Two-Stage Self-Adaptive Task Outsourcing Decision Making for Edge-Assisted Multi-UAV Networks

This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first stage, multiple UAVs determine their optimal positions to detect as many target faces as possible for efficient surveillance using multi-agent de...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 72; no. 11; pp. 1 - 16
Main Authors Jung, Soyi, Park, Chanyoung, Levorato, Marco, Kim, Jae-Hyun, Kim, Joongheon
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first stage, multiple UAVs determine their optimal positions to detect as many target faces as possible for efficient surveillance using multi-agent deep reinforcement learning (MADRL). Multi-UAVs must be coordinated and optimally positioned for effective surveillance depending on the target person's location. It is also significantly important to consider the battery performance of the UAVs. In the second stage, every single UAV performs face identification in monitored areas, where two sequential scheduling methods make decisions: (i) edge selection for remote computing via max-weight scheduling and (ii) transmit power allocation scheduling to deliver the images to scheduled edges for time-average energy consumption minimization subject to stability. The identification execution requires computing power, and its complexity and time depend on the number of faces in the captured image. Consequently, the task cannot be fully executed by an individual UAV in high image arrival regimes or images with a high density of faces. In those conditions, UAVs can leverage computing support from nearby edges capable of AI-based face identification tasks. Importantly, computing task distribution should be energy-efficient and delay-minimal due to constraints imposed by the UAV system's characteristics and applications. We remark that selected edges should complete their computing tasks with similar delay to minimize idle time among the edges, which is why we chose min-max scheduling. To summarize, our proposed novel two-stage algorithm accomplishes efficient multi-UAV positioning corresponding to user-defined weight (overlapped threshold) and minimizes UAVs' transmission power while preserving stability constraints.
AbstractList This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first stage, multiple UAVs determine their optimal positions to detect as many target faces as possible for efficient surveillance using multi-agent deep reinforcement learning (MADRL). Multi-UAVs must be coordinated and optimally positioned for effective surveillance depending on the target person's location. It is also significantly important to consider the battery performance of the UAVs. In the second stage, every single UAV performs face identification in monitored areas, where two sequential scheduling methods make decisions: (i) edge selection for remote computing via max-weight scheduling and (ii) transmit power allocation scheduling to deliver the images to scheduled edges for time-average energy consumption minimization subject to stability. The identification execution requires computing power, and its complexity and time depend on the number of faces in the captured image. Consequently, the task cannot be fully executed by an individual UAV in high image arrival regimes or images with a high density of faces. In those conditions, UAVs can leverage computing support from nearby edges capable of AI-based face identification tasks. Importantly, computing task distribution should be energy-efficient and delay-minimal due to constraints imposed by the UAV system's characteristics and applications. We remark that selected edges should complete their computing tasks with similar delay to minimize idle time among the edges, which is why we chose min-max scheduling. To summarize, our proposed novel two-stage algorithm accomplishes efficient multi-UAV positioning corresponding to user-defined weight (overlapped threshold) and minimizes UAVs' transmission power while preserving stability constraints.
Author Jung, Soyi
Levorato, Marco
Park, Chanyoung
Kim, Jae-Hyun
Kim, Joongheon
Author_xml – sequence: 1
  givenname: Soyi
  orcidid: 0000-0001-8435-0646
  surname: Jung
  fullname: Jung, Soyi
  organization: Department of Electrical and Computer Engineering, Ajou University, Suwon, Republic of Korea
– sequence: 2
  givenname: Chanyoung
  surname: Park
  fullname: Park, Chanyoung
  organization: Department of Electrical and Computer Engineering, Korea University, Seoul, Republic of Korea
– sequence: 3
  givenname: Marco
  orcidid: 0000-0002-6920-4189
  surname: Levorato
  fullname: Levorato, Marco
  organization: Department of Computer Science, Donald Bren School of Information and Computer Sciences, University of California at Irvine, Irvine, CA, USA
– sequence: 4
  givenname: Jae-Hyun
  orcidid: 0000-0003-4716-6916
  surname: Kim
  fullname: Kim, Jae-Hyun
  organization: Department of Electrical and Computer Engineering, Ajou University, Suwon, Republic of Korea
– sequence: 5
  givenname: Joongheon
  orcidid: 0000-0003-2126-768X
  surname: Kim
  fullname: Kim, Joongheon
  organization: Department of Electrical and Computer Engineering, Korea University, Seoul, Republic of Korea
BookMark eNp9kEtPAjEUhRujiYDuXbiYxHWxj5mhXRJ8JiALBnZm0unckgLOYFsk_ntLYGFcmLu4Ock59_F10XnTNoDQDSV9Som8LxZFnxHG-5wJnpL0DHWo5BJLnslz1CGECiyzNLtEXe9XUaappB30XuxbPAtqCckMNgYPa7UN9guSQvl1Mt0F3-6cts0yeQBtvW2bZKLWB21alzzWS8BD760PUCeT3SZYPB8ukjcI-9at_RW6MGrj4frUe2j-9FiMXvB4-vw6Go6xZpIFzAnTohowYQzUNNMCNCcKhDSGg4HcGKGygaw0yWksAlVaEZ1GN68rDinvobvj3K1rP3fgQ7mKZzdxZcmEJJRkuWDRlR9d2rXeOzCltkGF-FNwym5KSsoDyjKiLA8oyxPKGCR_gltnP5T7_i9ye4xYAPhlj9jzQc5_ADk6gbo
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_JSEN_2024_3494028
crossref_primary_10_1109_TNSE_2024_3371434
Cites_doi 10.1109/FG.2018.00019
10.1109/TII.2022.3143175
10.1109/ACCESS.2019.2915944
10.1109/TCOMM.2022.3196654
10.1109/TMC.2018.2863234
10.1109/TWC.2022.3142018
10.1016/B978-1-55860-307-3.50049-6
10.1109/ACCESS.2021.3072067
10.1109/JIOT.2017.2672778
10.1109/ACCESS.2016.2641450
10.1109/TBC.2013.2273598
10.1109/LCOMM.2020.3017559
10.1109/ACCESS.2019.2938249
10.1109/TVT.2021.3062418
10.1109/TVT.2019.2903144
10.1109/TVT.2021.3134044
10.1016/j.jnca.2016.08.009
10.1109/LCOMM.2022.3172171
10.1109/TNET.2015.2452272
10.1109/TNSM.2022.3196852
10.1109/TWC.2019.2935201
10.1109/TCOMM.2020.2983671
10.1109/ICC.2014.6884155
10.1145/3123266.3123368
10.23919/JCN.2021.000009
10.1109/SMC.2018.00737
10.1109/JSYST.2020.3014231
10.1109/ACCESS.2021.3073704
10.1109/JIOT.2020.3023010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2023.3283404
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 16
ExternalDocumentID 10_1109_TVT_2023_3283404
10144676
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2021R1A4A1030775
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IFJZH
RIG
VH1
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c292t-302c8b728ffed15c8ec30ae89ff3efe6ff8a579bc0616160eb4b0c4ffe3db3e43
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 08:17:41 EDT 2025
Tue Jul 01 01:44:23 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Wed Aug 27 02:57:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-302c8b728ffed15c8ec30ae89ff3efe6ff8a579bc0616160eb4b0c4ffe3db3e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8435-0646
0000-0002-6920-4189
0000-0003-2126-768X
0000-0003-4716-6916
PQID 2890105682
PQPubID 85454
PageCount 16
ParticipantIDs proquest_journals_2890105682
crossref_citationtrail_10_1109_TVT_2023_3283404
ieee_primary_10144676
crossref_primary_10_1109_TVT_2023_3283404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Sukhbaatar (ref26) 2016
Park (ref4) 2022
ref24
Neely (ref28) 2010
ref23
ref25
ref20
ref22
(ref32) 2020
ref21
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1109/FG.2018.00019
– volume-title: Stochastic Network Optimization With Application to Communication and Queueing Systems, Ser. Synthesis Lectures on Communication Networks
  year: 2010
  ident: ref28
– ident: ref3
  doi: 10.1109/TII.2022.3143175
– ident: ref22
  doi: 10.1109/ACCESS.2019.2915944
– ident: ref19
  doi: 10.1109/TCOMM.2022.3196654
– ident: ref9
  doi: 10.1109/TMC.2018.2863234
– ident: ref12
  doi: 10.1109/TWC.2022.3142018
– ident: ref33
  doi: 10.1016/B978-1-55860-307-3.50049-6
– year: 2022
  ident: ref4
  article-title: Cooperative multi-agent deep reinforcement learning for reliable and energy-efficient mobile access via multi-UAV control
– ident: ref21
  doi: 10.1109/ACCESS.2021.3072067
– ident: ref6
  doi: 10.1109/JIOT.2017.2672778
– ident: ref23
  doi: 10.1109/ACCESS.2016.2641450
– ident: ref27
  doi: 10.1109/TBC.2013.2273598
– ident: ref20
  doi: 10.1109/LCOMM.2020.3017559
– ident: ref2
  doi: 10.1109/ACCESS.2019.2938249
– ident: ref1
  doi: 10.1109/TVT.2021.3062418
– ident: ref7
  doi: 10.1109/TVT.2019.2903144
– ident: ref24
  doi: 10.1109/TVT.2021.3134044
– start-page: 2252
  volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst.
  year: 2016
  ident: ref26
  article-title: Learning multiagent communication with backpropagation
– volume-title: Phantom 4 Pro/Pro Series User Manual
  year: 2020
  ident: ref32
– ident: ref25
  doi: 10.1016/j.jnca.2016.08.009
– ident: ref17
  doi: 10.1109/LCOMM.2022.3172171
– ident: ref8
  doi: 10.1109/TNET.2015.2452272
– ident: ref15
  doi: 10.1109/TNSM.2022.3196852
– ident: ref13
  doi: 10.1109/TWC.2019.2935201
– ident: ref18
  doi: 10.1109/TCOMM.2020.2983671
– ident: ref29
  doi: 10.1109/ICC.2014.6884155
– ident: ref11
  doi: 10.1145/3123266.3123368
– ident: ref31
  doi: 10.23919/JCN.2021.000009
– ident: ref5
  doi: 10.1109/SMC.2018.00737
– ident: ref10
  doi: 10.1109/JSYST.2020.3014231
– ident: ref14
  doi: 10.1109/ACCESS.2021.3073704
– ident: ref16
  doi: 10.1109/JIOT.2020.3023010
SSID ssj0014491
Score 2.4372063
Snippet This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Autonomous aerial vehicles
Delivery scheduling
Edge
Energy consumption
Energy distribution
Faces
Idling
Image edge detection
Machine learning
Multi-Agent Deep Reinforcement Learning (MADRL)
Multiagent systems
Optimization
Outsourcing
Power management
Remote computing
Scheduling
Sequential scheduling
Stability
Stability analysis
Surveillance
Target detection
Task analysis
Two-Stage
Unmanned aerial vehicles
Unmanned Aerial Vehicles (UAVs)
Title Two-Stage Self-Adaptive Task Outsourcing Decision Making for Edge-Assisted Multi-UAV Networks
URI https://ieeexplore.ieee.org/document/10144676
https://www.proquest.com/docview/2890105682
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLagJziMHytaWYd84LKDUxO7rnOsRhGaRHcgRVxQFNvPHEAtWlNN4q_n2XEQYmKacsnhObLyPduf_fzeR8gpt7lXupC4N-GGSWksM0IoVntr0IVUrSEkJ1_N1eVC_rwd36Zk9ZgLAwDx8hlk4TXG8t3KbsJR2SjoyuLAVttkG3dubbLWa8hAyiSPd4YjGHlBF5Pkxai8KbMgE54JXExl0mTr1qAoqvLXTByXl4s9Mu861t4qecg2jcns87uajf_d833yKRFNOm0944BswfKQ7L4pP_iZ3JV_VgzZ5j3Qa3j0bOrqpzD70bJeP9Bfmyae7KMpPU9KPPQqildRZLp05u6BIbrBTxyNibxsMb2h8_Zi-bpPFhez8sclS3ILzOZF3jDBc6vNJNfegzsbW0RJ8Bp04b0AD8p7XY8nhbFIAfDhYKThVqK1cEaAFEekt1wt4QuhSofSYnIsrOMSrNTO2Vzq2qtaTcCLARl1AFQ21SIPkhiPVdyT8KJCyKoAWZUgG5Dvry2e2joc_7DtBwTe2LU_f0CGHchVGqnrKgRakWMqnR9_0Owr2QlfbxMQh6TX_N7AN2QijTmJHvgCtoLaJg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLf2cWAc2IAhCmP4wIWDUzd2XOdYwaayreVAOu2Coth-3mFTO9FUSPz1PDvONDGBUC45PCtWfs9-z34fP0I-cJt7pUuJZxNumJTGMiOEYo23BlVINRpCcfJsrqYLeXZVXKVi9VgLAwAx-Qyy8Bpj-W5lN-GqbBh4ZXFhq22yi4a_yLtyrfuggZSJIG-EaxgF-qgkL4fVZZUFovBMoDmViZWtt0KRVuXRXhwNzOk-mfdT6_JKbrJNazL764-ujf899wPyLLmadNLpxnOyBcsX5OmDBoQvyffq54qhv3kN9BvcejZxzV3Y_2jVrG_o100b7_ZRlH5OXDx0FumrKPq69MRdA0N8g6Y4Gkt52WJySeddavn6kCxOT6pPU5YIF5jNy7xlgudWm3GuvQc3KiziJHgDuvRegAflvW6KcWksOgH4cDDScCtRWjgjQIpXZGe5WsJrQpUOzcVkIazjEqzUztlc6sarRo3BiwEZ9gDUNnUjD6QYt3U8lfCyRsjqAFmdIBuQj_cj7rpOHP-QPQwIPJDrfv6AHPUg12mtrusQakUvU-n8zV-GvSdPptXsor74Mj9_S_bCl7pyxCOy0_7YwDv0S1pzHLXxN0QB3XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Self-Adaptive+Task+Outsourcing+Decision+Making+for+Edge-Assisted+Multi-UAV+Networks&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Jung%2C+Soyi&rft.au=Park%2C+Chanyoung&rft.au=Levorato%2C+Marco&rft.au=Kim%2C+Jae-Hyun&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0018-9545&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTVT.2023.3283404&rft.externalDocID=10144676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon