Determination of the critical contact separation length for DC interruption in a vacuum subject to an external transverse magnetic field
The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external transverse magnetic field (TMF), according the interruption behaviors and vacuum arc characteristics. L is defined as the separation length at th...
Saved in:
Published in | Physics of plasmas Vol. 30; no. 8 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external transverse magnetic field (TMF), according the interruption behaviors and vacuum arc characteristics. L is defined as the separation length at the instant of TMF application. Lcritical is the critical and the minimal necessary separation length of the contacts for a successful DC interruption in vacuum. A pair of Helmholtz coils was used to generate the external TMF. A high-speed camera was used to record the vacuum arc appearance. The experimental results quantitatively determine Lcritical for DC vacuum interruption under a certain DC and the external TMF. When the DC ranged from 100 to 500 A under an external TMF of 30 mT, Lcritical ranged from 2.1 to 3.7 mm and did not show linear variation. Second, the extinguishing time of DC vacuum interruption te at various currents significantly increased in a similar pattern under decreasing L in the range of 0.3–1.6 ms. The decrease in L mainly increased the duration of the stable stage and had little apparent influence on the duration of the unstable stage of the DC vacuum arc. Third, the physical mechanism determining Lcritical in DC vacuum interruption under a TMF could be explained from two aspects: the expansion of the vacuum arc column and the diffusion of the metal plasma. In successful DC vacuum interruption, Lcritical should be large enough for the formation and expansion of the “C”-shaped arc column, and enough space should be available for the diffusion of the metal plasma. |
---|---|
AbstractList | The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external transverse magnetic field (TMF), according the interruption behaviors and vacuum arc characteristics. L is defined as the separation length at the instant of TMF application. Lcritical is the critical and the minimal necessary separation length of the contacts for a successful DC interruption in vacuum. A pair of Helmholtz coils was used to generate the external TMF. A high-speed camera was used to record the vacuum arc appearance. The experimental results quantitatively determine Lcritical for DC vacuum interruption under a certain DC and the external TMF. When the DC ranged from 100 to 500 A under an external TMF of 30 mT, Lcritical ranged from 2.1 to 3.7 mm and did not show linear variation. Second, the extinguishing time of DC vacuum interruption te at various currents significantly increased in a similar pattern under decreasing L in the range of 0.3–1.6 ms. The decrease in L mainly increased the duration of the stable stage and had little apparent influence on the duration of the unstable stage of the DC vacuum arc. Third, the physical mechanism determining Lcritical in DC vacuum interruption under a TMF could be explained from two aspects: the expansion of the vacuum arc column and the diffusion of the metal plasma. In successful DC vacuum interruption, Lcritical should be large enough for the formation and expansion of the “C”-shaped arc column, and enough space should be available for the diffusion of the metal plasma. |
Author | Liu, Shaowei Geng, Yingsan Wang, Jianhua Ma, Hui Liu, Zhiyuan Yu, Chen Chen, Jinlong |
Author_xml | – sequence: 1 givenname: Hui surname: Ma fullname: Ma, Hui organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China – sequence: 2 givenname: Shaowei surname: Liu fullname: Liu, Shaowei organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China – sequence: 3 givenname: Jinlong surname: Chen fullname: Chen, Jinlong organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China – sequence: 4 givenname: Chen surname: Yu fullname: Yu, Chen organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China – sequence: 5 givenname: Yingsan surname: Geng fullname: Geng, Yingsan organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China – sequence: 6 givenname: Zhiyuan surname: Liu fullname: Liu, Zhiyuan organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China – sequence: 7 givenname: Jianhua surname: Wang fullname: Wang, Jianhua organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China |
BookMark | eNp9kMtKAzEUhoNUsK0ufIOAK4VpMzPpXJbSeoOCGwV3w5nMSZsyTWqSKfoGPrbpxY2IqxzI9_3nMiA9bTQSchmzUcyydDwZsZjHaZyfkH7MijLKs5z3dnXOoizjb2dk4NyKMcazSdEnXzP0aNdKg1dGUyOpXyIVVnkloKXCaA_CU4cbsAekRb3wSyqNpbMpVTrottvsv5SmQLcgum5NXVevMJjeUNAUPwKmQ6C3oN0WrUO6hoXG0IZKhW1zTk4ltA4vju-QvN7fvUwfo_nzw9P0dh6JpEx8lOZJnZWigKKsG8kYMEhLRCwkS0RWY4zAJDSykHXZTHjKIcGm4ZkMHA9mOiRXh9yNNe8dOl-tTLcbzVVJwXNWlmleBGp8oIQ1zlmUlVB-v39YQLVVzKrduatJdTx3MK5_GRur1mA__2RvDqz7Sf0H_gY985If |
CODEN | PHPAEN |
CitedBy_id | crossref_primary_10_1016_j_vacuum_2024_113277 |
Cites_doi | 10.1109/TIE.2021.3075868 10.1109/TPS.1980.4317333 10.1063/5.0010921 10.1109/TPS.2020.2979338 10.1109/TPS.1983.4316236 10.1109/TPS.2005.856515 10.1109/TPS.2007.896754 10.1109/TPS.2009.2025173 10.1109/TPS.2021.3125038 10.1109/IECON.2016.7793492 10.1109/TDEI.2014.004533 10.1049/gtd2.12372 10.1109/27.782269 10.1109/TPAS.1983.317762 10.1109/TPS.1976.4316943 10.1109/ACCESS.2020.3039921 10.1088/0022-3727/34/17/202 10.1109/TPS.2009.2018823 10.1063/1.5028566 10.1109/TPS.1983.4316247 10.1088/0022-3727/33/16/315 10.1109/TPS.1980.4317331 10.1088/0022-3727/24/11/016 10.1049/oap-cired.2017.0229 10.1109/TPS.2003.818439 10.1109/TPMP.1970.1136269 10.1109/TPS.1983.4316234 10.1109/TPEL.2008.2008441 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0141317 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1089-7674 |
ExternalDocumentID | 10_1063_5_0141317 pop |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51907150 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2018M631159 funderid: 10.13039/501100002858 |
GroupedDBID | -~X 0ZJ 123 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABEFF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACXMS ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 N9A NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS T9H TN5 WH7 XFK AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c292t-372b69c8a89bdf00a0a39eee8f02c6be1ea0fadf8fb9d5434a2edd46f0a34b693 |
ISSN | 1070-664X |
IngestDate | Mon Jun 30 03:09:39 EDT 2025 Thu Apr 24 22:54:59 EDT 2025 Tue Jul 01 01:15:25 EDT 2025 Fri Jun 21 00:10:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c292t-372b69c8a89bdf00a0a39eee8f02c6be1ea0fadf8fb9d5434a2edd46f0a34b693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3521-7069 0000-0002-7040-5471 0000-0002-4943-6572 0000-0003-4548-7652 0009-0007-4337-0617 0000-0003-0560-2556 0009-0008-9714-6677 |
PQID | 2847099378 |
PQPubID | 2050668 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0141317 proquest_journals_2847099378 scitation_primary_10_1063_5_0141317 crossref_primary_10_1063_5_0141317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230800 2023-08-01 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 20230800 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of plasmas |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Dollinger, Dettman, Lee, Gilmour, Malone, Schwartz (c33) 1980 Flourentzou, Agelidis, Demetriades (c24) 2009 Emtage, Kimblin, Gorman, Holmes, Heberlein, Voshall, Slade (c10) 1980 Harris (c36) 1983 Juttner (c35) 2001 Alferov, Londer, Ulyanov (c17) 2009 Alferov, Ivanov, Sidorov (c15) 2003 Zabello, Barinov, Chaly, Logatchev, Shkol'nik (c30) 2005 Qin, Zhang, Dong, Zou (c2) 2018 Liljestrand, Backman, Jonsson, Riva, Dullni (c6) Klajn (c8) 1999 Ma, Wang, Liu, Hu, Liu, Geng, Wang (c9) 2020 Kimblin (c7) 1983 Alferov, Yevsin, Londer (c16) 2007 Alferov, Belkin, Yevsin (c18) 2009 Liu, Ma, Chen, Geng, Liu, Wang (c22) 2021 Liu, Ma, Hu, Liu, Geng, Liu, Wang (c23) 2021 Wu, Xiao, Wu, Rong, Yang (c3) 2022 Hoyaux, Kimblin (c32) 1970 Barnes, Vilchis-Rodriguez, Pei, Shuttleworth, Cwikowski, Smith (c26) 2020 Juttner, Kleberg (c31) 2000 Rakhovskii (c34) 1976 Fang (c29) 1983 Gorman, Kimblin, Voshall, Wien, Slade (c11) 1983 Shi, Zhang, Jia, Song, Wang, Chen (c4) 2015 Bhat, Bahirat, Kulkarni (c21) 2020 Klajn (c14) 2008 Moizhes, Nemchinsky (c37) 1991 (2023080710175577700_c2) 2018; 25 (2023080710175577700_c30) 2005; 33 (2023080710175577700_c35) 2001; 34 (2023080710175577700_c7) 1983; 11 (2023080710175577700_c33) 1980; 8 (2023080710175577700_c15) 2003; 31 (2023080710175577700_c28) 2019 (2023080710175577700_c9) 2020; 10 (2023080710175577700_c10) 1980; 8 (2023080710175577700_c24) 2009; 24 (2023080710175577700_c29) 1983; 11 (2023080710175577700_c23) 2021; 49 (2023080710175577700_c1) 2008 (2023080710175577700_c22) 2021; 16 (2023080710175577700_c11) 1983; 102 (2023080710175577700_c6); 2017 (2023080710175577700_c16) 2007; 35 (2023080710175577700_c27) 2016 (2023080710175577700_c8) 1999; 27 (2023080710175577700_c17) 2009; 37 (2023080710175577700_c13) 2000 (2023080710175577700_c26) 2020; 8 (2023080710175577700_c5) 2008 (2023080710175577700_c31) 2000; 33 (2023080710175577700_c34) 1976; 4 (2023080710175577700_c4) 2015; 22 (2023080710175577700_c21) 2020; 48 (2023080710175577700_c25) 2017 (2023080710175577700_c3) 2022; 69 (2023080710175577700_c19) 2015 (2023080710175577700_c20) 2017 (2023080710175577700_c32) 1970; PMP6 (2023080710175577700_c14) 2008; 84 (2023080710175577700_c18) 2009; 37 (2023080710175577700_c36) 1983; 11 (2023080710175577700_c37) 1991; 24 (2023080710175577700_c12) 1996 |
References_xml | – start-page: 100 ident: c6 article-title: DC vacuum circuit breaker publication-title: CIRED - Open Access Proc. J. – start-page: 135 year: 2015 ident: c4 article-title: Design and numerical investigation of A HVDC vacuum switch based on artificial current zero publication-title: IEEE Trans. Dielectrics Electr. Insul. – start-page: 1364 year: 2021 ident: c22 article-title: Novel DC current interruption technology based on the instability of vacuum arc under composite transverse magnetic fields publication-title: IET Gener. Transm. Distrib. – start-page: 302 year: 1980 ident: c33 article-title: Anode sheath growth and collapse in a hollow-anode vacuum-arc publication-title: IEEE Trans. Plasma Sci. – start-page: 110 year: 1983 ident: c29 article-title: Temperature-dependence of retrograde velocity of vacuum arcs in magnetic-fields publication-title: IEEE Trans. Plasma Sci. – start-page: R103 year: 2001 ident: c35 article-title: Cathode spots of electric arcs publication-title: J. Phys. D-Appl. Phys. – start-page: 173 year: 1983 ident: c7 article-title: Arcing and interruption phenomena in ac vacuum switchgear and in dc switches subjected to magnetic-fields publication-title: IEEE Trans. Plasma Sci. – start-page: 314 year: 1980 ident: c10 article-title: Interaction between vacuum arcs and transverse magnetic-fields with application to current limitation publication-title: IEEE Trans. Plasma Sci. – start-page: 930 year: 2020 ident: c21 article-title: Effects of homopolar magnetic fields on low-current DC vacuum arcs publication-title: IEEE Trans. Plasma Sci. – start-page: 2025 year: 2000 ident: c31 article-title: The retrograde motion of arc cathode spots in vacuum publication-title: J. Phys. D-Appl. Phys. – start-page: 4776 year: 2022 ident: c3 article-title: Hybrid MVDC circuit breaker based on enhanced arc voltage of vacuum interrupter publication-title: IEEE Trans. Ind. Electron. – start-page: 1403 year: 2009 ident: c17 article-title: Study of the effect of a vacuum arc current interruption in a nonuniform magnetic field publication-title: IEEE Trans. Plasma Sci. – start-page: 138 year: 1970 ident: c32 article-title: Voltage hash in low-current dc vacuum arcs publication-title: IEEE Trans. Parts Hybrids Packag. – start-page: 083515 year: 2018 ident: c2 article-title: Characteristics of high frequency interruption for vacuum DC breakers publication-title: Phys. Plasmas – start-page: 592 year: 2009 ident: c24 article-title: VSC-based HVDC power transmission systems: An overview publication-title: IEEE Trans. Power Electron. – start-page: 211829 year: 2020 ident: c26 article-title: HVDC circuit breakers-A review publication-title: IEEE Access – start-page: 2014 year: 1991 ident: c37 article-title: On the theory of the retrograde motion of a vacuum-arc publication-title: J. Phys. D-Appl. Phys. – start-page: 94 year: 1983 ident: c36 article-title: Transverse forces and motions at cathode spots in vacuum arcs publication-title: IEEE Trans. Plasma Sci. – start-page: 257 year: 1983 ident: c11 article-title: The interaction of vacuum arcs with magnetic-fields and applications publication-title: IEEE Trans. Power Appar. Syst. – start-page: 3927 year: 2021 ident: c23 article-title: Vacuum arc evolution characteristics in low-voltage DC current interruption under composite transverse magnetic fields publication-title: IEEE Trans. Plasma Sci. – start-page: 1553 year: 2005 ident: c30 article-title: Experimental study of cathode spot motion and burning voltage of low-current vacuum arc in magnetic field publication-title: IEEE Trans. Plasma Sci. – start-page: 918 year: 2003 ident: c15 article-title: Characteristics of DC vacuum arc in the transverse axially symmetric magnetic field publication-title: IEEE Trans. Plasma Sci. – start-page: 977 year: 1999 ident: c8 article-title: Switching vacuum arc in a pulsed transverse magnetic field publication-title: IEEE Trans. Plasma Sci. – start-page: 953 year: 2007 ident: c16 article-title: Studies of the stable stage of the electric arc burning at the contact separation in a vacuum gap with a transverse magnetic field publication-title: IEEE Trans. Plasma Sci. – start-page: 1433 year: 2009 ident: c18 article-title: DC vacuum arc extinction in a transverse axisymmetric magnetic field publication-title: IEEE Trans. Plasma Sci. – start-page: 085123 year: 2020 ident: c9 article-title: Vacuum arc transient behaviors and voltage characteristics in low-current DC interruption under rotating TMF publication-title: AIP Adv. – start-page: 77 year: 2008 ident: c14 article-title: Low-voltage switching vacuum arc in a transverse, oscillatory magnetic field publication-title: Przegl. Elektrotech. – start-page: 81 year: 1976 ident: c34 article-title: EXperimental-study of dynamics of cathode spots development publication-title: IEEE Trans. Plasma Sci. – volume: 69 start-page: 4776 year: 2022 ident: 2023080710175577700_c3 article-title: Hybrid MVDC circuit breaker based on enhanced arc voltage of vacuum interrupter publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3075868 – volume: 84 start-page: 77 year: 2008 ident: 2023080710175577700_c14 article-title: Low-voltage switching vacuum arc in a transverse, oscillatory magnetic field publication-title: Przegl. Elektrotech. – volume: 8 start-page: 314 year: 1980 ident: 2023080710175577700_c10 article-title: Interaction between vacuum arcs and transverse magnetic-fields with application to current limitation publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1980.4317333 – volume: 10 start-page: 085123 year: 2020 ident: 2023080710175577700_c9 article-title: Vacuum arc transient behaviors and voltage characteristics in low-current DC interruption under rotating TMF publication-title: AIP Adv. doi: 10.1063/5.0010921 – start-page: 286 year: 1996 ident: 2023080710175577700_c12 article-title: Experimental study of the switching ARC behaviour in a transverse magnetic field in vacuum – volume: 48 start-page: 930 year: 2020 ident: 2023080710175577700_c21 article-title: Effects of homopolar magnetic fields on low-current DC vacuum arcs publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2020.2979338 – volume: 11 start-page: 110 year: 1983 ident: 2023080710175577700_c29 article-title: Temperature-dependence of retrograde velocity of vacuum arcs in magnetic-fields publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1983.4316236 – year: 2017 ident: 2023080710175577700_c25 article-title: Frontiers of DC circuit breakers in HVDC and MVDC systems – volume: 33 start-page: 1553 year: 2005 ident: 2023080710175577700_c30 article-title: Experimental study of cathode spot motion and burning voltage of low-current vacuum arc in magnetic field publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2005.856515 – volume: 35 start-page: 953 year: 2007 ident: 2023080710175577700_c16 article-title: Studies of the stable stage of the electric arc burning at the contact separation in a vacuum gap with a transverse magnetic field publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2007.896754 – volume: 37 start-page: 1433 year: 2009 ident: 2023080710175577700_c18 article-title: DC vacuum arc extinction in a transverse axisymmetric magnetic field publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2009.2025173 – volume: 49 start-page: 3927 year: 2021 ident: 2023080710175577700_c23 article-title: Vacuum arc evolution characteristics in low-voltage DC current interruption under composite transverse magnetic fields publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2021.3125038 – start-page: 3799 volume-title: IECON 2016: Proceedings of the 42nd Annual Conference of the IEEE-Industrial-Electronics-Society year: 2016 ident: 2023080710175577700_c27 article-title: A review of technologies for MVDC circuit breakers doi: 10.1109/IECON.2016.7793492 – volume: 22 start-page: 135 year: 2015 ident: 2023080710175577700_c4 article-title: Design and numerical investigation of A HVDC vacuum switch based on artificial current zero publication-title: IEEE Trans. Dielectrics Electr. Insul. doi: 10.1109/TDEI.2014.004533 – volume: 16 start-page: 1364 year: 2021 ident: 2023080710175577700_c22 article-title: Novel DC current interruption technology based on the instability of vacuum arc under composite transverse magnetic fields publication-title: IET Gener. Transm. Distrib. doi: 10.1049/gtd2.12372 – volume: 27 start-page: 977 year: 1999 ident: 2023080710175577700_c8 article-title: Switching vacuum arc in a pulsed transverse magnetic field publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.782269 – volume: 102 start-page: 257 year: 1983 ident: 2023080710175577700_c11 article-title: The interaction of vacuum arcs with magnetic-fields and applications publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1983.317762 – volume: 4 start-page: 81 year: 1976 ident: 2023080710175577700_c34 article-title: EXperimental-study of dynamics of cathode spots development publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1976.4316943 – volume: 8 start-page: 211829 year: 2020 ident: 2023080710175577700_c26 article-title: HVDC circuit breakers-A review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039921 – start-page: 173 year: 2008 ident: 2023080710175577700_c1 article-title: DC vacuum circuit-breaker – start-page: 474 year: 2017 ident: 2023080710175577700_c20 article-title: Study on small DC vacuum arc characteristic under transverse magnetic field – start-page: 107 year: 2008 ident: 2023080710175577700_c5 article-title: The basic investigation of the high-speed VCB and its application for the DC power system – start-page: 249 year: 2019 ident: 2023080710175577700_c28 article-title: Influence of oscillating frequency of external transverse magnetic field on DC vacuum arc evolution – volume: 34 start-page: R103 year: 2001 ident: 2023080710175577700_c35 article-title: Cathode spots of electric arcs publication-title: J. Phys. D-Appl. Phys. doi: 10.1088/0022-3727/34/17/202 – start-page: 138 year: 2015 ident: 2023080710175577700_c19 article-title: Investigation on small DC vacuum arc characteristic under transverse magnetic field – volume: 37 start-page: 1403 year: 2009 ident: 2023080710175577700_c17 article-title: Study of the effect of a vacuum arc current interruption in a nonuniform magnetic field publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2009.2018823 – volume: 25 start-page: 083515 year: 2018 ident: 2023080710175577700_c2 article-title: Characteristics of high frequency interruption for vacuum DC breakers publication-title: Phys. Plasmas doi: 10.1063/1.5028566 – volume: 11 start-page: 173 year: 1983 ident: 2023080710175577700_c7 article-title: Arcing and interruption phenomena in ac vacuum switchgear and in dc switches subjected to magnetic-fields publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1983.4316247 – volume: 33 start-page: 2025 year: 2000 ident: 2023080710175577700_c31 article-title: The retrograde motion of arc cathode spots in vacuum publication-title: J. Phys. D-Appl. Phys. doi: 10.1088/0022-3727/33/16/315 – start-page: 248 year: 2000 ident: 2023080710175577700_c13 article-title: Experimental analysis of diffuse vacuum arc in a transverse magnetic field – volume: 8 start-page: 302 year: 1980 ident: 2023080710175577700_c33 article-title: Anode sheath growth and collapse in a hollow-anode vacuum-arc publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1980.4317331 – volume: 24 start-page: 2014 year: 1991 ident: 2023080710175577700_c37 article-title: On the theory of the retrograde motion of a vacuum-arc publication-title: J. Phys. D-Appl. Phys. doi: 10.1088/0022-3727/24/11/016 – volume: 2017 start-page: 100 ident: 2023080710175577700_c6 article-title: DC vacuum circuit breaker publication-title: CIRED - Open Access Proc. J. doi: 10.1049/oap-cired.2017.0229 – volume: 31 start-page: 918 year: 2003 ident: 2023080710175577700_c15 article-title: Characteristics of DC vacuum arc in the transverse axially symmetric magnetic field publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2003.818439 – volume: PMP6 start-page: 138 year: 1970 ident: 2023080710175577700_c32 article-title: Voltage hash in low-current dc vacuum arcs publication-title: IEEE Trans. Parts Hybrids Packag. doi: 10.1109/TPMP.1970.1136269 – volume: 11 start-page: 94 year: 1983 ident: 2023080710175577700_c36 article-title: Transverse forces and motions at cathode spots in vacuum arcs publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1983.4316234 – volume: 24 start-page: 592 year: 2009 ident: 2023080710175577700_c24 article-title: VSC-based HVDC power transmission systems: An overview publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2008.2008441 |
SSID | ssj0004658 |
Score | 2.412345 |
Snippet | The objective of this work is to experimentally determine the critical contact separation length Lcritical for DC interruption in vacuum under an external... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | High speed cameras Magnetic fields Metallic plasmas Plasma physics Separation |
Title | Determination of the critical contact separation length for DC interruption in a vacuum subject to an external transverse magnetic field |
URI | http://dx.doi.org/10.1063/5.0141317 https://www.proquest.com/docview/2847099378 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJgQXxE9RGMgCDkhVhpe4aXyc2k0T6saBViqnyHFsVmkkVZuAxJETfzbPv1JXKgi4RI3lWJHfF7_P7vfeQ-gNVUM5OlEsIomADQqFfUpBKY-USumoBJdITHb9y6v0Yk7fL4aLXu9HoFpqm-JYfN8bV_I_VoU2sKuOkv0Hy3aDQgP8BvvCFSwM17-y8cRrWTzt0yxS-OIFWoWuIyA30ub3hi66bEpzbaSFk7FJFbFetyuvd-SDr1y07ZfBpi308YzmpVwXAbCJonU5iWqjZRxa9Pq50uGPA6OACxmukZQKIxBZATP36iNz6G38XLvsREDL1hy-XvP6m-xaxz5eZFnd1M6vBs2f2vCgIk46mVwTxAbwalcF4V4qWIFhDYrS1Mo2j6Vry1iksw6Fy7b7O8fCM9vrDYB-gQl1XlZw1TZEdDfj9tWH_Hw-neazs8XsFjqMYasBa-Xh6eRy-jGIrh3agEr3Yj4_VZq864beZTXbrcod4DFWUhGwltl9dM9tN_Cpxc4D1JPVQ3TbTccj9HMHQbhWGBCEPYKwQxDeIghbBGFAEJ6McYgguMEcWwRhhyDc1JhX2M8G3iIIewRhg6DHaH5-NhtfRK42RyRiFjfgl-IiZSLjGStKRQgnPGFSykyRWKSFPJGcKF6qTBWs1OHLPJZlSVMF_Sg8mTxBB1VdyacIs6xIYsJpWo4IlXTI9BIhYsoEVaVQqo_e-rnN_Wzq-ik3uRFQpEk-zJ0Z-uhV13Vls7Xs63TkDZS7j3mTa5ZGNFfP-uh1Z7TfD_Lsz4M8R3e3n8AROmjWrXwB7LUpXjp4_QIzwqIM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+the+critical+contact+separation+length+for+DC+interruption+in+a+vacuum+subject+to+an+external+transverse+magnetic+field&rft.jtitle=Physics+of+plasmas&rft.au=Ma%2C+Hui&rft.au=Liu%2C+Shaowei&rft.au=Chen%2C+Jinlong&rft.au=Chen%2C+Yu&rft.date=2023-08-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=30&rft.issue=8&rft_id=info:doi/10.1063%2F5.0141317&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon |