Effectiveness of Wavelet Scalogram on Partial Discharge Pattern Classification of XLPE Cable Insulation
Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of this work is to improve the accuracy and effectiveness in classifying various types of PD signals including corona, surface, and internal dis...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of this work is to improve the accuracy and effectiveness in classifying various types of PD signals including corona, surface, and internal discharges in a noisy environment using machine learning (ML) and deep learning (DL) techniques. For ML models, statistical features such as skewness, kurtosis, standard deviation, and variance are extracted from the PD signals and used for training. In contrast, the DL model focuses on continuous wavelet transforms (CWTs) based scalogram images which highlight the resolution of the signal's energy and are used for feature extraction in the classification study. Instead of using traditional phase-resolved PD (PRPD) plots, this work introduces a novel approach to converting PD signals to scalogram images using CWT. These scalogram images provide a visual representation of the frequency components of different PD types and how they change over time. The wavelet-based scalogram images are used as input features for the proposed convolutional neural network (CNN) and state-of-the-art (SOTA) DL models, along with shallow ML classifiers for model training, validation, and testing. Along with this, k-fold cross-validation and hyperparameter tuning are also employed to enhance the overall performance of the model. The classification results demonstrate that the proposed CNN model achieves up to 97.33% recognition accuracy and less computational complexity as compared to various ML and DL models. |
---|---|
AbstractList | Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of this work is to improve the accuracy and effectiveness in classifying various types of PD signals including corona, surface, and internal discharges in a noisy environment using machine learning (ML) and deep learning (DL) techniques. For ML models, statistical features such as skewness, kurtosis, standard deviation, and variance are extracted from the PD signals and used for training. In contrast, the DL model focuses on continuous wavelet transforms (CWTs) based scalogram images which highlight the resolution of the signal's energy and are used for feature extraction in the classification study. Instead of using traditional phase-resolved PD (PRPD) plots, this work introduces a novel approach to converting PD signals to scalogram images using CWT. These scalogram images provide a visual representation of the frequency components of different PD types and how they change over time. The wavelet-based scalogram images are used as input features for the proposed convolutional neural network (CNN) and state-of-the-art (SOTA) DL models, along with shallow ML classifiers for model training, validation, and testing. Along with this, k-fold cross-validation and hyperparameter tuning are also employed to enhance the overall performance of the model. The classification results demonstrate that the proposed CNN model achieves up to 97.33% recognition accuracy and less computational complexity as compared to various ML and DL models. |
Author | Sahoo, Rakesh Karmakar, Subrata |
Author_xml | – sequence: 1 givenname: Rakesh orcidid: 0000-0003-4606-589X surname: Sahoo fullname: Sahoo, Rakesh organization: National Institute of Technology Rourkela, Rourkela, India – sequence: 2 givenname: Subrata orcidid: 0000-0001-8941-2359 surname: Karmakar fullname: Karmakar, Subrata email: karmakar.subrata@gmail.com organization: National Institute of Technology Rourkela, Rourkela, India |
BookMark | eNp9kM1LAzEQxYMoWD_uHjwEPG-dJLvJ5ii1aqGioKK3ZYyTGll3NUkF_3vX1oN48DQw837vMW-HbXZ9R4wdCBgLAfb4dnY5liDLsVJaGQsbbCSqyhRWa7nJRgCiLmxZ6W22k9ILABhdmhFbTL0nl8MHdZQS7z2_xw9qKfMbh22_iPjK-45fY8wBW34aknvGuKBhkzPFjk9aTCn44DCHQTgYPMyvp3yCjy3xWZeW7eqwx7Y8ton2f-Yuuzub3k4uivnV-WxyMi-ctDIXCn1pPFopoCJpwEuEymPtpSMwQjgpQRCWiL724kk-1jUp1IaULdEarXbZ0dr3LfbvS0q5eemXsRsimyHAiroGJQYVrFUu9ilF8s1bDK8YPxsBzXedzVBn811n81PngOg_iAt59VqOGNr_wMM1GIjoV04ptams-gKhtoSC |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1016_j_compeleceng_2024_109865 crossref_primary_10_1109_ACCESS_2024_3459474 crossref_primary_10_1007_s00202_024_02571_w |
Cites_doi | 10.1109/tie.2019.2908580 10.1016/j.epsr.2014.01.010 10.1109/access.2023.3278054 10.1109/jsen.2021.3079570 10.1109/TDEI.2020.009043 10.1109/tpwrd.2002.801425 10.1016/j.measurement.2022.111154 10.1109/ACCESS.2020.3038386 10.3390/en11051202 10.1016/j.epsr.2012.08.016 10.1109/tim.2022.3162284 10.1016/j.epsr.2023.109712 10.1109/tdei.2010.5412017 10.1109/tim.2021.3121488 10.1109/tim.2018.2816438 10.1109/tpwrd.2020.3042934 10.1016/j.measurement.2021.108970 10.1109/18.57199 10.1109/tii.2022.3197839 10.1109/tdei.2023.3239032 10.1016/j.epsr.2023.109241 10.3390/en12132485 10.1016/j.epsr.2023.109287 10.3390/en13205496 10.1109/tdei.2020.009070 10.1109/tim.2020.3045798 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3363790 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 10 |
ExternalDocumentID | 10_1109_TIM_2024_3363790 10426759 |
Genre | orig-research |
GrantInformation_xml | – fundername: Department of Science and Technology, Government of India, through the Science and Engineering Research Board grantid: SPR/2022/000179 funderid: 10.13039/501100001843 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-3af47fa92105e270f2a05fa8f2ce0711c2201ea4aaf8f1d2b88e3a67e394a9763 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 08:15:27 EDT 2025 Tue Jul 01 03:07:37 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Wed Aug 27 02:11:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-3af47fa92105e270f2a05fa8f2ce0711c2201ea4aaf8f1d2b88e3a67e394a9763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4606-589X 0000-0001-8941-2359 |
PQID | 2929188031 |
PQPubID | 85462 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TIM_2024_3363790 ieee_primary_10426759 crossref_citationtrail_10_1109_TIM_2024_3363790 proquest_journals_2929188031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 Géron (ref23) 2019 ref19 ref18 ref24 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Al-Jabery (ref28) 2019 |
References_xml | – ident: ref4 doi: 10.1109/tie.2019.2908580 – ident: ref10 doi: 10.1016/j.epsr.2014.01.010 – ident: ref17 doi: 10.1109/access.2023.3278054 – ident: ref25 doi: 10.1109/jsen.2021.3079570 – ident: ref11 doi: 10.1109/TDEI.2020.009043 – volume-title: Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems year: 2019 ident: ref23 – ident: ref2 doi: 10.1109/tpwrd.2002.801425 – ident: ref12 doi: 10.1016/j.measurement.2022.111154 – ident: ref24 doi: 10.1109/ACCESS.2020.3038386 – ident: ref21 doi: 10.3390/en11051202 – ident: ref5 doi: 10.1016/j.epsr.2012.08.016 – ident: ref8 doi: 10.1109/tim.2022.3162284 – ident: ref27 doi: 10.1016/j.epsr.2023.109712 – ident: ref3 doi: 10.1109/tdei.2010.5412017 – ident: ref6 doi: 10.1109/tim.2021.3121488 – ident: ref7 doi: 10.1109/tim.2018.2816438 – ident: ref26 doi: 10.1109/tpwrd.2020.3042934 – ident: ref9 doi: 10.1016/j.measurement.2021.108970 – ident: ref22 doi: 10.1109/18.57199 – ident: ref20 doi: 10.1109/tii.2022.3197839 – ident: ref16 doi: 10.1109/tdei.2023.3239032 – ident: ref18 doi: 10.1016/j.epsr.2023.109241 – ident: ref13 doi: 10.3390/en12132485 – ident: ref14 doi: 10.1016/j.epsr.2023.109287 – ident: ref15 doi: 10.3390/en13205496 – ident: ref1 doi: 10.1109/tdei.2020.009070 – ident: ref19 doi: 10.1109/tim.2020.3045798 – volume-title: Computational Learning Approaches to Data Analytics in Biomedical Applications year: 2019 ident: ref28 |
SSID | ssj0007647 |
Score | 2.4523978 |
Snippet | Detection and classification of partial discharge (PD) signal in XLPE cable is very important to find out the root cause of insulation failure. The purpose of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Artificial neural networks Classification Continuous wavelet transform Continuous wavelet transforms Convolutional neural network (CNN) Deep learning Discharge Effectiveness Feature extraction Insulation Kurtosis Machine learning partial discharge (PD) Partial discharges Pattern classification scalogram image Signal resolution Spectrogram Time-frequency analysis transfer learning wavelet transform Wavelet transforms |
Title | Effectiveness of Wavelet Scalogram on Partial Discharge Pattern Classification of XLPE Cable Insulation |
URI | https://ieeexplore.ieee.org/document/10426759 https://www.proquest.com/docview/2929188031 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7cQNAHf8yJ0yl58MWHbm3StM2jzA0VFUHFvZU0vYionbjuxb_eJO3GUBTfSpuElO9yuUvuvgM4jhQmPssSz1e58EItQ0_mAfUseTfyxKfapY9d30TnD-HlmI_rZHWXC4OILvgMe_bR3eXnEzWzR2VmhZv9JOaiAQ3juVXJWgu1G0dhRZAZmBVszIL5naQv-vcX18YTpGGPsYjFVv0u7UGuqMoPTey2l9Em3MwnVkWVvPRmZdZTn984G_898y3YqA1NclpJxjasYNGC9SX6wRasuvBPNd2Bp4rEuNZ8ZKLJo7QVKUpyp6RjtX4jk4LcWjkzg549Tx3DEpo3NhuoIK62po06ckDbAcZXt0MysIlZ5MLGu7sPbXgYDe8H515dgsFTVNDSY1KHsZbCOIYcaexrKn2uZaKpQmOcBIoaAwJlKKVOdJDTLEmQyShGJkJpLB22C81iUuAekJhHiiPniqnMWC1CUhSKJ3Guc5lzzDvQn4OSqpqf3JbJeE2dn-KL1MCYWhjTGsYOnCx6vFfcHH-0bVtUltpVgHSgOwc-rVfvNDW_LixPHQv2f-l2AGt29OospgvN8mOGh8Y6KbMjJ5VfAwbgPg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xEAIG3ojy9MDCkJLYcRKPiIdaaCskiugWOc4ZISBFNF349dhOiioQiC1KbMfWZ9-d7bvvAI4jhYnPssTzVS68UMvQk3lAPUvejTzxqXbhY91e1LoPrwd8UAeru1gYRHTOZ9i0j-4uPx-qsT0qMyvc6JOYi1mYN4qfB1W41pfgjaOwosgMzBo2hsHkVtIXp_121-wFadhkLGKxFcBTWsilVfkhi52CuVqF3qRrlV_Jc3NcZk318Y218d99X4OV2tQkZ9XcWIcZLDZgeYqAcAMWnAOoGm3CY0VjXMs-MtTkQdqcFCW5U9LxWr-SYUFu7UwzjV48jRzHEpo3Nh6oIC67pvU7clDbBgad20tybkOzSNt6vLsPW3B_ddk_b3l1EgZPUUFLj0kdxloKszXkSGNfU-lzLRNNFRrzJFDUmBAoQyl1ooOcZkmCTEYxMhFKY-uwbZgrhgXuAIl5pDhyrpjKjN0iJEWheBLnOpc5x7wBpxNQUlUzlNtEGS-p26n4IjUwphbGtIaxASdfNd4qdo4_ym5ZVKbKVYA0YH8CfFqv31Fqhi4sUx0Ldn-pdgSLrX63k3bavZs9WLJ_qk5m9mGufB_jgbFVyuzQzdBP3bvjhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+Wavelet+Scalogram+on+Partial+Discharge+Pattern+Classification+of+XLPE+Cable+Insulation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Sahoo%2C+Rakesh&rft.au=Karmakar%2C+Subrata&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2024.3363790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3363790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |