Effectiveness of Wavelet Scalogram on Partial Discharge Pattern Classification of XLPE Cable Insulation

Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of this work is to improve the accuracy and effectiveness in classifying various types of PD signals including corona, surface, and internal dis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 10
Main Authors Sahoo, Rakesh, Karmakar, Subrata
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of this work is to improve the accuracy and effectiveness in classifying various types of PD signals including corona, surface, and internal discharges in a noisy environment using machine learning (ML) and deep learning (DL) techniques. For ML models, statistical features such as skewness, kurtosis, standard deviation, and variance are extracted from the PD signals and used for training. In contrast, the DL model focuses on continuous wavelet transforms (CWTs) based scalogram images which highlight the resolution of the signal's energy and are used for feature extraction in the classification study. Instead of using traditional phase-resolved PD (PRPD) plots, this work introduces a novel approach to converting PD signals to scalogram images using CWT. These scalogram images provide a visual representation of the frequency components of different PD types and how they change over time. The wavelet-based scalogram images are used as input features for the proposed convolutional neural network (CNN) and state-of-the-art (SOTA) DL models, along with shallow ML classifiers for model training, validation, and testing. Along with this, k-fold cross-validation and hyperparameter tuning are also employed to enhance the overall performance of the model. The classification results demonstrate that the proposed CNN model achieves up to 97.33% recognition accuracy and less computational complexity as compared to various ML and DL models.
AbstractList Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of this work is to improve the accuracy and effectiveness in classifying various types of PD signals including corona, surface, and internal discharges in a noisy environment using machine learning (ML) and deep learning (DL) techniques. For ML models, statistical features such as skewness, kurtosis, standard deviation, and variance are extracted from the PD signals and used for training. In contrast, the DL model focuses on continuous wavelet transforms (CWTs) based scalogram images which highlight the resolution of the signal's energy and are used for feature extraction in the classification study. Instead of using traditional phase-resolved PD (PRPD) plots, this work introduces a novel approach to converting PD signals to scalogram images using CWT. These scalogram images provide a visual representation of the frequency components of different PD types and how they change over time. The wavelet-based scalogram images are used as input features for the proposed convolutional neural network (CNN) and state-of-the-art (SOTA) DL models, along with shallow ML classifiers for model training, validation, and testing. Along with this, k-fold cross-validation and hyperparameter tuning are also employed to enhance the overall performance of the model. The classification results demonstrate that the proposed CNN model achieves up to 97.33% recognition accuracy and less computational complexity as compared to various ML and DL models.
Author Sahoo, Rakesh
Karmakar, Subrata
Author_xml – sequence: 1
  givenname: Rakesh
  orcidid: 0000-0003-4606-589X
  surname: Sahoo
  fullname: Sahoo, Rakesh
  organization: National Institute of Technology Rourkela, Rourkela, India
– sequence: 2
  givenname: Subrata
  orcidid: 0000-0001-8941-2359
  surname: Karmakar
  fullname: Karmakar, Subrata
  email: karmakar.subrata@gmail.com
  organization: National Institute of Technology Rourkela, Rourkela, India
BookMark eNp9kM1LAzEQxYMoWD_uHjwEPG-dJLvJ5ii1aqGioKK3ZYyTGll3NUkF_3vX1oN48DQw837vMW-HbXZ9R4wdCBgLAfb4dnY5liDLsVJaGQsbbCSqyhRWa7nJRgCiLmxZ6W22k9ILABhdmhFbTL0nl8MHdZQS7z2_xw9qKfMbh22_iPjK-45fY8wBW34aknvGuKBhkzPFjk9aTCn44DCHQTgYPMyvp3yCjy3xWZeW7eqwx7Y8ton2f-Yuuzub3k4uivnV-WxyMi-ctDIXCn1pPFopoCJpwEuEymPtpSMwQjgpQRCWiL724kk-1jUp1IaULdEarXbZ0dr3LfbvS0q5eemXsRsimyHAiroGJQYVrFUu9ilF8s1bDK8YPxsBzXedzVBn811n81PngOg_iAt59VqOGNr_wMM1GIjoV04ptams-gKhtoSC
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_compeleceng_2024_109865
crossref_primary_10_1109_ACCESS_2024_3459474
crossref_primary_10_1007_s00202_024_02571_w
Cites_doi 10.1109/tie.2019.2908580
10.1016/j.epsr.2014.01.010
10.1109/access.2023.3278054
10.1109/jsen.2021.3079570
10.1109/TDEI.2020.009043
10.1109/tpwrd.2002.801425
10.1016/j.measurement.2022.111154
10.1109/ACCESS.2020.3038386
10.3390/en11051202
10.1016/j.epsr.2012.08.016
10.1109/tim.2022.3162284
10.1016/j.epsr.2023.109712
10.1109/tdei.2010.5412017
10.1109/tim.2021.3121488
10.1109/tim.2018.2816438
10.1109/tpwrd.2020.3042934
10.1016/j.measurement.2021.108970
10.1109/18.57199
10.1109/tii.2022.3197839
10.1109/tdei.2023.3239032
10.1016/j.epsr.2023.109241
10.3390/en12132485
10.1016/j.epsr.2023.109287
10.3390/en13205496
10.1109/tdei.2020.009070
10.1109/tim.2020.3045798
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3363790
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2024_3363790
10426759
Genre orig-research
GrantInformation_xml – fundername: Department of Science and Technology, Government of India, through the Science and Engineering Research Board
  grantid: SPR/2022/000179
  funderid: 10.13039/501100001843
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-3af47fa92105e270f2a05fa8f2ce0711c2201ea4aaf8f1d2b88e3a67e394a9763
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 08:15:27 EDT 2025
Tue Jul 01 03:07:37 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Wed Aug 27 02:11:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-3af47fa92105e270f2a05fa8f2ce0711c2201ea4aaf8f1d2b88e3a67e394a9763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4606-589X
0000-0001-8941-2359
PQID 2929188031
PQPubID 85462
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIM_2024_3363790
ieee_primary_10426759
crossref_citationtrail_10_1109_TIM_2024_3363790
proquest_journals_2929188031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
Géron (ref23) 2019
ref19
ref18
ref24
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Al-Jabery (ref28) 2019
References_xml – ident: ref4
  doi: 10.1109/tie.2019.2908580
– ident: ref10
  doi: 10.1016/j.epsr.2014.01.010
– ident: ref17
  doi: 10.1109/access.2023.3278054
– ident: ref25
  doi: 10.1109/jsen.2021.3079570
– ident: ref11
  doi: 10.1109/TDEI.2020.009043
– volume-title: Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
  year: 2019
  ident: ref23
– ident: ref2
  doi: 10.1109/tpwrd.2002.801425
– ident: ref12
  doi: 10.1016/j.measurement.2022.111154
– ident: ref24
  doi: 10.1109/ACCESS.2020.3038386
– ident: ref21
  doi: 10.3390/en11051202
– ident: ref5
  doi: 10.1016/j.epsr.2012.08.016
– ident: ref8
  doi: 10.1109/tim.2022.3162284
– ident: ref27
  doi: 10.1016/j.epsr.2023.109712
– ident: ref3
  doi: 10.1109/tdei.2010.5412017
– ident: ref6
  doi: 10.1109/tim.2021.3121488
– ident: ref7
  doi: 10.1109/tim.2018.2816438
– ident: ref26
  doi: 10.1109/tpwrd.2020.3042934
– ident: ref9
  doi: 10.1016/j.measurement.2021.108970
– ident: ref22
  doi: 10.1109/18.57199
– ident: ref20
  doi: 10.1109/tii.2022.3197839
– ident: ref16
  doi: 10.1109/tdei.2023.3239032
– ident: ref18
  doi: 10.1016/j.epsr.2023.109241
– ident: ref13
  doi: 10.3390/en12132485
– ident: ref14
  doi: 10.1016/j.epsr.2023.109287
– ident: ref15
  doi: 10.3390/en13205496
– ident: ref1
  doi: 10.1109/tdei.2020.009070
– ident: ref19
  doi: 10.1109/tim.2020.3045798
– volume-title: Computational Learning Approaches to Data Analytics in Biomedical Applications
  year: 2019
  ident: ref28
SSID ssj0007647
Score 2.4523978
Snippet Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Artificial neural networks
Classification
Continuous wavelet transform
Continuous wavelet transforms
Convolutional neural network (CNN)
Deep learning
Discharge
Effectiveness
Feature extraction
Insulation
Kurtosis
Machine learning
partial discharge (PD)
Partial discharges
Pattern classification
scalogram image
Signal resolution
Spectrogram
Time-frequency analysis
transfer learning
wavelet transform
Wavelet transforms
Title Effectiveness of Wavelet Scalogram on Partial Discharge Pattern Classification of XLPE Cable Insulation
URI https://ieeexplore.ieee.org/document/10426759
https://www.proquest.com/docview/2929188031
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7cQNAHf8yJ0yl58MWHbm3StM2jzA0VFUHFvZU0vYionbjuxb_eJO3GUBTfSpuElO9yuUvuvgM4jhQmPssSz1e58EItQ0_mAfUseTfyxKfapY9d30TnD-HlmI_rZHWXC4OILvgMe_bR3eXnEzWzR2VmhZv9JOaiAQ3juVXJWgu1G0dhRZAZmBVszIL5naQv-vcX18YTpGGPsYjFVv0u7UGuqMoPTey2l9Em3MwnVkWVvPRmZdZTn984G_898y3YqA1NclpJxjasYNGC9SX6wRasuvBPNd2Bp4rEuNZ8ZKLJo7QVKUpyp6RjtX4jk4LcWjkzg549Tx3DEpo3NhuoIK62po06ckDbAcZXt0MysIlZ5MLGu7sPbXgYDe8H515dgsFTVNDSY1KHsZbCOIYcaexrKn2uZaKpQmOcBIoaAwJlKKVOdJDTLEmQyShGJkJpLB22C81iUuAekJhHiiPniqnMWC1CUhSKJ3Guc5lzzDvQn4OSqpqf3JbJeE2dn-KL1MCYWhjTGsYOnCx6vFfcHH-0bVtUltpVgHSgOwc-rVfvNDW_LixPHQv2f-l2AGt29OospgvN8mOGh8Y6KbMjJ5VfAwbgPg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xEAIG3ojy9MDCkJLYcRKPiIdaaCskiugWOc4ZISBFNF349dhOiioQiC1KbMfWZ9-d7bvvAI4jhYnPssTzVS68UMvQk3lAPUvejTzxqXbhY91e1LoPrwd8UAeru1gYRHTOZ9i0j-4uPx-qsT0qMyvc6JOYi1mYN4qfB1W41pfgjaOwosgMzBo2hsHkVtIXp_121-wFadhkLGKxFcBTWsilVfkhi52CuVqF3qRrlV_Jc3NcZk318Y218d99X4OV2tQkZ9XcWIcZLDZgeYqAcAMWnAOoGm3CY0VjXMs-MtTkQdqcFCW5U9LxWr-SYUFu7UwzjV48jRzHEpo3Nh6oIC67pvU7clDbBgad20tybkOzSNt6vLsPW3B_ddk_b3l1EgZPUUFLj0kdxloKszXkSGNfU-lzLRNNFRrzJFDUmBAoQyl1ooOcZkmCTEYxMhFKY-uwbZgrhgXuAIl5pDhyrpjKjN0iJEWheBLnOpc5x7wBpxNQUlUzlNtEGS-p26n4IjUwphbGtIaxASdfNd4qdo4_ym5ZVKbKVYA0YH8CfFqv31Fqhi4sUx0Ldn-pdgSLrX63k3bavZs9WLJ_qk5m9mGufB_jgbFVyuzQzdBP3bvjhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+Wavelet+Scalogram+on+Partial+Discharge+Pattern+Classification+of+XLPE+Cable+Insulation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Sahoo%2C+Rakesh&rft.au=Karmakar%2C+Subrata&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3363790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3363790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon