Ion‐Pair Interactions in Polyphenylene‐Based Quaternized Membranes Designed for Phosphoric Acid‐Doped Proton Exchange Membranes for High‐Temperature Fuel Cells

Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion‐pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene‐based quaternized...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science p. e09467
Main Authors Guo, Lin, Miyatake, Kenji, Mahmoud, Ahmed Mohamed Ahmed, Liu, Fanghua, Xian, Fang, Yadav, Vikrant, Hao, Xiaofeng, Wang, Shuanjin, Meng, Yuezhong
Format Journal Article
LanguageEnglish
Published Germany 03.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion‐pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene‐based quaternized membranes (BAF‐QAF and C7‐QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane‐2,2‐diyl)dibenzene and C7 = 1,1‐diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA‐doped PEMs with low or no fluorine contents to realize high‐temperature and low‐humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA‐doped membranes PA‐C7‐QAF and PA‐BAF‐QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm −1 at 160 °C, respectively. PA‐C7‐QAF and PA‐BAF‐QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm −2 at 140 °C and 0.706 and 0.640 W cm −2 at 160 °C, respectively, under dehumidified conditions. The PA‐C7‐QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h −1 (140 °C, 0.15 A cm −2 ) after an initial voltage drop. These findings underscore PA‐C7‐QAF and PA‐BAF‐QAF membranes as promising components in high‐temperature fuel cells.
AbstractList Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion-pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene-based quaternized membranes (BAF-QAF and C7-QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane-2,2-diyl)dibenzene and C7 = 1,1-diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA-doped PEMs with low or no fluorine contents to realize high-temperature and low-humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA-doped membranes PA-C7-QAF and PA-BAF-QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm-1 at 160 °C, respectively. PA-C7-QAF and PA-BAF-QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm-2 at 140 °C and 0.706 and 0.640 W cm-2 at 160 °C, respectively, under dehumidified conditions. The PA-C7-QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h-1 (140 °C, 0.15 A cm-2) after an initial voltage drop. These findings underscore PA-C7-QAF and PA-BAF-QAF membranes as promising components in high-temperature fuel cells.Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion-pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene-based quaternized membranes (BAF-QAF and C7-QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane-2,2-diyl)dibenzene and C7 = 1,1-diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA-doped PEMs with low or no fluorine contents to realize high-temperature and low-humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA-doped membranes PA-C7-QAF and PA-BAF-QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm-1 at 160 °C, respectively. PA-C7-QAF and PA-BAF-QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm-2 at 140 °C and 0.706 and 0.640 W cm-2 at 160 °C, respectively, under dehumidified conditions. The PA-C7-QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h-1 (140 °C, 0.15 A cm-2) after an initial voltage drop. These findings underscore PA-C7-QAF and PA-BAF-QAF membranes as promising components in high-temperature fuel cells.
Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion-pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene-based quaternized membranes (BAF-QAF and C7-QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane-2,2-diyl)dibenzene and C7 = 1,1-diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA-doped PEMs with low or no fluorine contents to realize high-temperature and low-humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA-doped membranes PA-C7-QAF and PA-BAF-QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm at 160 °C, respectively. PA-C7-QAF and PA-BAF-QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm at 140 °C and 0.706 and 0.640 W cm at 160 °C, respectively, under dehumidified conditions. The PA-C7-QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h (140 °C, 0.15 A cm ) after an initial voltage drop. These findings underscore PA-C7-QAF and PA-BAF-QAF membranes as promising components in high-temperature fuel cells.
Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions. Ion‐pair interactions between PA and quaternary ammonium (QA) groups can effectively mitigate PA loss. Herein, polyphenylene‐based quaternized membranes (BAF‐QAF and C7‐QAF) comprising distinct hydrophobic moieties [BAF = (perfluoropropane‐2,2‐diyl)dibenzene and C7 = 1,1‐diphenylcycloheptane] and fluorenyl groups with pendant QA head groups are designed and used as PA‐doped PEMs with low or no fluorine contents to realize high‐temperature and low‐humidity operability. The resulting membranes exhibited excellent PA retention, maintaining >85% of their initial proton conductivities at 90% relative humidity after 10 humidity cycles. PA‐doped membranes PA‐C7‐QAF and PA‐BAF‐QAF exhibit superior proton conductivities of 60.3 and 58.4 mS cm −1 at 160 °C, respectively. PA‐C7‐QAF and PA‐BAF‐QAF fuel cells deliver peak power densities of 0.579 and 0.537 W cm −2 at 140 °C and 0.706 and 0.640 W cm −2 at 160 °C, respectively, under dehumidified conditions. The PA‐C7‐QAF cell also exhibits impressive durability with an average voltage decay of 30 µV h −1 (140 °C, 0.15 A cm −2 ) after an initial voltage drop. These findings underscore PA‐C7‐QAF and PA‐BAF‐QAF membranes as promising components in high‐temperature fuel cells.
Author Yadav, Vikrant
Meng, Yuezhong
Mahmoud, Ahmed Mohamed Ahmed
Liu, Fanghua
Hao, Xiaofeng
Miyatake, Kenji
Guo, Lin
Xian, Fang
Wang, Shuanjin
Author_xml – sequence: 1
  givenname: Lin
  surname: Guo
  fullname: Guo, Lin
  organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan
– sequence: 2
  givenname: Kenji
  orcidid: 0000-0001-5713-2635
  surname: Miyatake
  fullname: Miyatake, Kenji
  organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan, Hydrogen and Fuel Cell Nanomaterials Center University of Yamanashi Kofu Yamanashi 400–8510 Japan, Department of Applied Chemistry Waseda University Tokyo 169–8555 Japan
– sequence: 3
  givenname: Ahmed Mohamed Ahmed
  surname: Mahmoud
  fullname: Mahmoud, Ahmed Mohamed Ahmed
  organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan
– sequence: 4
  givenname: Fanghua
  surname: Liu
  fullname: Liu, Fanghua
  organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan
– sequence: 5
  givenname: Fang
  surname: Xian
  fullname: Xian, Fang
  organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan
– sequence: 6
  givenname: Vikrant
  surname: Yadav
  fullname: Yadav, Vikrant
  organization: Clean Energy Research Center University of Yamanashi Kofu Yamanashi 400–8510 Japan
– sequence: 7
  givenname: Xiaofeng
  surname: Hao
  fullname: Hao, Xiaofeng
  organization: School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 China, Institute of Chemistry Henan Provincial Academy of Science Zhengzhou 450000 China
– sequence: 8
  givenname: Shuanjin
  surname: Wang
  fullname: Wang, Shuanjin
  organization: School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 China
– sequence: 9
  givenname: Yuezhong
  surname: Meng
  fullname: Meng, Yuezhong
  organization: School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 China, Institute of Chemistry Henan Provincial Academy of Science Zhengzhou 450000 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40605498$$D View this record in MEDLINE/PubMed
BookMark eNpNkctOwzAQRS0E4lHYskResmnxq0m8hPKqVESRYB25zqQxSuxgJ4iy4hP4C_6LL8EVD7Ga0cy5o6u5e2jTOgsIHVIyooSwE1U8hxEjbEykSNINtMuozIY8E2LzX7-DDkJ4JITQMU8FzbbRjiAJGQuZ7aKPqbOfb-9zZTye2g680p1xNmBj8dzVq7YCu6rBQoTOVIAC3_UqYta8xv4GmoVXFgI-h2CWNo5K5_G8cqGtnDcan2pTROm5a-Nu7l3nLL540ZWyS_gnX6uuzbKK6D00bbTR9R7wZQ81nkBdh320Vao6wMFPHaCHy4v7yfVwdns1nZzOhppJ1g15KXUiqZZJQnlKBFGl4lmaFlQwxkkihQQhF0mqpOC01GJcchWlVBTAy0zwATr-vtt699RD6PLGBB0dRJuuDzlnLElp_GoW0aMftF80UOStN43yq_z3uREYfQPauxA8lH8IJfk6wHwdYP4XIP8CEuyTYA
Cites_doi 10.1016/j.jpowsour.2020.227813
10.1038/s41467-024-47627-4
10.1002/celc.202000588
10.1016/j.memsci.2020.118873
10.1002/aenm.202400751
10.1038/nenergy.2016.120
10.1021/jp952465v
10.1016/j.memsci.2023.121982
10.1016/j.cej.2020.127541
10.3390/nano13020266
10.3390/en13081924
10.1021/acsami.9b06808
10.1002/pen.20394
10.1039/C6RA10622F
10.1039/C6CP05331A
10.1016/j.ijhydene.2016.09.024
10.1021/acs.jpcb.0c05672
10.1002/pi.1280
10.1016/j.memsci.2022.120878
10.1021/acsami.0c17907
10.1016/j.memsci.2020.118981
10.1038/s41560-024-01536-4
10.3390/molecules29020340
10.1039/C5TA01936B
10.1021/acsami.4c10408
10.1039/C6CP04855B
10.1016/j.mtcomm.2020.101595
10.1039/C4TA01931H
10.1021/acscentsci.3c00146
10.1021/acs.iecr.7b02094
10.1021/acs.chemmater.9b04321
10.1021/acsaem.9b01802
10.1021/acsapm.4c00040
10.1016/j.memsci.2019.117508
10.1063/5.0032512
10.1021/acsomega.2c03148
10.1016/j.jpowsour.2023.232823
10.1021/acsenergylett.2c02367
10.1002/smll.202308860
10.1021/acsaem.9b01733
10.1016/j.memsci.2017.11.067
10.1007/s41918-023-00180-y
10.1039/C7TA09409D
10.1103/PhysRevLett.77.3865
10.1016/j.memsci.2019.117395
10.1016/j.memsci.2019.117435
10.1021/acsami.1c17154
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/advs.202509467
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
ExternalDocumentID 40605498
10_1002_advs_202509467
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 23H02058
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: JPMXP1122712807
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAYXX
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
CITATION
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
NPM
7X8
ID FETCH-LOGICAL-c292t-3f9c691c966137040afa3877d1422306949e49b67a9431fc45f3ac2914de3f843
ISSN 2198-3844
IngestDate Thu Jul 03 19:17:56 EDT 2025
Fri Jul 04 01:50:08 EDT 2025
Thu Jul 10 08:13:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords polyphenylene
proton exchange membranes
ion‐pair interaction
high‐temperature fuel cells
phosphoric acid doping
Language English
License 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-3f9c691c966137040afa3877d1422306949e49b67a9431fc45f3ac2914de3f843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5713-2635
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202509467
PMID 40605498
PQID 3226718448
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3226718448
pubmed_primary_40605498
crossref_primary_10_1002_advs_202509467
PublicationCentury 2000
PublicationDate 2025-07-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
References Meyer Q. (e_1_2_8_1_1) 2023; 6
Arslan F. (e_1_2_8_15_1) 2021; 13
Kimura T. (e_1_2_8_22_1) 2019; 3
Li X. (e_1_2_8_33_1) 2020; 32
Lee S. (e_1_2_8_31_1) 2024; 9
Sun X. (e_1_2_8_32_1) 2023; 9
Hu M. (e_1_2_8_9_1) 2020; 593
Qu E. (e_1_2_8_46_1) 2023; 13
Wang X. (e_1_2_8_30_1) 2020; 451
Bai Y. (e_1_2_8_47_1) 2023; 563
Young‐Gonzales A. R. (e_1_2_8_23_1) 2021; 154
Pu H. (e_1_2_8_25_1) 2003; 52
Matsuzawa J. N. (e_1_2_8_28_1) 1997; 101
Geng K. (e_1_2_8_36_1) 2021; 620
Ono H. (e_1_2_8_10_1) 2017; 5
Yang J. (e_1_2_8_21_1) 2016; 6
Perdew J. P. (e_1_2_8_29_1) 1996; 77
Jang J. (e_1_2_8_19_1) 2020; 595
Jang J. (e_1_2_8_20_1) 2021; 13
Araya S. S. (e_1_2_8_3_1) 2016; 41
Khan M. I. (e_1_2_8_13_1) 2022; 7
Liu G. (e_1_2_8_37_1) 2024; 29
Matanovic I. (e_1_2_8_5_1) 2020; 124
Wu W. (e_1_2_8_42_1) 2017; 56
Pu H. (e_1_2_8_26_1) 2005; 45
Li X. (e_1_2_8_34_1) 2019; 11
Lim K. H. (e_1_2_8_4_1) 2022; 8
Venugopalan G. (e_1_2_8_35_1) 2019; 3
Melchior J. P. (e_1_2_8_24_1) 2016; 19
Henkensmeier D. (e_1_2_8_41_1) 2015; 3
Jiang J. (e_1_2_8_45_1) 2023; 686
Lochner T. (e_1_2_8_2_1) 2020; 7
Bai Y. (e_1_2_8_12_1) 2024; 14
Tian D. (e_1_2_8_7_1) 2020; 13
Basiuk V. A. (e_1_2_8_48_1) 2020; 25
Wang K. (e_1_2_8_39_1) 2018; 549
Zhang L. (e_1_2_8_43_1) 2024; 15
Wang J. (e_1_2_8_38_1) 2021; 413
Liu R. (e_1_2_8_17_1) 2021; 620
Li X. (e_1_2_8_8_1) 2024; 20
Jiang J. (e_1_2_8_11_1) 2022; 660
Zhang N.a (e_1_2_8_14_1) 2014; 2
Zhang W. (e_1_2_8_44_1) 2024; 16
Melchior J. P. (e_1_2_8_27_1) 2016; 19
Zhao B. (e_1_2_8_18_1) 2024; 6
Lee K.‐S. (e_1_2_8_6_1) 2016; 1
Bai H. (e_1_2_8_40_1) 2019; 592
Jiang J. (e_1_2_8_16_1) 2020; 2020
References_xml – volume: 451
  year: 2020
  ident: e_1_2_8_30_1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227813
– volume: 15
  start-page: 3409
  year: 2024
  ident: e_1_2_8_43_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47627-4
– volume: 7
  start-page: 3545
  year: 2020
  ident: e_1_2_8_2_1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000588
– volume: 620
  year: 2021
  ident: e_1_2_8_17_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118873
– volume: 14
  year: 2024
  ident: e_1_2_8_12_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202400751
– volume: 1
  year: 2016
  ident: e_1_2_8_6_1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.120
– volume: 101
  start-page: 9391
  year: 1997
  ident: e_1_2_8_28_1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp952465v
– volume: 686
  year: 2023
  ident: e_1_2_8_45_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2023.121982
– volume: 413
  year: 2021
  ident: e_1_2_8_38_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127541
– volume: 13
  start-page: 266
  year: 2023
  ident: e_1_2_8_46_1
  publication-title: Nanomaterials
  doi: 10.3390/nano13020266
– volume: 13
  start-page: 1924
  year: 2020
  ident: e_1_2_8_7_1
  publication-title: Energies
  doi: 10.3390/en13081924
– volume: 11
  year: 2019
  ident: e_1_2_8_34_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06808
– volume: 45
  start-page: 1395
  year: 2005
  ident: e_1_2_8_26_1
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.20394
– volume: 2020
  year: 2020
  ident: e_1_2_8_16_1
  publication-title: Adv. Polym. Technol.
– volume: 6
  year: 2016
  ident: e_1_2_8_21_1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA10622F
– volume: 19
  start-page: 601
  year: 2016
  ident: e_1_2_8_24_1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05331A
– volume: 41
  year: 2016
  ident: e_1_2_8_3_1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.024
– volume: 124
  start-page: 7725
  year: 2020
  ident: e_1_2_8_5_1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c05672
– volume: 52
  start-page: 1540
  year: 2003
  ident: e_1_2_8_25_1
  publication-title: Polym. Int.
  doi: 10.1002/pi.1280
– volume: 660
  year: 2022
  ident: e_1_2_8_11_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.120878
– volume: 13
  start-page: 531
  year: 2021
  ident: e_1_2_8_20_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17907
– volume: 620
  year: 2021
  ident: e_1_2_8_36_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118981
– volume: 9
  start-page: 849
  year: 2024
  ident: e_1_2_8_31_1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-024-01536-4
– volume: 29
  start-page: 340
  year: 2024
  ident: e_1_2_8_37_1
  publication-title: Molecules
  doi: 10.3390/molecules29020340
– volume: 3
  year: 2015
  ident: e_1_2_8_41_1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01936B
– volume: 16
  year: 2024
  ident: e_1_2_8_44_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c10408
– volume: 19
  start-page: 587
  year: 2016
  ident: e_1_2_8_27_1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04855B
– volume: 25
  year: 2020
  ident: e_1_2_8_48_1
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2020.101595
– volume: 2
  year: 2014
  ident: e_1_2_8_14_1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01931H
– volume: 9
  start-page: 733
  year: 2023
  ident: e_1_2_8_32_1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.3c00146
– volume: 56
  year: 2017
  ident: e_1_2_8_42_1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02094
– volume: 32
  start-page: 1182
  year: 2020
  ident: e_1_2_8_33_1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04321
– volume: 3
  start-page: 573
  year: 2019
  ident: e_1_2_8_35_1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01802
– volume: 6
  start-page: 5608
  year: 2024
  ident: e_1_2_8_18_1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.4c00040
– volume: 595
  year: 2020
  ident: e_1_2_8_19_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117508
– volume: 154
  year: 2021
  ident: e_1_2_8_23_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0032512
– volume: 7
  year: 2022
  ident: e_1_2_8_13_1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c03148
– volume: 563
  year: 2023
  ident: e_1_2_8_47_1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232823
– volume: 8
  start-page: 529
  year: 2022
  ident: e_1_2_8_4_1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02367
– volume: 20
  year: 2024
  ident: e_1_2_8_8_1
  publication-title: Small
  doi: 10.1002/smll.202308860
– volume: 3
  start-page: 469
  year: 2019
  ident: e_1_2_8_22_1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01733
– volume: 549
  start-page: 23
  year: 2018
  ident: e_1_2_8_39_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.11.067
– volume: 6
  start-page: 16
  year: 2023
  ident: e_1_2_8_1_1
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-023-00180-y
– volume: 5
  year: 2017
  ident: e_1_2_8_10_1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09409D
– volume: 77
  start-page: 3865
  year: 1996
  ident: e_1_2_8_29_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 592
  year: 2019
  ident: e_1_2_8_40_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117395
– volume: 593
  year: 2020
  ident: e_1_2_8_9_1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117435
– volume: 13
  year: 2021
  ident: e_1_2_8_15_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c17154
SSID ssj0001537418
Score 2.3255534
SecondaryResourceType online_first
Snippet Phosphoric acid (PA)‐doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions....
Phosphoric acid (PA)-doped proton exchange membranes (PEMs) face significant challenges owing to the loss of PA, particularly under high humidity conditions....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e09467
Title Ion‐Pair Interactions in Polyphenylene‐Based Quaternized Membranes Designed for Phosphoric Acid‐Doped Proton Exchange Membranes for High‐Temperature Fuel Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/40605498
https://www.proquest.com/docview/3226718448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdsMNYvwWxmQkJEBVRhs7aXLZbZ0G2qYKOml3keM4Sqa2qdYErbviEXgLnoAX4kk4x07SlA1pcJOklo_r6Hzy-cnnY0LeKO7JkEXSckXsWTwUjiUAR1YkYx6Dxe6GUhNkT92jM_7p3DlvtX42WEtFHu7K61v3lfyPVqEN9Iq7ZP9Bs_Wg0ADPoF-4gobheicdfwS_rSIrjER6afJ7ZquC5rmOsskSSVxLsC2q7roHlitCOicmA9NreD5RU4iaYdWD9QcZHdCE9MNRki3mCVYR6QwkvF01wEE2V3qPAdbkGF6ZzcONQVAWCSS1wFiBd26qN3cOCzXp7KvJZNF0jAcVF6E0yTUvqMjK1EENjXQpcmE4RWAmLtJVUj2ZZoXJkydTfKssEXjXv6pex2mhHXaYclKIZtLDdjRBlq3WRlhnPYt5pnTkrrrZdsMymEqzIvqKNdptLBtojgFZL8H9h2msCYumuLMdoHxQy98jmzZEJ7C8bg4OTo6_rJJ7DsOqQHiwYTWpqmBo1_6wPol1h-gvUY72dsYPyYMyTKEDg7kt0lKzR2SrNAQL-q6sVv7-MfkBIPz17TvCjzbhR9MZXYMfdNLAow3g0RoztAIeBfDQFfAoAg9ENeSogRytINcQRymEHHRtgI0i2KgG2xNydjgc7x9Z5ekflrR9O7dY7EvX70mIx3usD7ZGxIJ5_X6EWUuG-7V9xf3Q7QsfnOBYcidmAkR7PFIs9jh7SjZm2Uw9J1Q4omsr2bddJ-LSj33Vix1puxBKR55QrE3eVioI5qbIS3C7xtvkdaWhANZh_LgGL5kViwAMowt-HudemzwzqqvHAqcZIiPfe3Hn_3lJ7q9gv0028stCvQLvNw93SqzBfW94Ovq8o7NIvwFRbra0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ion%E2%80%90Pair+Interactions+in+Polyphenylene%E2%80%90Based+Quaternized+Membranes+Designed+for+Phosphoric+Acid%E2%80%90Doped+Proton+Exchange+Membranes+for+High%E2%80%90Temperature+Fuel+Cells&rft.jtitle=Advanced+science&rft.au=Guo%2C+Lin&rft.au=Miyatake%2C+Kenji&rft.au=Mahmoud%2C+Ahmed+Mohamed+Ahmed&rft.au=Liu%2C+Fanghua&rft.date=2025-07-03&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002%2Fadvs.202509467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202509467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon