.024 10.1021/acs.jpcb.0c05672 10.1002/pi.1280 10.1016/j.memsci.2022.120878 10.1021/acsami.0c17907 10.1016/j.memsci.2020.118981 10.1038/s41560-024-01536-4 10.3390/molecules29020340 10.1039/C5TA01936B 10.1021/acsami.4c10408 10.1039/C6CP04855B 10.1016/j.mtcomm.2020.101595 10.1039/C4TA01931H 10.1021/acscentsci.3c00146 10.1021/acs.iecr.7b02094 10.1021/acs.chemmater.9b04321 10.1021/acsaem.9b01802 10.1021/acsapm.4c00040 10.1016/j.memsci.2019.117508 10.1063/5.0032512 10.1021/acsomega.2c03148 10.1016/j.jpowsour.2023.232823 10.1021/acsenergylett.2c02367 10.1002/smll.202308860 10.1021/acsaem.9b01733 10.1016/j.memsci.2017.11.067 10.1007/s41918-023-00180-y 10.1039/C7TA09409D 10.1103/PhysRevLett.77.3865 10.1016/j.memsci.2019.117395 10.1016/j.memsci.2019.117435 10.1021/acsami.1c17154 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/advs.202509467 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
ExternalDocumentID | 40605498 10_1002_advs_202509467 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 23H02058 – fundername: Ministry of Education, Culture, Sports, Science and Technology grantid: JPMXP1122712807 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAYXX AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU CITATION DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM NPM 7X8 |
ID | FETCH-LOGICAL-c292t-3f9c691c966137040afa3877d1422306949e49b67a9431fc45f3ac2914de3f843 |
ISSN | 2198-3844 |
IngestDate | Thu Jul 03 19:17:56 EDT 2025 Fri Jul 04 01:50:08 EDT 2025 Thu Jul 10 08:13:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | polyphenylene proton exchange membranes ion‐pair interaction high‐temperature fuel cells phosphoric acid doping |
Language | English |
License | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-3f9c691c966137040afa3877d1422306949e49b67a9431fc45f3ac2914de3f843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5713-2635 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202509467 |
PMID | 40605498 |
PQID | 3226718448 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3226718448 pubmed_primary_40605498 crossref_primary_10_1002_advs_202509467 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-03 |
PublicationDateYYYYMMDD | 2025-07-03 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
References | Meyer Q. (e_1_2_8_1_1) 2023; 6 Arslan F. (e_1_2_8_15_1) 2021; 13 Kimura T. (e_1_2_8_22_1) 2019; 3 Li X. (e_1_2_8_33_1) 2020; 32 Lee S. (e_1_2_8_31_1) 2024; 9 Sun X. (e_1_2_8_32_1) 2023; 9 Hu M. (e_1_2_8_9_1) 2020; 593 Qu E. (e_1_2_8_46_1) 2023; 13 Wang X. (e_1_2_8_30_1) 2020; 451 Bai Y. (e_1_2_8_47_1) 2023; 563 Young‐Gonzales A. R. (e_1_2_8_23_1) 2021; 154 Pu H. (e_1_2_8_25_1) 2003; 52 Matsuzawa J. N. (e_1_2_8_28_1) 1997; 101 Geng K. (e_1_2_8_36_1) 2021; 620 Ono H. (e_1_2_8_10_1) 2017; 5 Yang J. (e_1_2_8_21_1) 2016; 6 Perdew J. P. (e_1_2_8_29_1) 1996; 77 Jang J. (e_1_2_8_19_1) 2020; 595 Jang J. (e_1_2_8_20_1) 2021; 13 Araya S. S. (e_1_2_8_3_1) 2016; 41 Khan M. I. (e_1_2_8_13_1) 2022; 7 Liu G. (e_1_2_8_37_1) 2024; 29 Matanovic I. (e_1_2_8_5_1) 2020; 124 Wu W. (e_1_2_8_42_1) 2017; 56 Pu H. (e_1_2_8_26_1) 2005; 45 Li X. (e_1_2_8_34_1) 2019; 11 Lim K. H. (e_1_2_8_4_1) 2022; 8 Venugopalan G. (e_1_2_8_35_1) 2019; 3 Melchior J. P. (e_1_2_8_24_1) 2016; 19 Henkensmeier D. (e_1_2_8_41_1) 2015; 3 Jiang J. (e_1_2_8_45_1) 2023; 686 Lochner T. (e_1_2_8_2_1) 2020; 7 Bai Y. (e_1_2_8_12_1) 2024; 14 Tian D. (e_1_2_8_7_1) 2020; 13 Basiuk V. A. (e_1_2_8_48_1) 2020; 25 Wang K. (e_1_2_8_39_1) 2018; 549 Zhang L. (e_1_2_8_43_1) 2024; 15 Wang J. (e_1_2_8_38_1) 2021; 413 Liu R. (e_1_2_8_17_1) 2021; 620 Li X. (e_1_2_8_8_1) 2024; 20 Jiang J. (e_1_2_8_11_1) 2022; 660 Zhang N.a (e_1_2_8_14_1) 2014; 2 Zhang W. (e_1_2_8_44_1) 2024; 16 Melchior J. P. (e_1_2_8_27_1) 2016; 19 Zhao B. (e_1_2_8_18_1) 2024; 6 Lee K.‐S. (e_1_2_8_6_1) 2016; 1 Bai H. (e_1_2_8_40_1) 2019; 592 Jiang J. (e_1_2_8_16_1) 2020; 2020 |
References_xml | – volume: 451 year: 2020 ident: e_1_2_8_30_1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227813 – volume: 15 start-page: 3409 year: 2024 ident: e_1_2_8_43_1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-47627-4 – volume: 7 start-page: 3545 year: 2020 ident: e_1_2_8_2_1 publication-title: ChemElectroChem doi: 10.1002/celc.202000588 – volume: 620 year: 2021 ident: e_1_2_8_17_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118873 – volume: 14 year: 2024 ident: e_1_2_8_12_1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202400751 – volume: 1 year: 2016 ident: e_1_2_8_6_1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.120 – volume: 101 start-page: 9391 year: 1997 ident: e_1_2_8_28_1 publication-title: J. Phys. Chem. A doi: 10.1021/jp952465v – volume: 686 year: 2023 ident: e_1_2_8_45_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2023.121982 – volume: 413 year: 2021 ident: e_1_2_8_38_1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127541 – volume: 13 start-page: 266 year: 2023 ident: e_1_2_8_46_1 publication-title: Nanomaterials doi: 10.3390/nano13020266 – volume: 13 start-page: 1924 year: 2020 ident: e_1_2_8_7_1 publication-title: Energies doi: 10.3390/en13081924 – volume: 11 year: 2019 ident: e_1_2_8_34_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06808 – volume: 45 start-page: 1395 year: 2005 ident: e_1_2_8_26_1 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20394 – volume: 2020 year: 2020 ident: e_1_2_8_16_1 publication-title: Adv. Polym. Technol. – volume: 6 year: 2016 ident: e_1_2_8_21_1 publication-title: RSC Adv. doi: 10.1039/C6RA10622F – volume: 19 start-page: 601 year: 2016 ident: e_1_2_8_24_1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05331A – volume: 41 year: 2016 ident: e_1_2_8_3_1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.024 – volume: 124 start-page: 7725 year: 2020 ident: e_1_2_8_5_1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c05672 – volume: 52 start-page: 1540 year: 2003 ident: e_1_2_8_25_1 publication-title: Polym. Int. doi: 10.1002/pi.1280 – volume: 660 year: 2022 ident: e_1_2_8_11_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.120878 – volume: 13 start-page: 531 year: 2021 ident: e_1_2_8_20_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17907 – volume: 620 year: 2021 ident: e_1_2_8_36_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118981 – volume: 9 start-page: 849 year: 2024 ident: e_1_2_8_31_1 publication-title: Nat. Energy doi: 10.1038/s41560-024-01536-4 – volume: 29 start-page: 340 year: 2024 ident: e_1_2_8_37_1 publication-title: Molecules doi: 10.3390/molecules29020340 – volume: 3 year: 2015 ident: e_1_2_8_41_1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01936B – volume: 16 year: 2024 ident: e_1_2_8_44_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c10408 – volume: 19 start-page: 587 year: 2016 ident: e_1_2_8_27_1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04855B – volume: 25 year: 2020 ident: e_1_2_8_48_1 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101595 – volume: 2 year: 2014 ident: e_1_2_8_14_1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01931H – volume: 9 start-page: 733 year: 2023 ident: e_1_2_8_32_1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.3c00146 – volume: 56 year: 2017 ident: e_1_2_8_42_1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02094 – volume: 32 start-page: 1182 year: 2020 ident: e_1_2_8_33_1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04321 – volume: 3 start-page: 573 year: 2019 ident: e_1_2_8_35_1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01802 – volume: 6 start-page: 5608 year: 2024 ident: e_1_2_8_18_1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.4c00040 – volume: 595 year: 2020 ident: e_1_2_8_19_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117508 – volume: 154 year: 2021 ident: e_1_2_8_23_1 publication-title: J. Chem. Phys. doi: 10.1063/5.0032512 – volume: 7 year: 2022 ident: e_1_2_8_13_1 publication-title: ACS Omega doi: 10.1021/acsomega.2c03148 – volume: 563 year: 2023 ident: e_1_2_8_47_1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232823 – volume: 8 start-page: 529 year: 2022 ident: e_1_2_8_4_1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02367 – volume: 20 year: 2024 ident: e_1_2_8_8_1 publication-title: Small doi: 10.1002/smll.202308860 – volume: 3 start-page: 469 year: 2019 ident: e_1_2_8_22_1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01733 – volume: 549 start-page: 23 year: 2018 ident: e_1_2_8_39_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.11.067 – volume: 6 start-page: 16 year: 2023 ident: e_1_2_8_1_1 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-023-00180-y – volume: 5 year: 2017 ident: e_1_2_8_10_1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09409D – volume: 77 start-page: 3865 year: 1996 ident: e_1_2_8_29_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 592 year: 2019 ident: e_1_2_8_40_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117395 – volume: 593 year: 2020 ident: e_1_2_8_9_1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117435 – volume: 13 year: 2021 ident: e_1_2_8_15_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c17154 |
SSID | ssj0001537418 |
Score | 2.3255534 |
SecondaryResourceType | online_first |
Snippet | Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions.... Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e09467 |
Title | Ion‐Pair Interactions in Polyphenylene‐Based Quaternized Membranes Designed for Phosphoric Acid‐Doped Proton Exchange Membranes for High‐Temperature Fuel Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40605498 https://www.proquest.com/docview/3226718448 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdsMNYvwWxmQkJEBVRhs7aXLZbZ0G2qYKOml3keM4Sqa2qdYErbviEXgLnoAX4kk4x07SlA1pcJOklo_r6Hzy-cnnY0LeKO7JkEXSckXsWTwUjiUAR1YkYx6Dxe6GUhNkT92jM_7p3DlvtX42WEtFHu7K61v3lfyPVqEN9Iq7ZP9Bs_Wg0ADPoF-4gobheicdfwS_rSIrjER6afJ7ZquC5rmOsskSSVxLsC2q7roHlitCOicmA9NreD5RU4iaYdWD9QcZHdCE9MNRki3mCVYR6QwkvF01wEE2V3qPAdbkGF6ZzcONQVAWCSS1wFiBd26qN3cOCzXp7KvJZNF0jAcVF6E0yTUvqMjK1EENjXQpcmE4RWAmLtJVUj2ZZoXJkydTfKssEXjXv6pex2mhHXaYclKIZtLDdjRBlq3WRlhnPYt5pnTkrrrZdsMymEqzIvqKNdptLBtojgFZL8H9h2msCYumuLMdoHxQy98jmzZEJ7C8bg4OTo6_rJJ7DsOqQHiwYTWpqmBo1_6wPol1h-gvUY72dsYPyYMyTKEDg7kt0lKzR2SrNAQL-q6sVv7-MfkBIPz17TvCjzbhR9MZXYMfdNLAow3g0RoztAIeBfDQFfAoAg9ENeSogRytINcQRymEHHRtgI0i2KgG2xNydjgc7x9Z5ekflrR9O7dY7EvX70mIx3usD7ZGxIJ5_X6EWUuG-7V9xf3Q7QsfnOBYcidmAkR7PFIs9jh7SjZm2Uw9J1Q4omsr2bddJ-LSj33Vix1puxBKR55QrE3eVioI5qbIS3C7xtvkdaWhANZh_LgGL5kViwAMowt-HudemzwzqqvHAqcZIiPfe3Hn_3lJ7q9gv0028stCvQLvNw93SqzBfW94Ovq8o7NIvwFRbra0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ion%E2%80%90Pair+Interactions+in+Polyphenylene%E2%80%90Based+Quaternized+Membranes+Designed+for+Phosphoric+Acid%E2%80%90Doped+Proton+Exchange+Membranes+for+High%E2%80%90Temperature+Fuel+Cells&rft.jtitle=Advanced+science&rft.au=Guo%2C+Lin&rft.au=Miyatake%2C+Kenji&rft.au=Mahmoud%2C+Ahmed+Mohamed+Ahmed&rft.au=Liu%2C+Fanghua&rft.date=2025-07-03&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002%2Fadvs.202509467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202509467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |