Two-Stage Self-Adaptive Task Outsourcing Decision Making for Edge-Assisted Multi-UAV Networks
This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first stage, multiple UAVs determine their optimal positions to detect as many target faces as possible for efficient surveillance using multi-agent de...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 72; no. 11; pp. 1 - 16 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first stage, multiple UAVs determine their optimal positions to detect as many target faces as possible for efficient surveillance using multi-agent deep reinforcement learning (MADRL). Multi-UAVs must be coordinated and optimally positioned for effective surveillance depending on the target person's location. It is also significantly important to consider the battery performance of the UAVs. In the second stage, every single UAV performs face identification in monitored areas, where two sequential scheduling methods make decisions: (i) edge selection for remote computing via max-weight scheduling and (ii) transmit power allocation scheduling to deliver the images to scheduled edges for time-average energy consumption minimization subject to stability. The identification execution requires computing power, and its complexity and time depend on the number of faces in the captured image. Consequently, the task cannot be fully executed by an individual UAV in high image arrival regimes or images with a high density of faces. In those conditions, UAVs can leverage computing support from nearby edges capable of AI-based face identification tasks. Importantly, computing task distribution should be energy-efficient and delay-minimal due to constraints imposed by the UAV system's characteristics and applications. We remark that selected edges should complete their computing tasks with similar delay to minimize idle time among the edges, which is why we chose min-max scheduling. To summarize, our proposed novel two-stage algorithm accomplishes efficient multi-UAV positioning corresponding to user-defined weight (overlapped threshold) and minimizes UAVs' transmission power while preserving stability constraints. |
---|---|
AbstractList | This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first stage, multiple UAVs determine their optimal positions to detect as many target faces as possible for efficient surveillance using multi-agent deep reinforcement learning (MADRL). Multi-UAVs must be coordinated and optimally positioned for effective surveillance depending on the target person's location. It is also significantly important to consider the battery performance of the UAVs. In the second stage, every single UAV performs face identification in monitored areas, where two sequential scheduling methods make decisions: (i) edge selection for remote computing via max-weight scheduling and (ii) transmit power allocation scheduling to deliver the images to scheduled edges for time-average energy consumption minimization subject to stability. The identification execution requires computing power, and its complexity and time depend on the number of faces in the captured image. Consequently, the task cannot be fully executed by an individual UAV in high image arrival regimes or images with a high density of faces. In those conditions, UAVs can leverage computing support from nearby edges capable of AI-based face identification tasks. Importantly, computing task distribution should be energy-efficient and delay-minimal due to constraints imposed by the UAV system's characteristics and applications. We remark that selected edges should complete their computing tasks with similar delay to minimize idle time among the edges, which is why we chose min-max scheduling. To summarize, our proposed novel two-stage algorithm accomplishes efficient multi-UAV positioning corresponding to user-defined weight (overlapped threshold) and minimizes UAVs' transmission power while preserving stability constraints. |
Author | Jung, Soyi Levorato, Marco Park, Chanyoung Kim, Jae-Hyun Kim, Joongheon |
Author_xml | – sequence: 1 givenname: Soyi orcidid: 0000-0001-8435-0646 surname: Jung fullname: Jung, Soyi organization: Department of Electrical and Computer Engineering, Ajou University, Suwon, Republic of Korea – sequence: 2 givenname: Chanyoung surname: Park fullname: Park, Chanyoung organization: Department of Electrical and Computer Engineering, Korea University, Seoul, Republic of Korea – sequence: 3 givenname: Marco orcidid: 0000-0002-6920-4189 surname: Levorato fullname: Levorato, Marco organization: Department of Computer Science, Donald Bren School of Information and Computer Sciences, University of California at Irvine, Irvine, CA, USA – sequence: 4 givenname: Jae-Hyun orcidid: 0000-0003-4716-6916 surname: Kim fullname: Kim, Jae-Hyun organization: Department of Electrical and Computer Engineering, Ajou University, Suwon, Republic of Korea – sequence: 5 givenname: Joongheon orcidid: 0000-0003-2126-768X surname: Kim fullname: Kim, Joongheon organization: Department of Electrical and Computer Engineering, Korea University, Seoul, Republic of Korea |
BookMark | eNp9kEtPAjEUhRujiYDuXbiYxHWxj5mhXRJ8JiALBnZm0unckgLOYFsk_ntLYGFcmLu4Ock59_F10XnTNoDQDSV9Som8LxZFnxHG-5wJnpL0DHWo5BJLnslz1CGECiyzNLtEXe9XUaappB30XuxbPAtqCckMNgYPa7UN9guSQvl1Mt0F3-6cts0yeQBtvW2bZKLWB21alzzWS8BD760PUCeT3SZYPB8ukjcI-9at_RW6MGrj4frUe2j-9FiMXvB4-vw6Go6xZpIFzAnTohowYQzUNNMCNCcKhDSGg4HcGKGygaw0yWksAlVaEZ1GN68rDinvobvj3K1rP3fgQ7mKZzdxZcmEJJRkuWDRlR9d2rXeOzCltkGF-FNwym5KSsoDyjKiLA8oyxPKGCR_gltnP5T7_i9ye4xYAPhlj9jzQc5_ADk6gbo |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3494028 crossref_primary_10_1109_TNSE_2024_3371434 |
Cites_doi | 10.1109/FG.2018.00019 10.1109/TII.2022.3143175 10.1109/ACCESS.2019.2915944 10.1109/TCOMM.2022.3196654 10.1109/TMC.2018.2863234 10.1109/TWC.2022.3142018 10.1016/B978-1-55860-307-3.50049-6 10.1109/ACCESS.2021.3072067 10.1109/JIOT.2017.2672778 10.1109/ACCESS.2016.2641450 10.1109/TBC.2013.2273598 10.1109/LCOMM.2020.3017559 10.1109/ACCESS.2019.2938249 10.1109/TVT.2021.3062418 10.1109/TVT.2019.2903144 10.1109/TVT.2021.3134044 10.1016/j.jnca.2016.08.009 10.1109/LCOMM.2022.3172171 10.1109/TNET.2015.2452272 10.1109/TNSM.2022.3196852 10.1109/TWC.2019.2935201 10.1109/TCOMM.2020.2983671 10.1109/ICC.2014.6884155 10.1145/3123266.3123368 10.23919/JCN.2021.000009 10.1109/SMC.2018.00737 10.1109/JSYST.2020.3014231 10.1109/ACCESS.2021.3073704 10.1109/JIOT.2020.3023010 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2023.3283404 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 16 |
ExternalDocumentID | 10_1109_TVT_2023_3283404 10144676 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2021R1A4A1030775 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 3EH 5VS AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IFJZH RIG VH1 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c292t-302c8b728ffed15c8ec30ae89ff3efe6ff8a579bc0616160eb4b0c4ffe3db3e43 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 08:17:41 EDT 2025 Tue Jul 01 01:44:23 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 Wed Aug 27 02:57:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-302c8b728ffed15c8ec30ae89ff3efe6ff8a579bc0616160eb4b0c4ffe3db3e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8435-0646 0000-0002-6920-4189 0000-0003-2126-768X 0000-0003-4716-6916 |
PQID | 2890105682 |
PQPubID | 85454 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2890105682 crossref_citationtrail_10_1109_TVT_2023_3283404 ieee_primary_10144676 crossref_primary_10_1109_TVT_2023_3283404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Sukhbaatar (ref26) 2016 Park (ref4) 2022 ref24 Neely (ref28) 2010 ref23 ref25 ref20 ref22 (ref32) 2020 ref21 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 |
References_xml | – ident: ref30 doi: 10.1109/FG.2018.00019 – volume-title: Stochastic Network Optimization With Application to Communication and Queueing Systems, Ser. Synthesis Lectures on Communication Networks year: 2010 ident: ref28 – ident: ref3 doi: 10.1109/TII.2022.3143175 – ident: ref22 doi: 10.1109/ACCESS.2019.2915944 – ident: ref19 doi: 10.1109/TCOMM.2022.3196654 – ident: ref9 doi: 10.1109/TMC.2018.2863234 – ident: ref12 doi: 10.1109/TWC.2022.3142018 – ident: ref33 doi: 10.1016/B978-1-55860-307-3.50049-6 – year: 2022 ident: ref4 article-title: Cooperative multi-agent deep reinforcement learning for reliable and energy-efficient mobile access via multi-UAV control – ident: ref21 doi: 10.1109/ACCESS.2021.3072067 – ident: ref6 doi: 10.1109/JIOT.2017.2672778 – ident: ref23 doi: 10.1109/ACCESS.2016.2641450 – ident: ref27 doi: 10.1109/TBC.2013.2273598 – ident: ref20 doi: 10.1109/LCOMM.2020.3017559 – ident: ref2 doi: 10.1109/ACCESS.2019.2938249 – ident: ref1 doi: 10.1109/TVT.2021.3062418 – ident: ref7 doi: 10.1109/TVT.2019.2903144 – ident: ref24 doi: 10.1109/TVT.2021.3134044 – start-page: 2252 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. year: 2016 ident: ref26 article-title: Learning multiagent communication with backpropagation – volume-title: Phantom 4 Pro/Pro Series User Manual year: 2020 ident: ref32 – ident: ref25 doi: 10.1016/j.jnca.2016.08.009 – ident: ref17 doi: 10.1109/LCOMM.2022.3172171 – ident: ref8 doi: 10.1109/TNET.2015.2452272 – ident: ref15 doi: 10.1109/TNSM.2022.3196852 – ident: ref13 doi: 10.1109/TWC.2019.2935201 – ident: ref18 doi: 10.1109/TCOMM.2020.2983671 – ident: ref29 doi: 10.1109/ICC.2014.6884155 – ident: ref11 doi: 10.1145/3123266.3123368 – ident: ref31 doi: 10.23919/JCN.2021.000009 – ident: ref5 doi: 10.1109/SMC.2018.00737 – ident: ref10 doi: 10.1109/JSYST.2020.3014231 – ident: ref14 doi: 10.1109/ACCESS.2021.3073704 – ident: ref16 doi: 10.1109/JIOT.2020.3023010 |
SSID | ssj0014491 |
Score | 2.4372063 |
Snippet | This paper proposes a two-stage novel algorithm for intelligent edge-assisted multiple unmanned aerial vehicles (UAVs) surveillance services. In the first... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Autonomous aerial vehicles Delivery scheduling Edge Energy consumption Energy distribution Faces Idling Image edge detection Machine learning Multi-Agent Deep Reinforcement Learning (MADRL) Multiagent systems Optimization Outsourcing Power management Remote computing Scheduling Sequential scheduling Stability Stability analysis Surveillance Target detection Task analysis Two-Stage Unmanned aerial vehicles Unmanned Aerial Vehicles (UAVs) |
Title | Two-Stage Self-Adaptive Task Outsourcing Decision Making for Edge-Assisted Multi-UAV Networks |
URI | https://ieeexplore.ieee.org/document/10144676 https://www.proquest.com/docview/2890105682 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLagJziMHytaWYd84LKDUxO7rnOsRhGaRHcgRVxQFNvPHEAtWlNN4q_n2XEQYmKacsnhObLyPduf_fzeR8gpt7lXupC4N-GGSWksM0IoVntr0IVUrSEkJ1_N1eVC_rwd36Zk9ZgLAwDx8hlk4TXG8t3KbsJR2SjoyuLAVttkG3dubbLWa8hAyiSPd4YjGHlBF5Pkxai8KbMgE54JXExl0mTr1qAoqvLXTByXl4s9Mu861t4qecg2jcns87uajf_d833yKRFNOm0944BswfKQ7L4pP_iZ3JV_VgzZ5j3Qa3j0bOrqpzD70bJeP9Bfmyae7KMpPU9KPPQqildRZLp05u6BIbrBTxyNibxsMb2h8_Zi-bpPFhez8sclS3ILzOZF3jDBc6vNJNfegzsbW0RJ8Bp04b0AD8p7XY8nhbFIAfDhYKThVqK1cEaAFEekt1wt4QuhSofSYnIsrOMSrNTO2Vzq2qtaTcCLARl1AFQ21SIPkhiPVdyT8KJCyKoAWZUgG5Dvry2e2joc_7DtBwTe2LU_f0CGHchVGqnrKgRakWMqnR9_0Owr2QlfbxMQh6TX_N7AN2QijTmJHvgCtoLaJg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLf2cWAc2IAhCmP4wIWDUzd2XOdYwaayreVAOu2Coth-3mFTO9FUSPz1PDvONDGBUC45PCtWfs9-z34fP0I-cJt7pUuJZxNumJTGMiOEYo23BlVINRpCcfJsrqYLeXZVXKVi9VgLAwAx-Qyy8Bpj-W5lN-GqbBh4ZXFhq22yi4a_yLtyrfuggZSJIG-EaxgF-qgkL4fVZZUFovBMoDmViZWtt0KRVuXRXhwNzOk-mfdT6_JKbrJNazL764-ujf899wPyLLmadNLpxnOyBcsX5OmDBoQvyffq54qhv3kN9BvcejZxzV3Y_2jVrG_o100b7_ZRlH5OXDx0FumrKPq69MRdA0N8g6Y4Gkt52WJySeddavn6kCxOT6pPU5YIF5jNy7xlgudWm3GuvQc3KiziJHgDuvRegAflvW6KcWksOgH4cDDScCtRWjgjQIpXZGe5WsJrQpUOzcVkIazjEqzUztlc6sarRo3BiwEZ9gDUNnUjD6QYt3U8lfCyRsjqAFmdIBuQj_cj7rpOHP-QPQwIPJDrfv6AHPUg12mtrusQakUvU-n8zV-GvSdPptXsor74Mj9_S_bCl7pyxCOy0_7YwDv0S1pzHLXxN0QB3XA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Self-Adaptive+Task+Outsourcing+Decision+Making+for+Edge-Assisted+Multi-UAV+Networks&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Jung%2C+Soyi&rft.au=Park%2C+Chanyoung&rft.au=Levorato%2C+Marco&rft.au=Kim%2C+Jae-Hyun&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0018-9545&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTVT.2023.3283404&rft.externalDocID=10144676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |