Fluid Antenna System Liberating Multiuser MIMO for ISAC via Deep Reinforcement Learning

The aim of this paper is to enhance the performance of an integrated sensing and communications (ISAC) system in the multiuser multiple-input multiple-output (MIMO) downlink in which a two-dimensional (2D) fluid antenna system (FAS) with multiple activated ports is employed at the base station (BS)...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 23; no. 9; pp. 10879 - 10894
Main Authors Wang, Chao, Li, Guo, Zhang, Haibin, Wong, Kai-Kit, Li, Zan, Ng, Derrick Wing Kwan, Chae, Chan-Byoung
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this paper is to enhance the performance of an integrated sensing and communications (ISAC) system in the multiuser multiple-input multiple-output (MIMO) downlink in which a two-dimensional (2D) fluid antenna system (FAS) with multiple activated ports is employed at the base station (BS) to maximize the sum-rate of the downlink users subject to a sensing constraint. The unique feature of this setup is that the locations of the antenna ports at the FAS can be optimized jointly with the precoding design to achieve a higher sum-rate. The required optimization problem is however NP-hard. To overcome this, we start by considering the perfect channel state information (CSI) scenario where all the port CSI is available. Deep reinforcement learning is utilized to build an end-to-end learning framework for the joint optimization problem. In particular, by fixing the activated ports, we adopt a primal-dual based learning algorithm to design a constraint-aware neural network for optimizing the ISAC precoder. Then, by using the neural precoding network to calculate the reward, we adopt the deep reinforcement learning algorithm to design the port selection and precoder jointly. An advantage actor and critic (A2C) algorithm is proposed to train the policy, in which the actor network uses the pointer network to learn the stochastic policy and the critic network adopts the Long Short-Term Memory (LSTM) encoder architecture to learn the expected reward from the observations. Afterwards, the partial CSI case is addressed, where we propose a masked autoencoder (MAE) induced channel extrapolation for predicting all the CSI to facilitate the joint design. Simulation results demonstrate the promising performance of using FAS for multiuser MIMO and also validate the proposed learning-based scheme.
AbstractList The aim of this paper is to enhance the performance of an integrated sensing and communications (ISAC) system in the multiuser multiple-input multiple-output (MIMO) downlink in which a two-dimensional (2D) fluid antenna system (FAS) with multiple activated ports is employed at the base station (BS) to maximize the sum-rate of the downlink users subject to a sensing constraint. The unique feature of this setup is that the locations of the antenna ports at the FAS can be optimized jointly with the precoding design to achieve a higher sum-rate. The required optimization problem is however NP-hard. To overcome this, we start by considering the perfect channel state information (CSI) scenario where all the port CSI is available. Deep reinforcement learning is utilized to build an end-to-end learning framework for the joint optimization problem. In particular, by fixing the activated ports, we adopt a primal-dual based learning algorithm to design a constraint-aware neural network for optimizing the ISAC precoder. Then, by using the neural precoding network to calculate the reward, we adopt the deep reinforcement learning algorithm to design the port selection and precoder jointly. An advantage actor and critic (A2C) algorithm is proposed to train the policy, in which the actor network uses the pointer network to learn the stochastic policy and the critic network adopts the Long Short-Term Memory (LSTM) encoder architecture to learn the expected reward from the observations. Afterwards, the partial CSI case is addressed, where we propose a masked autoencoder (MAE) induced channel extrapolation for predicting all the CSI to facilitate the joint design. Simulation results demonstrate the promising performance of using FAS for multiuser MIMO and also validate the proposed learning-based scheme.
Author Li, Guo
Wang, Chao
Li, Zan
Wong, Kai-Kit
Ng, Derrick Wing Kwan
Zhang, Haibin
Chae, Chan-Byoung
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0003-0187-6453
  surname: Wang
  fullname: Wang, Chao
  email: drchaowang@126.com
  organization: Integrated Service Networks Laboratory, Xidian University, Xi'an, China
– sequence: 2
  givenname: Guo
  orcidid: 0000-0001-6273-9028
  surname: Li
  fullname: Li, Guo
  email: liguo@stu.xidian.edu.cn
  organization: School of Cyber Engineering, Xidian University, Xi'an, China
– sequence: 3
  givenname: Haibin
  orcidid: 0000-0002-0080-6341
  surname: Zhang
  fullname: Zhang, Haibin
  email: hbzhang@mail.xidian.edu.cn
  organization: School of Cyber Engineering, Xidian University, Xi'an, China
– sequence: 4
  givenname: Kai-Kit
  orcidid: 0000-0001-7521-0078
  surname: Wong
  fullname: Wong, Kai-Kit
  email: kai-kit.wong@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
– sequence: 5
  givenname: Zan
  orcidid: 0000-0002-5207-6504
  surname: Li
  fullname: Li, Zan
  email: zanli@xidian.edu.cn
  organization: Integrated Service Networks Laboratory, Xidian University, Xi'an, China
– sequence: 6
  givenname: Derrick Wing Kwan
  orcidid: 0000-0001-6400-712X
  surname: Ng
  fullname: Ng, Derrick Wing Kwan
  email: w.k.ng@unsw.edu.au
  organization: School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, Australia
– sequence: 7
  givenname: Chan-Byoung
  orcidid: 0000-0001-9561-3341
  surname: Chae
  fullname: Chae, Chan-Byoung
  email: cbchae@yonsei.ac.kr
  organization: School of Integrated Technology, Yonsei University, Seoul, South Korea
BookMark eNp9kE1Lw0AQhhepYFu9e_Cw4Dl1P5LdzbFEq4WWgq30uGySiWxJN3WzEfrvTWkP4sHTDMP7zDDPCA1c4wChe0omlJL0abPNJoyweMK5FIqQKzSkSaIixmI1OPVcRJRJcYNGbbsjhEqRJEO0ndWdLfHUBXDO4PWxDbDHC5uDN8G6T7zs6mC7FjxezpcrXDUez9fTDH9bg58BDvgdrOunBezBBbwA413P3aLrytQt3F3qGH3MXjbZW7RYvc6z6SIqWMpCxEWpIFdGUVPSUnBVklJKqiQpKa94KpSJpeAFy4GUeSVjEBWFAvIqT3hcST5Gj-e9B998ddAGvWs67_qTmlPCUpmQhPUpcU4VvmlbD5UubOj_a1zwxtaaEn2SqHuJ-iRRXyT2IPkDHrzdG3_8D3k4IxYAfsVjKTmN-Q95YX4_
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_JIOT_2024_3486996
crossref_primary_10_1109_LWC_2024_3479226
crossref_primary_10_1109_JIOT_2024_3518623
crossref_primary_10_1109_TWC_2024_3491507
crossref_primary_10_1109_LCOMM_2024_3510334
crossref_primary_10_1002_dac_70033
crossref_primary_10_1109_TWC_2024_3514353
crossref_primary_10_1109_MVT_2025_3529403
crossref_primary_10_1109_OJCOMS_2024_3488503
Cites_doi 10.1109/TIFS.2023.3297452
10.1109/LCOMM.2023.3284320
10.1109/twc.2023.3276245
10.1109/TWC.2023.3255940
10.1109/TSP.2023.3279580
10.1109/IEEECONF44664.2019.9048929
10.1109/GLOBECOM48099.2022.10001672
10.1109/JSTSP.2021.3111438
10.48550/ARXIV.1706.03762
10.1109/TAP.2011.2165470
10.1109/COMST.2021.3063822
10.1109/TSP.2020.3004739
10.1109/VTCSpring.2016.7504435
10.1109/JSAC.2019.2933762
10.1109/twc.2023.3327063
10.3389/frcmn.2022.853416
10.1109/TCOMM.2017.2720733
10.1109/ICC45041.2023.10279614
10.1109/twc.2023.3338626
10.1109/COMST.2018.2846401
10.1109/COMST.2022.3149272
10.1109/twc.2023.3330887
10.1109/JSYST.2023.3236975
10.1109/TSP.2021.3135692
10.1109/TWC.2020.3037595
10.1109/TCOMM.2023.3255904
10.1109/TSP.2020.2967181
10.1002/0471221104
10.1109/MWC.001.2000534
10.1109/TCOMM.2022.3230861
10.3390/s23041921
10.1109/TWC.2021.3133410
10.1109/MCOM.2014.6736761
10.1109/TWC.2021.3086503
10.1109/CVPR52688.2022.01553
10.1109/JSAC.2022.3155515
10.1109/JSAC.2022.3180803
10.1109/LCOMM.2021.3074756
10.1109/LCOMM.2022.3222574
10.1109/MCOM.2004.1341263
10.1109/twc.2023.3266411
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2024.3376800
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 10894
ExternalDocumentID 10_1109_TWC_2024_3376800
10477314
Genre orig-research
GrantInformation_xml – fundername: Defense Industrial Technology Development Program
  grantid: JCKY2020204B027; JCKY2021110B143; JCKY2021608B001
– fundername: National Natural Science Foundation of China
  grantid: 62371357; 61801518
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M683428
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-36d8eb8a81ad1d638d0d771870d13f3968a4763c2be0dbf74e6f1ecebfb534f73
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:21:49 EDT 2025
Tue Jul 01 04:13:39 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Wed Aug 27 02:01:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-36d8eb8a81ad1d638d0d771870d13f3968a4763c2be0dbf74e6f1ecebfb534f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0080-6341
0000-0003-0187-6453
0000-0001-9561-3341
0000-0001-7521-0078
0000-0001-6273-9028
0000-0002-5207-6504
0000-0001-6400-712X
PQID 3102975052
PQPubID 105736
PageCount 16
ParticipantIDs ieee_primary_10477314
proquest_journals_3102975052
crossref_primary_10_1109_TWC_2024_3376800
crossref_citationtrail_10_1109_TWC_2024_3376800
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Nachum (ref45)
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Abramowitz (ref29) 1964
Hendrycks (ref46) 2016
Jin (ref40) 2019
Dosovitskiy (ref49)
ref50
Nandwani (ref38); 32
ref48
ref47
Bahdanau (ref42)
Loshchilov (ref54)
Lei Ba (ref51) 2016
Bello (ref43)
ref8
ref7
ref9
Sutton (ref44) 2018
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ref23
Sutskever (ref41)
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Vinyals (ref36)
References_xml – ident: ref27
  doi: 10.1109/TIFS.2023.3297452
– ident: ref4
  doi: 10.1109/LCOMM.2023.3284320
– year: 2019
  ident: ref40
  article-title: What is local optimality in nonconvex-nonconcave minimax optimization?
  publication-title: arXiv:1902.00618
– year: 2016
  ident: ref51
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
– ident: ref9
  doi: 10.1109/twc.2023.3276245
– ident: ref16
  doi: 10.1109/TWC.2023.3255940
– ident: ref19
  doi: 10.1109/TSP.2023.3279580
– ident: ref37
  doi: 10.1109/IEEECONF44664.2019.9048929
– ident: ref53
  doi: 10.1109/GLOBECOM48099.2022.10001672
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref49
  article-title: An image is worth 16✗16 words: Transformers for image recognition at scale
– ident: ref20
  doi: 10.1109/JSTSP.2021.3111438
– ident: ref50
  doi: 10.48550/ARXIV.1706.03762
– ident: ref5
  doi: 10.1109/TAP.2011.2165470
– ident: ref22
  doi: 10.1109/COMST.2021.3063822
– ident: ref34
  doi: 10.1109/TSP.2020.3004739
– ident: ref52
  doi: 10.1109/VTCSpring.2016.7504435
– ident: ref24
  doi: 10.1109/JSAC.2019.2933762
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref41
  article-title: Sequence to sequence learning with neural networks
– volume-title: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: ref29
– ident: ref10
  doi: 10.1109/twc.2023.3327063
– ident: ref3
  doi: 10.3389/frcmn.2022.853416
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref54
  article-title: Decoupled weight decay regularization
– ident: ref55
  doi: 10.1109/TCOMM.2017.2720733
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref43
  article-title: Neural combinatorial optimization with reinforcement learning
– ident: ref32
  doi: 10.1109/twc.2023.3327063
– ident: ref7
  doi: 10.1109/ICC45041.2023.10279614
– ident: ref11
  doi: 10.1109/twc.2023.3338626
– ident: ref21
  doi: 10.1109/COMST.2018.2846401
– ident: ref18
  doi: 10.1109/COMST.2022.3149272
– year: 2016
  ident: ref46
  article-title: Gaussian error linear units (GELUs)
  publication-title: arXiv:1606.08415
– ident: ref12
  doi: 10.1109/twc.2023.3330887
– ident: ref25
  doi: 10.1109/JSYST.2023.3236975
– ident: ref30
  doi: 10.1109/TSP.2021.3135692
– ident: ref6
  doi: 10.1109/TWC.2020.3037595
– ident: ref15
  doi: 10.1109/TCOMM.2023.3255904
– ident: ref31
  doi: 10.1109/TSP.2020.2967181
– ident: ref33
  doi: 10.1002/0471221104
– ident: ref47
  doi: 10.1109/MWC.001.2000534
– ident: ref17
  doi: 10.1109/TCOMM.2022.3230861
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: A primal dual formulation for deep learning with constraints
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref42
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref2
  doi: 10.3390/s23041921
– start-page: 2775
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref45
  article-title: Bridging the gap between value and policy based reinforcement learning
– ident: ref13
  doi: 10.1109/TWC.2021.3133410
– ident: ref1
  doi: 10.1109/MCOM.2014.6736761
– ident: ref23
  doi: 10.1109/TWC.2021.3086503
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref36
  article-title: Pointer networks
– ident: ref48
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref28
  doi: 10.1109/JSAC.2022.3155515
– ident: ref39
  doi: 10.1109/JSAC.2022.3180803
– ident: ref26
  doi: 10.1109/LCOMM.2021.3074756
– ident: ref14
  doi: 10.1109/LCOMM.2022.3222574
– ident: ref35
  doi: 10.1109/MCOM.2004.1341263
– ident: ref8
  doi: 10.1109/twc.2023.3266411
– volume-title: Reforcement Learning: An introduction
  year: 2018
  ident: ref44
SSID ssj0017655
Score 2.664025
Snippet The aim of this paper is to enhance the performance of an integrated sensing and communications (ISAC) system in the multiuser multiple-input multiple-output...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10879
SubjectTerms Algorithms
Antenna design
Antennas
channel extrapolation
Constraints
Deep learning
Deep reinforcement learning
Design optimization
Downlinking
End-to-end learning
fluid antenna
Fluids
integrated sensing and communication
Machine learning
MIMO communication
multiuser MIMO
Neural networks
Optimization
Performance prediction
Precoding
reinforcement learning
Sensors
Title Fluid Antenna System Liberating Multiuser MIMO for ISAC via Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10477314
https://www.proquest.com/docview/3102975052
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Ukx58YkTR9ODFw8LutrS7R4ISMAEThcBt08fUEAkQBQ_-etvuQohG420P7abpdDoznfm-Qegm4izUgpjAWOfVBihpHKSKKpd95MxYk5Eah3fu9VlnSB_GjXEBVvdYGADwxWdQc58-l6_nauWeyuqOVoAT17Z610ZuOVhrkzLgzLc4tRrsGsvwTU4yTOuDUctGgjGtEatOiQOzbdkg31Tlx03szUv7EPXXC8urSl5rq6Wsqc9vnI3_XvkROigcTdzMT8Yx2oHZCdrfoh88RaP2dDXRuOmq2GcC5-Tl2NeQCFcNjT061z1j4F6394itf4u7z80W_pgIfAewwE_giVeVf2PEBVfrSxkN2_eDVicoGi0EKk7jZUCYTkAmIomEjrTVSB1qbo0WD3VEDElZIqi9h1QsIdTScArMRKBAGtkg1HByhkqz-QzOEZYiVSKhhEWRpJpqya0DJMD6MQYiphsVVF9vfaYKFnLXDGOa-WgkTDMrrMwJKyuEVUG3mxmLnIHjj7Flt_db4_Jtr6DqWrxZoaPvmXVsHaw4bMQXv0y7RHvu73lJWRWVlm8ruLI-yFJe-7P3BbcU1jU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1GeHlgY0saxYydjVahaoEWCItgiP84IgQqCloFfj-2kVQUCsWWwFcvn89357vsOoWMieGwktZF1zqsLUPIkyjXTPvsouHUmI7ce79zr884tO79P7yuwesDCAEAoPoO6_wy5fPOix_6prOFpBQT1basXnOFPSQnXmiYNBA9NTp0O-9YyYpqVjPPG4K7lYsGE1alTqMzD2WasUGir8uMuDgamvYr6k6WVdSVP9fFI1fXnN9bGf699Da1UriZulmdjHc3BcAMtzxAQbqK79vP40eCmr2MfSlzSl-NQRSJ9PTQO-Fz_kIF73d4Vdh4u7t40W_jjUeJTgFd8DYF6VYdXRlyxtT5sodv22aDViapWC5FO8mQUUW4yUJnMiDTEOJ00sRHObInYEGppzjPJ3E2kEwWxUVYw4JaABmVVSpkVdBvND1-GsIOwkrmWGaOcEMUMM0o4F0iC82QsEG7SGmpMtr7QFQ-5b4fxXIR4JM4LJ6zCC6uohFVDJ9MZryUHxx9jt_zez4wrt72G9ifiLSotfS-ca-uBxXGa7P4y7Qgtdga9y-Ky27_YQ0v-T2WB2T6aH72N4cB5JCN1GM7hFw6w2X4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+Antenna+System+Liberating+Multiuser+MIMO+for+ISAC+via+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Wang%2C+Chao&rft.au=Guo%2C+Li&rft.au=Zhang%2C+Haibin&rft.au=Wong%2C+Kai-Kit&rft.date=2024-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=23&rft.issue=9&rft.spage=10879&rft_id=info:doi/10.1109%2FTWC.2024.3376800&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon