Determination of the critical contact separation length for DC interruption in a vacuum subject to an external transverse magnetic field

The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external transverse magnetic field (TMF), according the interruption behaviors and vacuum arc characteristics. L is defined as the separation length at th...

Full description

Saved in:
Bibliographic Details
Published inPhysics of plasmas Vol. 30; no. 8
Main Authors Ma, Hui, Liu, Shaowei, Chen, Jinlong, Yu, Chen, Geng, Yingsan, Liu, Zhiyuan, Wang, Jianhua
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external transverse magnetic field (TMF), according the interruption behaviors and vacuum arc characteristics. L is defined as the separation length at the instant of TMF application. Lcritical is the critical and the minimal necessary separation length of the contacts for a successful DC interruption in vacuum. A pair of Helmholtz coils was used to generate the external TMF. A high-speed camera was used to record the vacuum arc appearance. The experimental results quantitatively determine Lcritical for DC vacuum interruption under a certain DC and the external TMF. When the DC ranged from 100 to 500 A under an external TMF of 30 mT, Lcritical ranged from 2.1 to 3.7 mm and did not show linear variation. Second, the extinguishing time of DC vacuum interruption te at various currents significantly increased in a similar pattern under decreasing L in the range of 0.3–1.6 ms. The decrease in L mainly increased the duration of the stable stage and had little apparent influence on the duration of the unstable stage of the DC vacuum arc. Third, the physical mechanism determining Lcritical in DC vacuum interruption under a TMF could be explained from two aspects: the expansion of the vacuum arc column and the diffusion of the metal plasma. In successful DC vacuum interruption, Lcritical should be large enough for the formation and expansion of the “C”-shaped arc column, and enough space should be available for the diffusion of the metal plasma.
AbstractList The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external transverse magnetic field (TMF), according the interruption behaviors and vacuum arc characteristics. L is defined as the separation length at the instant of TMF application. Lcritical is the critical and the minimal necessary separation length of the contacts for a successful DC interruption in vacuum. A pair of Helmholtz coils was used to generate the external TMF. A high-speed camera was used to record the vacuum arc appearance. The experimental results quantitatively determine Lcritical for DC vacuum interruption under a certain DC and the external TMF. When the DC ranged from 100 to 500 A under an external TMF of 30 mT, Lcritical ranged from 2.1 to 3.7 mm and did not show linear variation. Second, the extinguishing time of DC vacuum interruption te at various currents significantly increased in a similar pattern under decreasing L in the range of 0.3–1.6 ms. The decrease in L mainly increased the duration of the stable stage and had little apparent influence on the duration of the unstable stage of the DC vacuum arc. Third, the physical mechanism determining Lcritical in DC vacuum interruption under a TMF could be explained from two aspects: the expansion of the vacuum arc column and the diffusion of the metal plasma. In successful DC vacuum interruption, Lcritical should be large enough for the formation and expansion of the “C”-shaped arc column, and enough space should be available for the diffusion of the metal plasma.
Author Liu, Shaowei
Geng, Yingsan
Wang, Jianhua
Ma, Hui
Liu, Zhiyuan
Yu, Chen
Chen, Jinlong
Author_xml – sequence: 1
  givenname: Hui
  surname: Ma
  fullname: Ma, Hui
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
– sequence: 2
  givenname: Shaowei
  surname: Liu
  fullname: Liu, Shaowei
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
– sequence: 3
  givenname: Jinlong
  surname: Chen
  fullname: Chen, Jinlong
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
– sequence: 4
  givenname: Chen
  surname: Yu
  fullname: Yu, Chen
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
– sequence: 5
  givenname: Yingsan
  surname: Geng
  fullname: Geng, Yingsan
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
– sequence: 6
  givenname: Zhiyuan
  surname: Liu
  fullname: Liu, Zhiyuan
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
– sequence: 7
  givenname: Jianhua
  surname: Wang
  fullname: Wang, Jianhua
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
BookMark eNp9kMtKAzEUhoNUsK0ufIOAK4VpMzPpXJbSeoOCGwV3w5nMSZsyTWqSKfoGPrbpxY2IqxzI9_3nMiA9bTQSchmzUcyydDwZsZjHaZyfkH7MijLKs5z3dnXOoizjb2dk4NyKMcazSdEnXzP0aNdKg1dGUyOpXyIVVnkloKXCaA_CU4cbsAekRb3wSyqNpbMpVTrottvsv5SmQLcgum5NXVevMJjeUNAUPwKmQ6C3oN0WrUO6hoXG0IZKhW1zTk4ltA4vju-QvN7fvUwfo_nzw9P0dh6JpEx8lOZJnZWigKKsG8kYMEhLRCwkS0RWY4zAJDSykHXZTHjKIcGm4ZkMHA9mOiRXh9yNNe8dOl-tTLcbzVVJwXNWlmleBGp8oIQ1zlmUlVB-v39YQLVVzKrduatJdTx3MK5_GRur1mA__2RvDqz7Sf0H_gY985If
CODEN PHPAEN
CitedBy_id crossref_primary_10_1016_j_vacuum_2024_113277
Cites_doi 10.1109/TIE.2021.3075868
10.1109/TPS.1980.4317333
10.1063/5.0010921
10.1109/TPS.2020.2979338
10.1109/TPS.1983.4316236
10.1109/TPS.2005.856515
10.1109/TPS.2007.896754
10.1109/TPS.2009.2025173
10.1109/TPS.2021.3125038
10.1109/IECON.2016.7793492
10.1109/TDEI.2014.004533
10.1049/gtd2.12372
10.1109/27.782269
10.1109/TPAS.1983.317762
10.1109/TPS.1976.4316943
10.1109/ACCESS.2020.3039921
10.1088/0022-3727/34/17/202
10.1109/TPS.2009.2018823
10.1063/1.5028566
10.1109/TPS.1983.4316247
10.1088/0022-3727/33/16/315
10.1109/TPS.1980.4317331
10.1088/0022-3727/24/11/016
10.1049/oap-cired.2017.0229
10.1109/TPS.2003.818439
10.1109/TPMP.1970.1136269
10.1109/TPS.1983.4316234
10.1109/TPEL.2008.2008441
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0141317
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1089-7674
ExternalDocumentID 10_1063_5_0141317
pop
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51907150
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M631159
  funderid: 10.13039/501100002858
GroupedDBID -~X
0ZJ
123
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABEFF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACXMS
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
N9A
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
T9H
TN5
WH7
XFK
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c292t-372b69c8a89bdf00a0a39eee8f02c6be1ea0fadf8fb9d5434a2edd46f0a34b693
ISSN 1070-664X
IngestDate Mon Jun 30 03:09:39 EDT 2025
Thu Apr 24 22:54:59 EDT 2025
Tue Jul 01 01:15:25 EDT 2025
Fri Jun 21 00:10:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-372b69c8a89bdf00a0a39eee8f02c6be1ea0fadf8fb9d5434a2edd46f0a34b693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3521-7069
0000-0002-7040-5471
0000-0002-4943-6572
0000-0003-4548-7652
0009-0007-4337-0617
0000-0003-0560-2556
0009-0008-9714-6677
PQID 2847099378
PQPubID 2050668
PageCount 10
ParticipantIDs crossref_citationtrail_10_1063_5_0141317
proquest_journals_2847099378
scitation_primary_10_1063_5_0141317
crossref_primary_10_1063_5_0141317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-01
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of plasmas
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Dollinger, Dettman, Lee, Gilmour, Malone, Schwartz (c33) 1980
Flourentzou, Agelidis, Demetriades (c24) 2009
Emtage, Kimblin, Gorman, Holmes, Heberlein, Voshall, Slade (c10) 1980
Harris (c36) 1983
Juttner (c35) 2001
Alferov, Londer, Ulyanov (c17) 2009
Alferov, Ivanov, Sidorov (c15) 2003
Zabello, Barinov, Chaly, Logatchev, Shkol'nik (c30) 2005
Qin, Zhang, Dong, Zou (c2) 2018
Liljestrand, Backman, Jonsson, Riva, Dullni (c6)
Klajn (c8) 1999
Ma, Wang, Liu, Hu, Liu, Geng, Wang (c9) 2020
Kimblin (c7) 1983
Alferov, Yevsin, Londer (c16) 2007
Alferov, Belkin, Yevsin (c18) 2009
Liu, Ma, Chen, Geng, Liu, Wang (c22) 2021
Liu, Ma, Hu, Liu, Geng, Liu, Wang (c23) 2021
Wu, Xiao, Wu, Rong, Yang (c3) 2022
Hoyaux, Kimblin (c32) 1970
Barnes, Vilchis-Rodriguez, Pei, Shuttleworth, Cwikowski, Smith (c26) 2020
Juttner, Kleberg (c31) 2000
Rakhovskii (c34) 1976
Fang (c29) 1983
Gorman, Kimblin, Voshall, Wien, Slade (c11) 1983
Shi, Zhang, Jia, Song, Wang, Chen (c4) 2015
Bhat, Bahirat, Kulkarni (c21) 2020
Klajn (c14) 2008
Moizhes, Nemchinsky (c37) 1991
(2023080710175577700_c2) 2018; 25
(2023080710175577700_c30) 2005; 33
(2023080710175577700_c35) 2001; 34
(2023080710175577700_c7) 1983; 11
(2023080710175577700_c33) 1980; 8
(2023080710175577700_c15) 2003; 31
(2023080710175577700_c28) 2019
(2023080710175577700_c9) 2020; 10
(2023080710175577700_c10) 1980; 8
(2023080710175577700_c24) 2009; 24
(2023080710175577700_c29) 1983; 11
(2023080710175577700_c23) 2021; 49
(2023080710175577700_c1) 2008
(2023080710175577700_c22) 2021; 16
(2023080710175577700_c11) 1983; 102
(2023080710175577700_c6); 2017
(2023080710175577700_c16) 2007; 35
(2023080710175577700_c27) 2016
(2023080710175577700_c8) 1999; 27
(2023080710175577700_c17) 2009; 37
(2023080710175577700_c13) 2000
(2023080710175577700_c26) 2020; 8
(2023080710175577700_c5) 2008
(2023080710175577700_c31) 2000; 33
(2023080710175577700_c34) 1976; 4
(2023080710175577700_c4) 2015; 22
(2023080710175577700_c21) 2020; 48
(2023080710175577700_c25) 2017
(2023080710175577700_c3) 2022; 69
(2023080710175577700_c19) 2015
(2023080710175577700_c20) 2017
(2023080710175577700_c32) 1970; PMP6
(2023080710175577700_c14) 2008; 84
(2023080710175577700_c18) 2009; 37
(2023080710175577700_c36) 1983; 11
(2023080710175577700_c37) 1991; 24
(2023080710175577700_c12) 1996
References_xml – start-page: 100
  ident: c6
  article-title: DC vacuum circuit breaker
  publication-title: CIRED - Open Access Proc. J.
– start-page: 135
  year: 2015
  ident: c4
  article-title: Design and numerical investigation of A HVDC vacuum switch based on artificial current zero
  publication-title: IEEE Trans. Dielectrics Electr. Insul.
– start-page: 1364
  year: 2021
  ident: c22
  article-title: Novel DC current interruption technology based on the instability of vacuum arc under composite transverse magnetic fields
  publication-title: IET Gener. Transm. Distrib.
– start-page: 302
  year: 1980
  ident: c33
  article-title: Anode sheath growth and collapse in a hollow-anode vacuum-arc
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 110
  year: 1983
  ident: c29
  article-title: Temperature-dependence of retrograde velocity of vacuum arcs in magnetic-fields
  publication-title: IEEE Trans. Plasma Sci.
– start-page: R103
  year: 2001
  ident: c35
  article-title: Cathode spots of electric arcs
  publication-title: J. Phys. D-Appl. Phys.
– start-page: 173
  year: 1983
  ident: c7
  article-title: Arcing and interruption phenomena in ac vacuum switchgear and in dc switches subjected to magnetic-fields
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 314
  year: 1980
  ident: c10
  article-title: Interaction between vacuum arcs and transverse magnetic-fields with application to current limitation
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 930
  year: 2020
  ident: c21
  article-title: Effects of homopolar magnetic fields on low-current DC vacuum arcs
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 2025
  year: 2000
  ident: c31
  article-title: The retrograde motion of arc cathode spots in vacuum
  publication-title: J. Phys. D-Appl. Phys.
– start-page: 4776
  year: 2022
  ident: c3
  article-title: Hybrid MVDC circuit breaker based on enhanced arc voltage of vacuum interrupter
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 1403
  year: 2009
  ident: c17
  article-title: Study of the effect of a vacuum arc current interruption in a nonuniform magnetic field
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 138
  year: 1970
  ident: c32
  article-title: Voltage hash in low-current dc vacuum arcs
  publication-title: IEEE Trans. Parts Hybrids Packag.
– start-page: 083515
  year: 2018
  ident: c2
  article-title: Characteristics of high frequency interruption for vacuum DC breakers
  publication-title: Phys. Plasmas
– start-page: 592
  year: 2009
  ident: c24
  article-title: VSC-based HVDC power transmission systems: An overview
  publication-title: IEEE Trans. Power Electron.
– start-page: 211829
  year: 2020
  ident: c26
  article-title: HVDC circuit breakers-A review
  publication-title: IEEE Access
– start-page: 2014
  year: 1991
  ident: c37
  article-title: On the theory of the retrograde motion of a vacuum-arc
  publication-title: J. Phys. D-Appl. Phys.
– start-page: 94
  year: 1983
  ident: c36
  article-title: Transverse forces and motions at cathode spots in vacuum arcs
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 257
  year: 1983
  ident: c11
  article-title: The interaction of vacuum arcs with magnetic-fields and applications
  publication-title: IEEE Trans. Power Appar. Syst.
– start-page: 3927
  year: 2021
  ident: c23
  article-title: Vacuum arc evolution characteristics in low-voltage DC current interruption under composite transverse magnetic fields
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 1553
  year: 2005
  ident: c30
  article-title: Experimental study of cathode spot motion and burning voltage of low-current vacuum arc in magnetic field
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 918
  year: 2003
  ident: c15
  article-title: Characteristics of DC vacuum arc in the transverse axially symmetric magnetic field
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 977
  year: 1999
  ident: c8
  article-title: Switching vacuum arc in a pulsed transverse magnetic field
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 953
  year: 2007
  ident: c16
  article-title: Studies of the stable stage of the electric arc burning at the contact separation in a vacuum gap with a transverse magnetic field
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 1433
  year: 2009
  ident: c18
  article-title: DC vacuum arc extinction in a transverse axisymmetric magnetic field
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 085123
  year: 2020
  ident: c9
  article-title: Vacuum arc transient behaviors and voltage characteristics in low-current DC interruption under rotating TMF
  publication-title: AIP Adv.
– start-page: 77
  year: 2008
  ident: c14
  article-title: Low-voltage switching vacuum arc in a transverse, oscillatory magnetic field
  publication-title: Przegl. Elektrotech.
– start-page: 81
  year: 1976
  ident: c34
  article-title: EXperimental-study of dynamics of cathode spots development
  publication-title: IEEE Trans. Plasma Sci.
– volume: 69
  start-page: 4776
  year: 2022
  ident: 2023080710175577700_c3
  article-title: Hybrid MVDC circuit breaker based on enhanced arc voltage of vacuum interrupter
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3075868
– volume: 84
  start-page: 77
  year: 2008
  ident: 2023080710175577700_c14
  article-title: Low-voltage switching vacuum arc in a transverse, oscillatory magnetic field
  publication-title: Przegl. Elektrotech.
– volume: 8
  start-page: 314
  year: 1980
  ident: 2023080710175577700_c10
  article-title: Interaction between vacuum arcs and transverse magnetic-fields with application to current limitation
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1980.4317333
– volume: 10
  start-page: 085123
  year: 2020
  ident: 2023080710175577700_c9
  article-title: Vacuum arc transient behaviors and voltage characteristics in low-current DC interruption under rotating TMF
  publication-title: AIP Adv.
  doi: 10.1063/5.0010921
– start-page: 286
  year: 1996
  ident: 2023080710175577700_c12
  article-title: Experimental study of the switching ARC behaviour in a transverse magnetic field in vacuum
– volume: 48
  start-page: 930
  year: 2020
  ident: 2023080710175577700_c21
  article-title: Effects of homopolar magnetic fields on low-current DC vacuum arcs
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2020.2979338
– volume: 11
  start-page: 110
  year: 1983
  ident: 2023080710175577700_c29
  article-title: Temperature-dependence of retrograde velocity of vacuum arcs in magnetic-fields
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1983.4316236
– year: 2017
  ident: 2023080710175577700_c25
  article-title: Frontiers of DC circuit breakers in HVDC and MVDC systems
– volume: 33
  start-page: 1553
  year: 2005
  ident: 2023080710175577700_c30
  article-title: Experimental study of cathode spot motion and burning voltage of low-current vacuum arc in magnetic field
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2005.856515
– volume: 35
  start-page: 953
  year: 2007
  ident: 2023080710175577700_c16
  article-title: Studies of the stable stage of the electric arc burning at the contact separation in a vacuum gap with a transverse magnetic field
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2007.896754
– volume: 37
  start-page: 1433
  year: 2009
  ident: 2023080710175577700_c18
  article-title: DC vacuum arc extinction in a transverse axisymmetric magnetic field
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2009.2025173
– volume: 49
  start-page: 3927
  year: 2021
  ident: 2023080710175577700_c23
  article-title: Vacuum arc evolution characteristics in low-voltage DC current interruption under composite transverse magnetic fields
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2021.3125038
– start-page: 3799
  volume-title: IECON 2016: Proceedings of the 42nd Annual Conference of the IEEE-Industrial-Electronics-Society
  year: 2016
  ident: 2023080710175577700_c27
  article-title: A review of technologies for MVDC circuit breakers
  doi: 10.1109/IECON.2016.7793492
– volume: 22
  start-page: 135
  year: 2015
  ident: 2023080710175577700_c4
  article-title: Design and numerical investigation of A HVDC vacuum switch based on artificial current zero
  publication-title: IEEE Trans. Dielectrics Electr. Insul.
  doi: 10.1109/TDEI.2014.004533
– volume: 16
  start-page: 1364
  year: 2021
  ident: 2023080710175577700_c22
  article-title: Novel DC current interruption technology based on the instability of vacuum arc under composite transverse magnetic fields
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12372
– volume: 27
  start-page: 977
  year: 1999
  ident: 2023080710175577700_c8
  article-title: Switching vacuum arc in a pulsed transverse magnetic field
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/27.782269
– volume: 102
  start-page: 257
  year: 1983
  ident: 2023080710175577700_c11
  article-title: The interaction of vacuum arcs with magnetic-fields and applications
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1983.317762
– volume: 4
  start-page: 81
  year: 1976
  ident: 2023080710175577700_c34
  article-title: EXperimental-study of dynamics of cathode spots development
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1976.4316943
– volume: 8
  start-page: 211829
  year: 2020
  ident: 2023080710175577700_c26
  article-title: HVDC circuit breakers-A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039921
– start-page: 173
  year: 2008
  ident: 2023080710175577700_c1
  article-title: DC vacuum circuit-breaker
– start-page: 474
  year: 2017
  ident: 2023080710175577700_c20
  article-title: Study on small DC vacuum arc characteristic under transverse magnetic field
– start-page: 107
  year: 2008
  ident: 2023080710175577700_c5
  article-title: The basic investigation of the high-speed VCB and its application for the DC power system
– start-page: 249
  year: 2019
  ident: 2023080710175577700_c28
  article-title: Influence of oscillating frequency of external transverse magnetic field on DC vacuum arc evolution
– volume: 34
  start-page: R103
  year: 2001
  ident: 2023080710175577700_c35
  article-title: Cathode spots of electric arcs
  publication-title: J. Phys. D-Appl. Phys.
  doi: 10.1088/0022-3727/34/17/202
– start-page: 138
  year: 2015
  ident: 2023080710175577700_c19
  article-title: Investigation on small DC vacuum arc characteristic under transverse magnetic field
– volume: 37
  start-page: 1403
  year: 2009
  ident: 2023080710175577700_c17
  article-title: Study of the effect of a vacuum arc current interruption in a nonuniform magnetic field
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2009.2018823
– volume: 25
  start-page: 083515
  year: 2018
  ident: 2023080710175577700_c2
  article-title: Characteristics of high frequency interruption for vacuum DC breakers
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5028566
– volume: 11
  start-page: 173
  year: 1983
  ident: 2023080710175577700_c7
  article-title: Arcing and interruption phenomena in ac vacuum switchgear and in dc switches subjected to magnetic-fields
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1983.4316247
– volume: 33
  start-page: 2025
  year: 2000
  ident: 2023080710175577700_c31
  article-title: The retrograde motion of arc cathode spots in vacuum
  publication-title: J. Phys. D-Appl. Phys.
  doi: 10.1088/0022-3727/33/16/315
– start-page: 248
  year: 2000
  ident: 2023080710175577700_c13
  article-title: Experimental analysis of diffuse vacuum arc in a transverse magnetic field
– volume: 8
  start-page: 302
  year: 1980
  ident: 2023080710175577700_c33
  article-title: Anode sheath growth and collapse in a hollow-anode vacuum-arc
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1980.4317331
– volume: 24
  start-page: 2014
  year: 1991
  ident: 2023080710175577700_c37
  article-title: On the theory of the retrograde motion of a vacuum-arc
  publication-title: J. Phys. D-Appl. Phys.
  doi: 10.1088/0022-3727/24/11/016
– volume: 2017
  start-page: 100
  ident: 2023080710175577700_c6
  article-title: DC vacuum circuit breaker
  publication-title: CIRED - Open Access Proc. J.
  doi: 10.1049/oap-cired.2017.0229
– volume: 31
  start-page: 918
  year: 2003
  ident: 2023080710175577700_c15
  article-title: Characteristics of DC vacuum arc in the transverse axially symmetric magnetic field
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2003.818439
– volume: PMP6
  start-page: 138
  year: 1970
  ident: 2023080710175577700_c32
  article-title: Voltage hash in low-current dc vacuum arcs
  publication-title: IEEE Trans. Parts Hybrids Packag.
  doi: 10.1109/TPMP.1970.1136269
– volume: 11
  start-page: 94
  year: 1983
  ident: 2023080710175577700_c36
  article-title: Transverse forces and motions at cathode spots in vacuum arcs
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1983.4316234
– volume: 24
  start-page: 592
  year: 2009
  ident: 2023080710175577700_c24
  article-title: VSC-based HVDC power transmission systems: An overview
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2008.2008441
SSID ssj0004658
Score 2.412345
Snippet The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms High speed cameras
Magnetic fields
Metallic plasmas
Plasma physics
Separation
Title Determination of the critical contact separation length for DC interruption in a vacuum subject to an external transverse magnetic field
URI http://dx.doi.org/10.1063/5.0141317
https://www.proquest.com/docview/2847099378
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJgQXxE9RGMgCDkhVhpe4aXyc2k0T6saBViqnyHFsVmkkVZuAxJETfzbPv1JXKgi4RI3lWJHfF7_P7vfeQ-gNVUM5OlEsIomADQqFfUpBKY-USumoBJdITHb9y6v0Yk7fL4aLXu9HoFpqm-JYfN8bV_I_VoU2sKuOkv0Hy3aDQgP8BvvCFSwM17-y8cRrWTzt0yxS-OIFWoWuIyA30ub3hi66bEpzbaSFk7FJFbFetyuvd-SDr1y07ZfBpi308YzmpVwXAbCJonU5iWqjZRxa9Pq50uGPA6OACxmukZQKIxBZATP36iNz6G38XLvsREDL1hy-XvP6m-xaxz5eZFnd1M6vBs2f2vCgIk46mVwTxAbwalcF4V4qWIFhDYrS1Mo2j6Vry1iksw6Fy7b7O8fCM9vrDYB-gQl1XlZw1TZEdDfj9tWH_Hw-neazs8XsFjqMYasBa-Xh6eRy-jGIrh3agEr3Yj4_VZq864beZTXbrcod4DFWUhGwltl9dM9tN_Cpxc4D1JPVQ3TbTccj9HMHQbhWGBCEPYKwQxDeIghbBGFAEJ6McYgguMEcWwRhhyDc1JhX2M8G3iIIewRhg6DHaH5-NhtfRK42RyRiFjfgl-IiZSLjGStKRQgnPGFSykyRWKSFPJGcKF6qTBWs1OHLPJZlSVMF_Sg8mTxBB1VdyacIs6xIYsJpWo4IlXTI9BIhYsoEVaVQqo_e-rnN_Wzq-ik3uRFQpEk-zJ0Z-uhV13Vls7Xs63TkDZS7j3mTa5ZGNFfP-uh1Z7TfD_Lsz4M8R3e3n8AROmjWrXwB7LUpXjp4_QIzwqIM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+the+critical+contact+separation+length+for+DC+interruption+in+a+vacuum+subject+to+an+external+transverse+magnetic+field&rft.jtitle=Physics+of+plasmas&rft.au=Ma%2C+Hui&rft.au=Liu%2C+Shaowei&rft.au=Chen%2C+Jinlong&rft.au=Chen%2C+Yu&rft.date=2023-08-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=30&rft.issue=8&rft_id=info:doi/10.1063%2F5.0141317&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon