Risk-based stormwater fragility curves for urbanized coastal flooding

[Display omitted] •Hydrologic-hydraulic (SWMM) model was developed to assess airfield flooding.•Framework for stormwater fragility analysis using deterministic model is presented.•Risk-based fragility function consider extreme rainfall and sea level rise.•Fragility analysis informs infrastructure de...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 661; p. 133436
Main Authors Shrestha, Ashish, Chini, Christopher M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Hydrologic-hydraulic (SWMM) model was developed to assess airfield flooding.•Framework for stormwater fragility analysis using deterministic model is presented.•Risk-based fragility function consider extreme rainfall and sea level rise.•Fragility analysis informs infrastructure design and adaptation decisions. Stormwater infrastructure systems in urbanized coastal watersheds are subject to functional failure from storm surge and extreme precipitation under climate change, leading to cascading failure due to interdependencies of stormwater infrastructure with other critical coastal infrastructure systems. Adaptation planning and management of coastal stormwater systems requires a detailed understanding of system performance and the spatial distribution of flood risks across the watershed from multiple threats. Climate change-induced sea level rise and an increased occurrence of extreme weather events necessitate the incorporation of climate uncertainties into infrastructure design but come with challenges. An improved understanding of the risks from combined extreme events, such as high tides and heavy precipitation, within interconnected coastal stormwater systems is needed to begin addressing design challenges. We propose a risk-based approach to understanding the combined threat of sea level rise, storm surge, and extreme precipitation in a coastal stormwater system to offer climate-informed decision support tools for stakeholders. Fragility curves, which estimate the probability of functional failure of infrastructure components at a given stress level, are valuable risk-based planning tool for assessing critical infrastructure and identifying adaptation or upgrade needs. In this study, we create a framework for advanced, simulation-based stormwater fragility curves using a physically based hydrologic-hydraulic model for Tyndall Air Force Base near Panama City, Florida. The model was built using US EPA’s SWMM tool and was calibrated with high-resolution streamflow gauges. An overlay of spatial layers with the stormwater model helped identify critical areas within the catchment for specifying fragility curves under varying hazard magnitudes, represented as combinations of precipitation and sea level rise scenarios. The framework can be applied to other locations or restructured to generate fragility curves at the infrastructure component level, enhancing decision support. In summary, we found fragility curves to be an engaging and effective means of presenting risk under combined threats.
AbstractList [Display omitted] •Hydrologic-hydraulic (SWMM) model was developed to assess airfield flooding.•Framework for stormwater fragility analysis using deterministic model is presented.•Risk-based fragility function consider extreme rainfall and sea level rise.•Fragility analysis informs infrastructure design and adaptation decisions. Stormwater infrastructure systems in urbanized coastal watersheds are subject to functional failure from storm surge and extreme precipitation under climate change, leading to cascading failure due to interdependencies of stormwater infrastructure with other critical coastal infrastructure systems. Adaptation planning and management of coastal stormwater systems requires a detailed understanding of system performance and the spatial distribution of flood risks across the watershed from multiple threats. Climate change-induced sea level rise and an increased occurrence of extreme weather events necessitate the incorporation of climate uncertainties into infrastructure design but come with challenges. An improved understanding of the risks from combined extreme events, such as high tides and heavy precipitation, within interconnected coastal stormwater systems is needed to begin addressing design challenges. We propose a risk-based approach to understanding the combined threat of sea level rise, storm surge, and extreme precipitation in a coastal stormwater system to offer climate-informed decision support tools for stakeholders. Fragility curves, which estimate the probability of functional failure of infrastructure components at a given stress level, are valuable risk-based planning tool for assessing critical infrastructure and identifying adaptation or upgrade needs. In this study, we create a framework for advanced, simulation-based stormwater fragility curves using a physically based hydrologic-hydraulic model for Tyndall Air Force Base near Panama City, Florida. The model was built using US EPA’s SWMM tool and was calibrated with high-resolution streamflow gauges. An overlay of spatial layers with the stormwater model helped identify critical areas within the catchment for specifying fragility curves under varying hazard magnitudes, represented as combinations of precipitation and sea level rise scenarios. The framework can be applied to other locations or restructured to generate fragility curves at the infrastructure component level, enhancing decision support. In summary, we found fragility curves to be an engaging and effective means of presenting risk under combined threats.
Stormwater infrastructure systems in urbanized coastal watersheds are subject to functional failure from storm surge and extreme precipitation under climate change, leading to cascading failure due to interdependencies of stormwater infrastructure with other critical coastal infrastructure systems. Adaptation planning and management of coastal stormwater systems requires a detailed understanding of system performance and the spatial distribution of flood risks across the watershed from multiple threats. Climate change-induced sea level rise and an increased occurrence of extreme weather events necessitate the incorporation of climate uncertainties into infrastructure design but come with challenges. An improved understanding of the risks from combined extreme events, such as high tides and heavy precipitation, within interconnected coastal stormwater systems is needed to begin addressing design challenges. We propose a risk-based approach to understanding the combined threat of sea level rise, storm surge, and extreme precipitation in a coastal stormwater system to offer climate-informed decision support tools for stakeholders. Fragility curves, which estimate the probability of functional failure of infrastructure components at a given stress level, are valuable risk-based planning tool for assessing critical infrastructure and identifying adaptation or upgrade needs. In this study, we create a framework for advanced, simulation-based stormwater fragility curves using a physically based hydrologic-hydraulic model for Tyndall Air Force Base near Panama City, Florida. The model was built using US EPA’s SWMM tool and was calibrated with high-resolution streamflow gauges. An overlay of spatial layers with the stormwater model helped identify critical areas within the catchment for specifying fragility curves under varying hazard magnitudes, represented as combinations of precipitation and sea level rise scenarios. The framework can be applied to other locations or restructured to generate fragility curves at the infrastructure component level, enhancing decision support. In summary, we found fragility curves to be an engaging and effective means of presenting risk under combined threats.
ArticleNumber 133436
Author Chini, Christopher M.
Shrestha, Ashish
Author_xml – sequence: 1
  givenname: Ashish
  orcidid: 0000-0002-0106-0318
  surname: Shrestha
  fullname: Shrestha, Ashish
  email: ashish.shrs@asu.edu
  organization: Department of Systems Engineering and Management, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson Air Force Base, OH 45433, United States of America
– sequence: 2
  givenname: Christopher M.
  orcidid: 0000-0002-1208-3646
  surname: Chini
  fullname: Chini, Christopher M.
  organization: Department of Systems Engineering and Management, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson Air Force Base, OH 45433, United States of America
BookMark eNqFkD1PwzAQhj0UibbwE5AysqTY58SpJ4Sq8iFVQkIwW45zLg5pXOykqPx6UqU7t9xwz_tK98zIpPUtEnLD6IJRJu7qRf15rIJvFkAhXzDOMy4mZEopQMqEzC7JLMaaDjOcpmT95uJXWuqIVRI7H3Y_usOQ2KC3rnHdMTF9OGBMrA9JH0rdut-BNF7HTjeJbbyvXLu9IhdWNxGvz3tOPh7X76vndPP69LJ62KQGJHQpt3lhJDKRyWKZgTV5XnIA0NZUuKSVtIXI8tLgknHJZFkIYSlUwBlqC4B8Tm7H3n3w3z3GTu1cNNg0ukXfR8UhAyq4zOSA5iNqgo8xoFX74HY6HBWj6qRK1eqsSp1UqVHVkLsfczj8cXAYVDQOW4OVC2g6VXn3T8MfzYV5Pw
Cites_doi 10.1088/2634-4505/ad097b
10.1007/s10584-016-1766-2
10.1016/j.jhydrol.2016.03.026
10.1038/nclimate1979
10.1016/S0951-8320(03)00058-9
10.1002/wat2.1319
10.1061/JSWBAY.0000875
10.2166/hydro.2020.080
10.1016/j.jhydrol.2025.133436
10.1061/(ASCE)HE.1943-5584.0001231
10.1038/nclimate2736
10.1038/s43247-020-00044-z
10.1016/j.envsoft.2024.106046
10.1146/annurev-environ-022112-112828
10.1061/JSWBAY.SWENG-471
10.3354/cr01181
10.1061/(ASCE)PS.1949-1204.0000330
10.1016/j.jhydrol.2020.124571
10.3390/su8111115
10.1193/040612EQS160M
10.1061/JBENF2.BEENG-5899
10.1016/j.envsci.2006.10.001
10.1016/j.jhydrol.2022.127498
10.1088/1748-9326/aa7494
10.1061/(ASCE)ST.1943-541X.0001672
10.1016/j.scitotenv.2021.145431
10.1177/1087724X18798380
10.1061/AJRUA6.0001006
10.1061/(ASCE)NH.1527-6996.0000267
10.1061/(ASCE)WR.1943-5452.0001034
10.1061/JSWBAY.0000831
10.1016/j.gloenvcha.2010.11.006
10.1029/2021EF002139
10.1016/j.scs.2020.102516
10.1016/j.jhydrol.2019.124159
10.3141/2121-01
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2025.133436
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2025_133436
S0022169425007747
GeographicLocations Florida
Panama
GeographicLocations_xml – name: Panama
– name: Florida
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c292t-3f57c9e16497842fc55b3222afcde80d9f7645bce813919b766f02d231eaf22e3
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Aug 22 20:40:28 EDT 2025
Wed Aug 27 16:27:16 EDT 2025
Sat Aug 30 17:14:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Climate adaptation
High-tides
Risk-based approach
Fragility curves
Extreme events
Coastal stormwater infrastructure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-3f57c9e16497842fc55b3222afcde80d9f7645bce813919b766f02d231eaf22e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0106-0318
0000-0002-1208-3646
PQID 3242063949
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3242063949
crossref_primary_10_1016_j_jhydrol_2025_133436
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_133436
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References James, Rossman, James (b0115) 2010
Wahl, Jain, Bender, Meyers, Luther (b0265) 2015; 5
Jaks (b0105)
Rossman, L., 2006. Storm Water Management Model Quality assurance report: Dynamic Wave Flow Routing. Technical Report September. United States Environmental Protection Agency, Cincinnati, OH.
MRLC, 2021. Urban Imperviousness. URL: https://www.mrlc.gov/data.
USACE (2024). HEC-RAS Software. https://www.hec.usace.army.mil/software/hec-ras/.
Hallegatte, Green, Nicholls (b9000) 2013; 3
Kirchhoff, Carmen Lemos, Dessai (b0130) 2013; 38
Gold, Brown, Thompson, Piehler (b0085) 2022; 10
Shrestha, Mascaro, Garcia (b0230) 2022; 607
Shrestha, Garcia (b0240) 2023; 9
De Risi, De Luca, Kwon, Sextos (b0045) 2018; 9
William, Gardoni, Stillwell (b0285) 2019; 5
William, Stillwell (b0280) 2017; 3
Yang (b0290) 2014
Gidaris, Padgett, Barbosa, Chen, Cox, Webb, Cerato (b0080) 2017; 143
NOAA, 2021. Tides and currents. URL
Bevacqua, Vousdoukas, Zappa, Hodges, Shepherd, Maraun, Mentaschi, Feyen (b0020) 2020; 1
Helton, Davis (b0090) 2003; 81
Miro, Degaetano, Lopez-Cantu, Samaras, Webber, Grocholski (b0150) 2021
.
Keifer, Chu (b8000) 1957; 83
Allen, Crawford, Montz, Whitehead, Lovelace, Hanks, Christensen, Kearney (b0005) 2019; 24
Rokneddin, Ghosh, Dueñas-Osorio, Padgett (b0190) 2014; 30
Carnell (b0030)
Daneels, A., Salter, W., 1999. What is SCADA? .
Chamberlain (b0035) 2019
Dilling, Lemos (b0050) 2011; 21
Baradaranshoraka, Pinelli, Gurley, Zhao, Peng, Paleo-Torres (b0015) 2019; 5
Fox-Kemper, Hewitt, Xiao, Aalgeirsd́ottir, Drijfhout, Edwards, Golledge, Hemer, Kopp, Krinner, Mix, Notz, Nowiciki, Nurhati, Ruiz, Salĺee, Slangen, Yu (b0070) 2021
Scrucca, L., 2021. Package ‘GA’. URL: https://luca-scr.github.io/GA/.
Shen, Morsy, Huxley, Tahvildari, Goodall (b0225) 2019; 579
Shrestha, A., Chini, C., 2024. Risk-based stormwater fragility curves for urbanized coastal flooding (R Script).
James, R., Finney, K., Perera, N., James, B., Peyron, N., 2013. SWMM5/PCSWMM Integrated 1D-2D Modeling, in: A.S. Donigian, AQUA TERRA Consultants; Richard Field, U.E. (retired); M.B.J. (Ed.), Fifty Years Of Watershed Modeling - Past, Present And Future. ECI Symposium Series.
Azevedo de Almeida, Mostafavi (b0010) 2016; 8
Rossman, Huber (b0200) 2017; 2
Najafi, Zhang, Martyn (b0165) 2021; 64
Pathak, Teegavarapu, Olson, Singh, Lal, Polatel, Zahraeifard, Senarath (b0180) 2015; 20
Iman (b0100) 2008
Bowes, Tavakoli, Wang, Heydarian, Behl, Beling, Goodall (b0025) 2021; 23
Rossman, L.A., Huber, W.C., 2016. Storm Water Management Model Reference Manual Volume I – Hydrology (Revised). Technical Report. U.S. Environmental Protection Agency. National Risk Management Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 26 Martin Luther King Drive Cincinnati, OH 45268. URL: www2.epa.gov/water-research.
Finney, K., James, R., Perera, N., 2012. Benchmarking SWMM5/PCSWMM 2D Model Performance, in: International Conference on Water Management Modeling. ON.
Moore, Gulliver, Stack, Simpson (b0155) 2016; 138
USGS, 2022. 3D Elevation Program (3DEP). URL
Sarewitz, Pielke (b0215) 2007; 10
Gharaibeh, Camacho, Elgendy, Ramirez (b0075) 2009; 2121
McMillan, Westerberg, Krueger (b0145) 2018; 5
Homer, Fry, Barnes (b0095) 2012; 3020
NOAA/NWS, 2023. NOAA Atlas 14 Point Precipitation Frequency Estimates: KS. URL: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html.
Mazumder, Salman, Li, Yu (b0140) 2019; 145
Rahman, Billah (b0185) 2023; 28
Weaver, Moss, Ebi, Gleick, Stern, Tebaldi, Wilson, Arvai (b0270) 2017; 12
Sadler, Goodall, Behl, Bowes, Morsy (b0210) 2020; 583
Fatichi, Vivoni, Ogden, Ivanov, Mirus, Gochis, Downer, Camporese, Davison, Ebel, Jones, Kim, Mascaro, Niswonger, Restrepo, Rigon, Shen, Sulis, Tarboton (b0060) 2016; 537
Dunn, Wilkinson, Alderson, Fowler, Galasso (b0055) 2018; 19
Shrestha, A., Howland, G.J., Chini, C.M., 2023. A review of climate change induced flood impacts and adaptation of coastal infrastructure systems in the United States. Environmental Research: Infrastructure and Sustainability 3, 042001.
USDA-NRCS, 2021. Web Soil Survey. URL: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.
Wickham, H., 2009. ggplot2. Springer New York, New York, NY. URL
James, W., 2005. Rules for Responsible Modeling. CHI, Guelph, Ontario, Canada, CHI, Guelph, Ontario, Canada. URL
Kiem, Austin (b0125) 2013; 58
Shrestha, Garcia, Doerry (b0245) 2024; 178
Kourtis, Tsihrintzis (b0135) 2021; 771
Yang (10.1016/j.jhydrol.2025.133436_b0290) 2014
Shrestha (10.1016/j.jhydrol.2025.133436_b0240) 2023; 9
Homer (10.1016/j.jhydrol.2025.133436_b0095) 2012; 3020
Rossman (10.1016/j.jhydrol.2025.133436_b0200) 2017; 2
10.1016/j.jhydrol.2025.133436_b0040
10.1016/j.jhydrol.2025.133436_b0160
Keifer (10.1016/j.jhydrol.2025.133436_b8000) 1957; 83
Rokneddin (10.1016/j.jhydrol.2025.133436_b0190) 2014; 30
James (10.1016/j.jhydrol.2025.133436_b0115) 2010
10.1016/j.jhydrol.2025.133436_b0120
Bowes (10.1016/j.jhydrol.2025.133436_b0025) 2021; 23
Fox-Kemper (10.1016/j.jhydrol.2025.133436_b0070) 2021
Mazumder (10.1016/j.jhydrol.2025.133436_b0140) 2019; 145
McMillan (10.1016/j.jhydrol.2025.133436_b0145) 2018; 5
10.1016/j.jhydrol.2025.133436_b0205
Kirchhoff (10.1016/j.jhydrol.2025.133436_b0130) 2013; 38
Sarewitz (10.1016/j.jhydrol.2025.133436_b0215) 2007; 10
Pathak (10.1016/j.jhydrol.2025.133436_b0180) 2015; 20
Hallegatte (10.1016/j.jhydrol.2025.133436_b9000) 2013; 3
Najafi (10.1016/j.jhydrol.2025.133436_b0165) 2021; 64
Shen (10.1016/j.jhydrol.2025.133436_b0225) 2019; 579
10.1016/j.jhydrol.2025.133436_b0195
10.1016/j.jhydrol.2025.133436_b0110
Shrestha (10.1016/j.jhydrol.2025.133436_b0230) 2022; 607
10.1016/j.jhydrol.2025.133436_b9005
10.1016/j.jhydrol.2025.133436_b0275
Sadler (10.1016/j.jhydrol.2025.133436_b0210) 2020; 583
10.1016/j.jhydrol.2025.133436_b0235
Kourtis (10.1016/j.jhydrol.2025.133436_b0135) 2021; 771
Weaver (10.1016/j.jhydrol.2025.133436_b0270) 2017; 12
Moore (10.1016/j.jhydrol.2025.133436_b0155) 2016; 138
Shrestha (10.1016/j.jhydrol.2025.133436_b0245) 2024; 178
Dilling (10.1016/j.jhydrol.2025.133436_b0050) 2011; 21
William (10.1016/j.jhydrol.2025.133436_b0285) 2019; 5
Bevacqua (10.1016/j.jhydrol.2025.133436_b0020) 2020; 1
Dunn (10.1016/j.jhydrol.2025.133436_b0055) 2018; 19
10.1016/j.jhydrol.2025.133436_b0260
10.1016/j.jhydrol.2025.133436_b0220
10.1016/j.jhydrol.2025.133436_b0065
William (10.1016/j.jhydrol.2025.133436_b0280) 2017; 3
Kiem (10.1016/j.jhydrol.2025.133436_b0125) 2013; 58
Baradaranshoraka (10.1016/j.jhydrol.2025.133436_b0015) 2019; 5
Azevedo de Almeida (10.1016/j.jhydrol.2025.133436_b0010) 2016; 8
Allen (10.1016/j.jhydrol.2025.133436_b0005) 2019; 24
Carnell (10.1016/j.jhydrol.2025.133436_b0030)
Fatichi (10.1016/j.jhydrol.2025.133436_b0060) 2016; 537
Gharaibeh (10.1016/j.jhydrol.2025.133436_b0075) 2009; 2121
Rahman (10.1016/j.jhydrol.2025.133436_b0185) 2023; 28
Gold (10.1016/j.jhydrol.2025.133436_b0085) 2022; 10
10.1016/j.jhydrol.2025.133436_b0250
10.1016/j.jhydrol.2025.133436_b0170
Miro (10.1016/j.jhydrol.2025.133436_b0150) 2021
Jaks (10.1016/j.jhydrol.2025.133436_b0105)
De Risi (10.1016/j.jhydrol.2025.133436_b0045) 2018; 9
10.1016/j.jhydrol.2025.133436_b0175
Helton (10.1016/j.jhydrol.2025.133436_b0090) 2003; 81
10.1016/j.jhydrol.2025.133436_b0255
Chamberlain (10.1016/j.jhydrol.2025.133436_b0035) 2019
Wahl (10.1016/j.jhydrol.2025.133436_b0265) 2015; 5
Gidaris (10.1016/j.jhydrol.2025.133436_b0080) 2017; 143
Iman (10.1016/j.jhydrol.2025.133436_b0100) 2008
References_xml – year: 2010
  ident: b0115
  publication-title: User’s guide to SWMM5
– reference: NOAA, 2021. Tides and currents. URL:
– volume: 12
  start-page: 080201
  year: 2017
  ident: b0270
  article-title: Reframing climate change assessments around risk: recommendations for the US National Climate Assessment
  publication-title: Environmental Research Letters
– year: 2019
  ident: b0035
  publication-title: rnoaa:“NOAA” Weather Data from R. R package version 0.8. 4
– year: 2021
  ident: b0150
  article-title: Developing Future Projected Intensity-Duration-Frequency (IDF) Curves: A Technical Report on Data, Methods, and IDF Curves for the Chesapeake Bay Watershed and Virginia
– reference: Shrestha, A., Howland, G.J., Chini, C.M., 2023. A review of climate change induced flood impacts and adaptation of coastal infrastructure systems in the United States. Environmental Research: Infrastructure and Sustainability 3, 042001.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0055
  article-title: Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive Fault Database
  publication-title: Nat. Hazards Rev.
– reference: Rossman, L., 2006. Storm Water Management Model Quality assurance report: Dynamic Wave Flow Routing. Technical Report September. United States Environmental Protection Agency, Cincinnati, OH.
– volume: 58
  start-page: 29
  year: 2013
  end-page: 41
  ident: b0125
  article-title: Disconnect between science and end-users as a barrier to climate change adaptation
  publication-title: Climate Research
– volume: 537
  start-page: 45
  year: 2016
  end-page: 60
  ident: b0060
  article-title: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology
  publication-title: J. Hydrol.
– reference: MRLC, 2021. Urban Imperviousness. URL: https://www.mrlc.gov/data.
– start-page: 77
  year: 2014
  end-page: 87
  ident: b0290
  publication-title: Genetic Algorithms, in: Nature-Inspired Optimization Algorithms
– volume: 5
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0145
  article-title: Hydrological data uncertainty and its implications
  publication-title: WIREs Water
– volume: 2121
  start-page: 1
  year: 2009
  end-page: 12
  ident: b0075
  article-title: Geographic Information System Framework for Stormwater Drainage Asset Management
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– reference: USACE (2024). HEC-RAS Software. https://www.hec.usace.army.mil/software/hec-ras/.
– volume: 5
  start-page: 1093
  year: 2015
  end-page: 1097
  ident: b0265
  article-title: Increasing risk of compound flooding from storm surge and rainfall for major US cities
  publication-title: Nature Climate Change
– volume: 5
  start-page: 4019001
  year: 2019
  ident: b0015
  article-title: Characterization of Coastal Flood Damage States for Residential Buildings
  publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
– volume: 83
  start-page: 1331
  year: 1957
  end-page: 1332
  ident: b8000
  article-title: Synthetic storm pattern for drainage design
  publication-title: J. Hydraul. Div.
– reference: Wickham, H., 2009. ggplot2. Springer New York, New York, NY. URL:
– volume: 28
  start-page: 1
  year: 2023
  end-page: 20
  ident: b0185
  article-title: Development of Performance-Based Fragility Curves of Coastal Bridges Subjected to Extreme Wave-Induced Loads
  publication-title: J. Bridg. Eng.
– volume: 81
  start-page: 23
  year: 2003
  end-page: 69
  ident: b0090
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 771
  start-page: 145431
  year: 2021
  ident: b0135
  article-title: Adaptation of urban drainage networks to climate change: A review
  publication-title: Sci. Total Environ.
– volume: 38
  start-page: 393
  year: 2013
  end-page: 414
  ident: b0130
  article-title: Actionable knowledge for environmental decision making: broadening the usability of climate science
  publication-title: Annu. Rev. Env. Resour.
– volume: 5
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0285
  article-title: Reliability-Based Approach to Investigating Long-Term Clogging in Green Stormwater Infrastructure
  publication-title: J. Sustain. Water Built Environ.
– volume: 30
  start-page: 819
  year: 2014
  end-page: 843
  ident: b0190
  article-title: Seismic Reliability Assessment of Aging Highway Bridge Networks with Field Instrumentation Data and Correlated Failures, II: Application
  publication-title: Earthq. Spectra
– volume: 607
  year: 2022
  ident: b0230
  article-title: Effects of stormwater infrastructure data completeness and model resolution on urban flood modeling
  publication-title: J. Hydrol.
– reference: Daneels, A., Salter, W., 1999. What is SCADA? .
– reference: James, R., Finney, K., Perera, N., James, B., Peyron, N., 2013. SWMM5/PCSWMM Integrated 1D-2D Modeling, in: A.S. Donigian, AQUA TERRA Consultants; Richard Field, U.E. (retired); M.B.J. (Ed.), Fifty Years Of Watershed Modeling - Past, Present And Future. ECI Symposium Series.
– volume: 579
  start-page: 124159
  year: 2019
  ident: b0225
  article-title: Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall
  publication-title: J. Hydrol.
– volume: 3
  start-page: 802
  year: 2013
  end-page: 806
  ident: b9000
  article-title: Future flood losses in major coastal cities
  publication-title: Nature Clim. Change
– volume: 21
  start-page: 680
  year: 2011
  end-page: 689
  ident: b0050
  article-title: Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy
  publication-title: Global Environmental Change
– volume: 10
  start-page: 5
  year: 2007
  end-page: 16
  ident: b0215
  article-title: The neglected heart of science policy: reconciling supply of and demand for science
  publication-title: Environmental Science & Policy
– volume: 1
  start-page: 47
  year: 2020
  ident: b0020
  article-title: More meteorological events that drive compound coastal flooding are projected under climate change
  publication-title: Communications Earth & Environment
– volume: 3
  start-page: 4017010
  year: 2017
  ident: b0280
  article-title: Use of Fragility Curves to Evaluate the Performance of Green Roofs
  publication-title: J. Sustain. Water Built Environ.
– volume: 8
  start-page: 1115
  year: 2016
  ident: b0010
  article-title: Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges
  publication-title: Sustainability
– reference: USDA-NRCS, 2021. Web Soil Survey. URL: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.
– reference: USGS, 2022. 3D Elevation Program (3DEP). URL:
– volume: 23
  start-page: 529
  year: 2021
  end-page: 547
  ident: b0025
  article-title: Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning
  publication-title: J. Hydroinf.
– reference: Scrucca, L., 2021. Package ‘GA’. URL: https://luca-scr.github.io/GA/.
– volume: 64
  start-page: 102516
  year: 2021
  ident: b0165
  article-title: A flood risk assessment framework for interdependent infrastructure systems in coastal environments
  publication-title: Sustain. Cities Soc.
– reference: NOAA/NWS, 2023. NOAA Atlas 14 Point Precipitation Frequency Estimates: KS. URL: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html.
– reference: Finney, K., James, R., Perera, N., 2012. Benchmarking SWMM5/PCSWMM 2D Model Performance, in: International Conference on Water Management Modeling. ON.
– start-page: 1211
  year: 2021
  end-page: 1362
  ident: b0070
  publication-title: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021 – The Physical Science Basis
– volume: 10
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0085
  article-title: Inundation of Stormwater Infrastructure Is Common and Increases Risk of Flooding in Coastal Urban Areas Along the US Atlantic Coast
  publication-title: Earth’s Future
– reference: Rossman, L.A., Huber, W.C., 2016. Storm Water Management Model Reference Manual Volume I – Hydrology (Revised). Technical Report. U.S. Environmental Protection Agency. National Risk Management Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 26 Martin Luther King Drive Cincinnati, OH 45268. URL: www2.epa.gov/water-research.
– reference: James, W., 2005. Rules for Responsible Modeling. CHI, Guelph, Ontario, Canada, CHI, Guelph, Ontario, Canada. URL:
– volume: 143
  year: 2017
  ident: b0080
  article-title: Multiple-Hazard Fragility and Restoration Models of Highway Bridges for Regional Risk and Resilience Assessment in the United States: State-of-the-Art Review
  publication-title: J. Struct. Eng.
– volume: 145
  start-page: 8000
  year: 2019
  ident: b0140
  article-title: Reliability Analysis of Water Distribution Systems Using Physical Probabilistic Pipe Failure Method
  publication-title: J. Water Resour. Plan. Manag.
– volume: 24
  start-page: 110
  year: 2019
  end-page: 139
  ident: b0005
  article-title: Linking Water Infrastructure, Public Health, and Sea Level Rise: Integrated Assessment of Flood Resilience in Coastal Cities
  publication-title: Public Works Manag. Policy
– ident: b0105
  article-title: Climate-informed IDF curve updates and impact on design policy at USAF installations.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0045
  article-title: Scenario-Based Seismic Risk Assessment for Buried Transmission Gas Pipelines at Regional Scale
  publication-title: J. Pipeline Syst. Eng. Pract.
– reference: .
– ident: b0030
  article-title: Package ‘lhs’. CRAN
– year: 2008
  ident: b0100
  article-title: Latin hypercube sampling, in
– volume: 2
  start-page: 190
  year: 2017
  ident: b0200
  article-title: Storm water management model reference manual volume II–hydraulics
  publication-title: US Environmental Protection Agency: Washington, DC, USA
– volume: 3020
  start-page: 1
  year: 2012
  end-page: 4
  ident: b0095
  article-title: The national land cover database
  publication-title: US geological survey fact sheet
– volume: 138
  start-page: 491
  year: 2016
  end-page: 504
  ident: b0155
  article-title: Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts
  publication-title: Climatic Change
– volume: 20
  year: 2015
  ident: b0180
  article-title: Uncertainty Analyses in Hydrologic/Hydraulic Modeling: Challenges and Proposed Resolutions
  publication-title: J. Hydrol. Eng.
– volume: 583
  start-page: 124571
  year: 2020
  ident: b0210
  article-title: Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise
  publication-title: Journal of Hydrology
– reference: Shrestha, A., Chini, C., 2024. Risk-based stormwater fragility curves for urbanized coastal flooding (R Script).
– volume: 9
  start-page: 04023001
  year: 2023
  ident: b0240
  article-title: Influence of Precipitation Uncertainty and Land Use Change on the Optimal Catchment Scale Configuration of Green Stormwater Infrastructure
  publication-title: Journal of Sustainable Water in the Built Environment
– volume: 178
  start-page: 106046
  year: 2024
  ident: b0245
  article-title: Leveraging catchment scale automated novel data collection infrastructure to advance urban hydrologic-hydraulic modeling
  publication-title: Environmental Modelling & Software
– year: 2008
  ident: 10.1016/j.jhydrol.2025.133436_b0100
– ident: 10.1016/j.jhydrol.2025.133436_b0250
  doi: 10.1088/2634-4505/ad097b
– year: 2021
  ident: 10.1016/j.jhydrol.2025.133436_b0150
– volume: 138
  start-page: 491
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133436_b0155
  article-title: Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts
  publication-title: Climatic Change
  doi: 10.1007/s10584-016-1766-2
– volume: 537
  start-page: 45
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133436_b0060
  article-title: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.026
– ident: 10.1016/j.jhydrol.2025.133436_b0255
– volume: 3
  start-page: 802
  year: 2013
  ident: 10.1016/j.jhydrol.2025.133436_b9000
  article-title: Future flood losses in major coastal cities
  publication-title: Nature Clim. Change
  doi: 10.1038/nclimate1979
– year: 2010
  ident: 10.1016/j.jhydrol.2025.133436_b0115
– volume: 81
  start-page: 23
  year: 2003
  ident: 10.1016/j.jhydrol.2025.133436_b0090
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/S0951-8320(03)00058-9
– ident: 10.1016/j.jhydrol.2025.133436_b0175
– ident: 10.1016/j.jhydrol.2025.133436_b0110
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133436_b0145
  article-title: Hydrological data uncertainty and its implications
  publication-title: WIREs Water
  doi: 10.1002/wat2.1319
– ident: 10.1016/j.jhydrol.2025.133436_b0195
– volume: 5
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133436_b0285
  article-title: Reliability-Based Approach to Investigating Long-Term Clogging in Green Stormwater Infrastructure
  publication-title: J. Sustain. Water Built Environ.
  doi: 10.1061/JSWBAY.0000875
– volume: 23
  start-page: 529
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133436_b0025
  article-title: Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2020.080
– ident: 10.1016/j.jhydrol.2025.133436_b0065
– ident: 10.1016/j.jhydrol.2025.133436_b0235
  doi: 10.1016/j.jhydrol.2025.133436
– ident: 10.1016/j.jhydrol.2025.133436_b0160
– ident: 10.1016/j.jhydrol.2025.133436_b0030
– volume: 20
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133436_b0180
  article-title: Uncertainty Analyses in Hydrologic/Hydraulic Modeling: Challenges and Proposed Resolutions
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001231
– volume: 5
  start-page: 1093
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133436_b0265
  article-title: Increasing risk of compound flooding from storm surge and rainfall for major US cities
  publication-title: Nature Climate Change
  doi: 10.1038/nclimate2736
– volume: 1
  start-page: 47
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133436_b0020
  article-title: More meteorological events that drive compound coastal flooding are projected under climate change
  publication-title: Communications Earth & Environment
  doi: 10.1038/s43247-020-00044-z
– ident: 10.1016/j.jhydrol.2025.133436_b0220
– ident: 10.1016/j.jhydrol.2025.133436_b9005
– ident: 10.1016/j.jhydrol.2025.133436_b0040
– volume: 178
  start-page: 106046
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133436_b0245
  article-title: Leveraging catchment scale automated novel data collection infrastructure to advance urban hydrologic-hydraulic modeling
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2024.106046
– ident: 10.1016/j.jhydrol.2025.133436_b0170
– volume: 38
  start-page: 393
  year: 2013
  ident: 10.1016/j.jhydrol.2025.133436_b0130
  article-title: Actionable knowledge for environmental decision making: broadening the usability of climate science
  publication-title: Annu. Rev. Env. Resour.
  doi: 10.1146/annurev-environ-022112-112828
– volume: 9
  start-page: 04023001
  issue: 2
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133436_b0240
  article-title: Influence of Precipitation Uncertainty and Land Use Change on the Optimal Catchment Scale Configuration of Green Stormwater Infrastructure
  publication-title: Journal of Sustainable Water in the Built Environment
  doi: 10.1061/JSWBAY.SWENG-471
– year: 2019
  ident: 10.1016/j.jhydrol.2025.133436_b0035
– volume: 58
  start-page: 29
  year: 2013
  ident: 10.1016/j.jhydrol.2025.133436_b0125
  article-title: Disconnect between science and end-users as a barrier to climate change adaptation
  publication-title: Climate Research
  doi: 10.3354/cr01181
– ident: 10.1016/j.jhydrol.2025.133436_b0205
– start-page: 77
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133436_b0290
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133436_b0045
  article-title: Scenario-Based Seismic Risk Assessment for Buried Transmission Gas Pipelines at Regional Scale
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000330
– volume: 583
  start-page: 124571
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133436_b0210
  article-title: Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2020.124571
– volume: 8
  start-page: 1115
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133436_b0010
  article-title: Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges
  publication-title: Sustainability
  doi: 10.3390/su8111115
– volume: 30
  start-page: 819
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133436_b0190
  article-title: Seismic Reliability Assessment of Aging Highway Bridge Networks with Field Instrumentation Data and Correlated Failures, II: Application
  publication-title: Earthq. Spectra
  doi: 10.1193/040612EQS160M
– volume: 28
  start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133436_b0185
  article-title: Development of Performance-Based Fragility Curves of Coastal Bridges Subjected to Extreme Wave-Induced Loads
  publication-title: J. Bridg. Eng.
  doi: 10.1061/JBENF2.BEENG-5899
– start-page: 1211
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133436_b0070
– volume: 10
  start-page: 5
  year: 2007
  ident: 10.1016/j.jhydrol.2025.133436_b0215
  article-title: The neglected heart of science policy: reconciling supply of and demand for science
  publication-title: Environmental Science & Policy
  doi: 10.1016/j.envsci.2006.10.001
– volume: 607
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133436_b0230
  article-title: Effects of stormwater infrastructure data completeness and model resolution on urban flood modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127498
– volume: 12
  start-page: 080201
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133436_b0270
  article-title: Reframing climate change assessments around risk: recommendations for the US National Climate Assessment
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/aa7494
– volume: 143
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133436_b0080
  article-title: Multiple-Hazard Fragility and Restoration Models of Highway Bridges for Regional Risk and Resilience Assessment in the United States: State-of-the-Art Review
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001672
– volume: 83
  start-page: 1331
  year: 1957
  ident: 10.1016/j.jhydrol.2025.133436_b8000
  article-title: Synthetic storm pattern for drainage design
  publication-title: J. Hydraul. Div.
– ident: 10.1016/j.jhydrol.2025.133436_b0275
– volume: 771
  start-page: 145431
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133436_b0135
  article-title: Adaptation of urban drainage networks to climate change: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145431
– volume: 24
  start-page: 110
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133436_b0005
  article-title: Linking Water Infrastructure, Public Health, and Sea Level Rise: Integrated Assessment of Flood Resilience in Coastal Cities
  publication-title: Public Works Manag. Policy
  doi: 10.1177/1087724X18798380
– ident: 10.1016/j.jhydrol.2025.133436_b0120
– volume: 5
  start-page: 4019001
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133436_b0015
  article-title: Characterization of Coastal Flood Damage States for Residential Buildings
  publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
  doi: 10.1061/AJRUA6.0001006
– ident: 10.1016/j.jhydrol.2025.133436_b0105
– volume: 19
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133436_b0055
  article-title: Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive Fault Database
  publication-title: Nat. Hazards Rev.
  doi: 10.1061/(ASCE)NH.1527-6996.0000267
– volume: 145
  start-page: 8000
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133436_b0140
  article-title: Reliability Analysis of Water Distribution Systems Using Physical Probabilistic Pipe Failure Method
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001034
– volume: 3
  start-page: 4017010
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133436_b0280
  article-title: Use of Fragility Curves to Evaluate the Performance of Green Roofs
  publication-title: J. Sustain. Water Built Environ.
  doi: 10.1061/JSWBAY.0000831
– volume: 21
  start-page: 680
  year: 2011
  ident: 10.1016/j.jhydrol.2025.133436_b0050
  article-title: Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy
  publication-title: Global Environmental Change
  doi: 10.1016/j.gloenvcha.2010.11.006
– volume: 10
  start-page: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133436_b0085
  article-title: Inundation of Stormwater Infrastructure Is Common and Increases Risk of Flooding in Coastal Urban Areas Along the US Atlantic Coast
  publication-title: Earth’s Future
  doi: 10.1029/2021EF002139
– volume: 3020
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2025.133436_b0095
  article-title: The national land cover database
  publication-title: US geological survey fact sheet
– volume: 64
  start-page: 102516
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133436_b0165
  article-title: A flood risk assessment framework for interdependent infrastructure systems in coastal environments
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102516
– volume: 2
  start-page: 190
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133436_b0200
  article-title: Storm water management model reference manual volume II–hydraulics
  publication-title: US Environmental Protection Agency: Washington, DC, USA
– ident: 10.1016/j.jhydrol.2025.133436_b0260
– volume: 579
  start-page: 124159
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133436_b0225
  article-title: Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124159
– volume: 2121
  start-page: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2025.133436_b0075
  article-title: Geographic Information System Framework for Stormwater Drainage Asset Management
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/2121-01
SSID ssj0000334
Score 2.4884615
Snippet [Display omitted] •Hydrologic-hydraulic (SWMM) model was developed to assess airfield flooding.•Framework for stormwater fragility analysis using deterministic...
Stormwater infrastructure systems in urbanized coastal watersheds are subject to functional failure from storm surge and extreme precipitation under climate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 133436
SubjectTerms climate
Climate adaptation
climate change
Coastal stormwater infrastructure
Extreme events
Florida
Fragility curves
High-tides
infrastructure
Panama
risk
Risk-based approach
sea level
stakeholders
storms
stormwater
stream flow
United States Environmental Protection Agency
urbanization
watersheds
Title Risk-based stormwater fragility curves for urbanized coastal flooding
URI https://dx.doi.org/10.1016/j.jhydrol.2025.133436
https://www.proquest.com/docview/3242063949
Volume 661
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KPehF_MT6USJ4TZtudpPssZSWqtiDWOht2Wx2baumJW2VXvztzjQJRREEjwmTJbwdZt6w82YJufFsHHOjlGso810WsciNOINSpQXmOlAm8lDv_DAI-kN2N-KjCumUWhhsqyxifx7TN9G6eNMs0GzOJxPU-FLaCgQ4Hc6kYagoZyxEL298bts8PN9n5cRwtN6qeJrTxnS8TrIZnkBQ3oBqjW0mNf-an35E6k366R2Q_YI3Ou381w5JxaRHZLe4wny8Pibdx8nixcWklDjY8fj2ASwyc2ymnrH9de3oVfZuFg6QVGeVxSjABEs9U0APXx2L_euQxU7IsNd96vTd4o4EV1NBl65veaiFgaIHykFGreY8xsMTZXWCOAsbBozH2kRA9VoiDoPAejQBVmeUpdT4p6SazlJzRpzEGsaVAOB1xDSUrqoVJBH1YWXtB4LWSKNERs7zURiy7BGbygJKiVDKHMoaiUr85Lc9lRCu__r0usRbgr_jIYZKzWy1kEgAkVYxcf7_5S_IHj7lmsJLUl1mK3MF5GIZ1zfeUyc77dv7_uALnanPqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe6gX8YlvI3hNH5vdNDmW0lLt4yAKvS2bza5t1VbSVum_d6ZJEEUQvCa7S_gyzHzDzDcLcFOzUSSMUq5h3HN5wAM3EBxTlTou174yQY30zoOh333kdyMxKkAr18JQW2Xm-1OfvvHW2ZNqhmb1bTIhjS9jdT9Eo6OZNLyxBSWaTiWKUGre9rrDL4fseTwfGk4bvoQ81WllOl7HyZyKEExUMGHjm2HNv4aoH856E4E6u7CTUUenmX7dHhTMbB_K2S3m4_UBtO8ni2eX4lLsUNPj6wcSycSxiXqiDti1o1fJu1k4yFOdVRKRBhNX6rlChvjiWGphx0B2CI-d9kOr62bXJLiahWzpelY0dGgw78GMkDOrhYiofqKsjgnq0DZ8LiJtAmR79TBq-L6tsRiJnVGWMeMdQXE2n5ljcGJruFAhYq8DrjF7VXU_DpiHJ2vPD9kJVHJk5Fs6DUPmbWJTmUEpCUqZQnkCQY6f_PZbJXrsv7Ze53hLNHmqY6iZma8WkjggMSsenv7_-Csodx8Gfdm_HfbOYJvepBLDcyguk5W5QK6xjC4zW_oEyujSWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-based+stormwater+fragility+curves+for+urbanized+coastal+flooding&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Shrestha%2C+Ashish&rft.au=Chini%2C+Christopher+M.&rft.date=2025-11-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=661&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.133436&rft.externalDocID=S0022169425007747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon