Fluorescence behavior of cyanine fluorophore Cy3 confined in anodic porous alumina: Advanced surface analysis

In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understand...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces. A, Physicochemical and engineering aspects Vol. 707; p. 135885
Main Authors Larosa, Claudio, Ţălu, Ştefan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understanding of the material's surface properties, especially when applied to biological arrays and fluorescent dye confinement. To achieve this, Atomic Force Microscopy (AFM) was employed to obtain precise 3-D surface microtexture data. These measurements were complemented by stereometric analyses, adhering to ISO 25178‐2: 2012 standards, ensuring a robust quantitative and qualitative evaluation of the surface micromorphology. The analysis revealed a clear correlation between surface roughness parameters and micromorphological changes as a function of varied processing conditions. Notably, the increase in certain fabrication parameters led to significant alterations in the superficial texture, with observable changes in the fractal dimension of the surface structure. The APA arrays, fabricated using a specialized anodization technique followed by a tailored annealing procedure, exhibited extraordinarily large pore sizes, ranging from 1 to 2 μm, which are well-suited for accommodating the Cy3 dye molecules. These pore dimensions offer an enhanced capacity for dye confinement, providing a stable environment for the cyanine fluorophore while promoting optimal fluorescence behavior. [Display omitted]
AbstractList In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understanding of the material's surface properties, especially when applied to biological arrays and fluorescent dye confinement. To achieve this, Atomic Force Microscopy (AFM) was employed to obtain precise 3-D surface microtexture data. These measurements were complemented by stereometric analyses, adhering to ISO 25178‐2: 2012 standards, ensuring a robust quantitative and qualitative evaluation of the surface micromorphology. The analysis revealed a clear correlation between surface roughness parameters and micromorphological changes as a function of varied processing conditions. Notably, the increase in certain fabrication parameters led to significant alterations in the superficial texture, with observable changes in the fractal dimension of the surface structure. The APA arrays, fabricated using a specialized anodization technique followed by a tailored annealing procedure, exhibited extraordinarily large pore sizes, ranging from 1 to 2 μm, which are well-suited for accommodating the Cy3 dye molecules. These pore dimensions offer an enhanced capacity for dye confinement, providing a stable environment for the cyanine fluorophore while promoting optimal fluorescence behavior. [Display omitted]
In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understanding of the material's surface properties, especially when applied to biological arrays and fluorescent dye confinement. To achieve this, Atomic Force Microscopy (AFM) was employed to obtain precise 3-D surface microtexture data. These measurements were complemented by stereometric analyses, adhering to ISO 25178‐2: 2012 standards, ensuring a robust quantitative and qualitative evaluation of the surface micromorphology. The analysis revealed a clear correlation between surface roughness parameters and micromorphological changes as a function of varied processing conditions. Notably, the increase in certain fabrication parameters led to significant alterations in the superficial texture, with observable changes in the fractal dimension of the surface structure. The APA arrays, fabricated using a specialized anodization technique followed by a tailored annealing procedure, exhibited extraordinarily large pore sizes, ranging from 1 to 2 μm, which are well-suited for accommodating the Cy3 dye molecules. These pore dimensions offer an enhanced capacity for dye confinement, providing a stable environment for the cyanine fluorophore while promoting optimal fluorescence behavior.
ArticleNumber 135885
Author Ţălu, Ştefan
Larosa, Claudio
Author_xml – sequence: 1
  givenname: Claudio
  orcidid: 0000-0001-8156-1552
  surname: Larosa
  fullname: Larosa, Claudio
  email: claudio.larosa@enea.it
  organization: Terin Dec CCT. Enea Casaccia C.R., Via Anguillarese 301, Roma, 00123, Italy
– sequence: 2
  givenname: Ştefan
  surname: Ţălu
  fullname: Ţălu, Ştefan
  email: stefan_ta@yahoo.com, stefan.talu@auto.utcluj.ro
  organization: The Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu Street, no. 15, Cluj-Napoca, Cluj County 400020, Romania
BookMark eNqFkE1LAzEURbOoYFv9C5Klm9YkM_kYV5ZiVSi40XXI5IOmzCQ16RTm35taXbt68Dj38t6ZgUmIwQJwh9ESI8we9ksduzwkp5YEkXqJKyoEnYApaghfcE75NZjlvEcI1ZQ3U9BvuiEmm7UN2sLW7tTJxwSjg3pUwQcL3RmIh12h4HqsoI7Blb2BPkAVovEaHgowZKi6ofdBPcKVOalSZ-DPJaVXBdWN2ecbcOVUl-3t75yDz83zx_p1sX1_eVuvtgtNGnJcEIFR1VBFa-ZcQ4lpsGm1ZkIha6vGMS4EFxXiFNeUNVYj1praOcJq19a8qubg_tJ7SPFrsPkoe19e7DoVbLlUVphRQQXHpKDsguoUc07WyUPyvUqjxEiencq9_HMqz07lxWkJPl2Ctjxy8jbJrP3ZovHJ6qM00f9X8Q0QhIiX
Cites_doi 10.1016/j.rinp.2023.106209
10.1016/j.jiec.2016.08.003
10.1016/S0040-6090(96)09440-0
10.1063/1.1815072
10.1016/j.apsusc.2017.06.264
10.1016/j.jelechem.2018.10.037
10.1021/cr60259a005
10.1364/OL.43.000631
10.1016/j.cplett.2019.01.042
10.1007/s10854-017-7422-4
10.1364/OE.420910
10.1021/cm980163a
10.1016/S0167-577X(00)00292-5
10.1111/jmi.12625
10.1080/1023666X.2014.955400
10.1007/s11082-017-1079-3
10.1016/j.porgcoat.2015.07.024
10.1126/science.268.5216.1466
10.1186/s11671-020-03410-0
10.1016/j.jallcom.2018.06.213
10.1016/j.tsf.2014.01.056
10.1016/j.electacta.2005.05.058
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.colsurfa.2024.135885
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_colsurfa_2024_135885
S0927775724027493
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABMAC
ABNEU
ABNUV
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCB
SSH
VH1
WUQ
7S9
L.6
ID FETCH-LOGICAL-c292t-2810395a546ff952d91dbcc68a0ee39f678878307514569ec06bd4ff264fb4733
IEDL.DBID .~1
ISSN 0927-7757
IngestDate Fri Jul 11 01:44:07 EDT 2025
Tue Jul 01 04:26:35 EDT 2025
Sat Jan 25 15:58:41 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Atomic force microscopy
Anodic porous alumina
Cy3 dye confinement
Surface microtexture
3D surface microtexture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-2810395a546ff952d91dbcc68a0ee39f678878307514569ec06bd4ff264fb4733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8156-1552
PQID 3165858712
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3165858712
crossref_primary_10_1016_j_colsurfa_2024_135885
elsevier_sciencedirect_doi_10_1016_j_colsurfa_2024_135885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-20
  day: 20
PublicationDecade 2020
PublicationTitle Colloids and surfaces. A, Physicochemical and engineering aspects
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khan, Kumar, Khan (bib2) 2015; 11
Ţălu, Bramowicz, Kulesza, Ghaderi, Solaymani, Savaloni, Babaee (bib49) 2016; 43
Ţălu, Abdolghaderi, Pinto, Matos, Salerno (bib55) 2020
Masuda, Fukuda (bib4) 1995; 268
Nakao, Yokoyama, Kikuchi, Aoyagi, Sakurai (bib5) 2012; 6
Zhai, Y, Li, Wang (bib30) 2018; 269
Rubner, Serrano, Turcotte (bib24) 2016; 10
Thompson (bib40) 1997; 297
Nielsch, Müller, Li, Gösele (bib1) 2002; 14
Tani, Ozeki, Yoshimura (bib27) 2015; 119
Jensen, Andreoli, Gasser (bib33) 2020; 239
Ono, Saito, Asoh (bib41) 2005; 51
Ţălu, Nikola, Sobola, Achour, Solaymani (bib51) 2017; 28
Solaymani, Kulesza, Ţălu, Bramowicz, Nezafat, Dalouji, Rezaee, Karami, Malekzadeh, Dorbidi (bib52) 2018; 765
Thompson (bib6) 2014; 558
Xu, Zheng, Wu, Shen (bib39) 2004; 85
Shim, Lee, Park (bib20) 2022; 205
Gao, Zhang, Liu (bib36) 2019; 54
Yamaguchi, Suzuki, Yokoyama (bib8) 2013; 105
Deng, Wang, Qin (bib12) 2020; 127
Marrs, Petersen, Song (bib23) 2021; 29
Scarpelli, Cecchini, Antonini (bib34) 2017; 423
Liu, Xia, Cheng (bib16) 2015; 31
Yu, Hsu, Hsieh (bib35) 2016; 4
Dejam, Solaymani, Achour, Stach, Ţălu, Nezafat, Dalouji, Shokri, Ghaderi (bib46) 2019; 719
Ţălu (bib44) 2015
Larosa, Ţălu, Reverberi, Salerno (bib53) 2020; 280
Ţălu, Patra, Salerno (bib45) 2015; 89
Heller, Baik, Eurell, Strano (bib7) 2016; 88
Redaelli, Cristiani, Canu (bib17) 2021; 9
Kim, Yoon, Kim (bib31) 2021; 8
Ţălu, Yadav, Mittal, Arman, Luna, Achour, Mardani, Ahmadpourian, Naderi, Zavarian, Hafezi, Saghi, Méndez, Trejo (bib47) 2017; 49
Mountains Map® 10 Software (Digital Surf, Besançon, France). Available from
ISO 25178-2: 2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters. Available from
Hara, Mori, Ise (bib10) 2016; 120
Diggle, Downie, Goulding (bib43) 1969; 69
Hoseinzadeh, Solaymani, Kulesza, Achour, Ghorannevis, Ţălu, Bramowicz, Ghoranneviss, Rezaee, Boochani, Maozaffari (bib50) 2018; 830-831
Son, Jeon, Lee (bib32) 2019; 74
Larosa, Terencio, Converti, Eggenhöffner (bib38) 2014; 1
Yamashita, Lee, Matsui (bib28) 2017; 11
Gupta, Taylor, Douglas (bib19) 2018; 23
Kotov, Li, Menon (bib15) 2019; 29
Weathers, Kwon, Kim (bib26) 2019; 308
Li, Zhang, Metzger (bib3) 1998; 10
Cao, Xu, Zhang (bib37) 2022; 122
Zaccarelli, Saldi, Bianchi (bib18) 2019; 4
McLellan, Gomez, Nolan (bib25) 2020; 401
Steele, Zhao, Huang (bib14) 2014; 25
Whitesides (bib13) 2011; 6
Oh, Hwang, Jeong (bib22) 2019; 373
Reid, Tourkine, Slagle (bib21) 2017; 488
Sui, Saniger (bib42) 2001; 48
(last accessed September 15th, 2024).
Matsuura, Nakanishi, Sakai (bib9) 2017; 28
Elenkova, Zaharieva, Getsova, Manolov, Milanova, Stach, Ţălu (bib54) 2015; 20
Franklin, Wang, Helms (bib29) 2020; 15
Dejam, Kulesza, Sabbaghzadeh, Ghaderi, Solaymani, Ţălu, Bramowicz, Amouamouha, Salehi Shayegan, Sari (bib48) 2023; 44
Nguyen, Hara, Wang (bib11) 2018; 43
Dejam (10.1016/j.colsurfa.2024.135885_bib46) 2019; 719
Cao (10.1016/j.colsurfa.2024.135885_bib37) 2022; 122
Nakao (10.1016/j.colsurfa.2024.135885_bib5) 2012; 6
Jensen (10.1016/j.colsurfa.2024.135885_bib33) 2020; 239
Thompson (10.1016/j.colsurfa.2024.135885_bib40) 1997; 297
Yamaguchi (10.1016/j.colsurfa.2024.135885_bib8) 2013; 105
Ono (10.1016/j.colsurfa.2024.135885_bib41) 2005; 51
Zhai (10.1016/j.colsurfa.2024.135885_bib30) 2018; 269
Tani (10.1016/j.colsurfa.2024.135885_bib27) 2015; 119
Rubner (10.1016/j.colsurfa.2024.135885_bib24) 2016; 10
Ţălu (10.1016/j.colsurfa.2024.135885_bib45) 2015; 89
Oh (10.1016/j.colsurfa.2024.135885_bib22) 2019; 373
Zaccarelli (10.1016/j.colsurfa.2024.135885_bib18) 2019; 4
Hoseinzadeh (10.1016/j.colsurfa.2024.135885_bib50) 2018; 830-831
Ţălu (10.1016/j.colsurfa.2024.135885_bib47) 2017; 49
Kim (10.1016/j.colsurfa.2024.135885_bib31) 2021; 8
Diggle (10.1016/j.colsurfa.2024.135885_bib43) 1969; 69
Son (10.1016/j.colsurfa.2024.135885_bib32) 2019; 74
Larosa (10.1016/j.colsurfa.2024.135885_bib53) 2020; 280
Nguyen (10.1016/j.colsurfa.2024.135885_bib11) 2018; 43
Larosa (10.1016/j.colsurfa.2024.135885_bib38) 2014; 1
Gao (10.1016/j.colsurfa.2024.135885_bib36) 2019; 54
Hara (10.1016/j.colsurfa.2024.135885_bib10) 2016; 120
Franklin (10.1016/j.colsurfa.2024.135885_bib29) 2020; 15
Marrs (10.1016/j.colsurfa.2024.135885_bib23) 2021; 29
Xu (10.1016/j.colsurfa.2024.135885_bib39) 2004; 85
Masuda (10.1016/j.colsurfa.2024.135885_bib4) 1995; 268
Whitesides (10.1016/j.colsurfa.2024.135885_bib13) 2011; 6
Sui (10.1016/j.colsurfa.2024.135885_bib42) 2001; 48
Ţălu (10.1016/j.colsurfa.2024.135885_bib44) 2015
10.1016/j.colsurfa.2024.135885_bib56
Shim (10.1016/j.colsurfa.2024.135885_bib20) 2022; 205
10.1016/j.colsurfa.2024.135885_bib57
Steele (10.1016/j.colsurfa.2024.135885_bib14) 2014; 25
Kotov (10.1016/j.colsurfa.2024.135885_bib15) 2019; 29
Ţălu (10.1016/j.colsurfa.2024.135885_bib49) 2016; 43
Elenkova (10.1016/j.colsurfa.2024.135885_bib54) 2015; 20
Khan (10.1016/j.colsurfa.2024.135885_bib2) 2015; 11
Thompson (10.1016/j.colsurfa.2024.135885_bib6) 2014; 558
Yamashita (10.1016/j.colsurfa.2024.135885_bib28) 2017; 11
Ţălu (10.1016/j.colsurfa.2024.135885_bib51) 2017; 28
Ţălu (10.1016/j.colsurfa.2024.135885_bib55) 2020
McLellan (10.1016/j.colsurfa.2024.135885_bib25) 2020; 401
Dejam (10.1016/j.colsurfa.2024.135885_bib48) 2023; 44
Li (10.1016/j.colsurfa.2024.135885_bib3) 1998; 10
Liu (10.1016/j.colsurfa.2024.135885_bib16) 2015; 31
Redaelli (10.1016/j.colsurfa.2024.135885_bib17) 2021; 9
Solaymani (10.1016/j.colsurfa.2024.135885_bib52) 2018; 765
Gupta (10.1016/j.colsurfa.2024.135885_bib19) 2018; 23
Weathers (10.1016/j.colsurfa.2024.135885_bib26) 2019; 308
Heller (10.1016/j.colsurfa.2024.135885_bib7) 2016; 88
Scarpelli (10.1016/j.colsurfa.2024.135885_bib34) 2017; 423
Matsuura (10.1016/j.colsurfa.2024.135885_bib9) 2017; 28
Yu (10.1016/j.colsurfa.2024.135885_bib35) 2016; 4
Reid (10.1016/j.colsurfa.2024.135885_bib21) 2017; 488
Deng (10.1016/j.colsurfa.2024.135885_bib12) 2020; 127
Nielsch (10.1016/j.colsurfa.2024.135885_bib1) 2002; 14
References_xml – volume: 54
  start-page: 10112
  year: 2019
  end-page: 10123
  ident: bib36
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 1830
  year: 2019
  end-page: 1838
  ident: bib18
  publication-title: ACS Sens
– volume: 308
  start-page: 120
  year: 2019
  end-page: 130
  ident: bib26
  publication-title: Electro Acta
– volume: 51
  start-page: 827
  year: 2005
  end-page: 833
  ident: bib41
  publication-title: Electrochem. Acta
– volume: 269
  start-page: 269
  year: 2018
  end-page: 276
  ident: bib30
  publication-title: J. Microsc.
– volume: 8
  start-page: 2001422
  year: 2021
  ident: bib31
  publication-title: Adv. Mater. Interfaces
– volume: 719
  start-page: 78
  year: 2019
  end-page: 90
  ident: bib46
  publication-title: Lett.
– volume: 85
  start-page: 4364
  year: 2004
  ident: bib39
  publication-title: Appl. Phys. Lett.
– volume: 44
  year: 2023
  ident: bib48
  publication-title: Results Phys.
– reference: (last accessed September 15th, 2024).
– volume: 558
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib6
  publication-title: Thin Solid Films
– volume: 765
  start-page: 180
  year: 2018
  end-page: 185
  ident: bib52
  publication-title: Alloy. Compd.
– volume: 11
  start-page: 832
  year: 2015
  end-page: 838
  ident: bib2
  publication-title: J. Biomed. Nanotechnol.
– volume: 423
  start-page: 800
  year: 2017
  end-page: 811
  ident: bib34
  publication-title: Appl. Surf. Sci.
– volume: 205
  year: 2022
  ident: bib20
  publication-title: Biosens. Bioelectron.
– volume: 23
  year: 2018
  ident: bib19
  publication-title: J. Biomed. Opt.
– volume: 10
  year: 2016
  ident: bib24
  publication-title: J. Nanophotonics
– volume: 48
  start-page: 127
  year: 2001
  end-page: 136
  ident: bib42
  publication-title: Mater. Lett.
– volume: 401
  year: 2020
  ident: bib25
  publication-title: Surf. Coat. Technol.
– volume: 297
  start-page: 192
  year: 1997
  end-page: 201
  ident: bib40
  publication-title: Thin Solid Films
– volume: 122
  start-page: 9306
  year: 2022
  end-page: 9335
  ident: bib37
  publication-title: Chem. Rev.
– volume: 268
  start-page: 1466
  year: 1995
  end-page: 1468
  ident: bib4
  publication-title: Science
– volume: 10
  start-page: 2470
  year: 1998
  end-page: 2480
  ident: bib3
  publication-title: Chem. Mater.
– volume: 28
  start-page: 15370
  year: 2017
  end-page: 15379
  ident: bib51
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 6
  start-page: 247
  year: 2011
  end-page: 252
  ident: bib13
  publication-title: Nat. Nanotechnol.
– volume: 69
  start-page: 365
  year: 1969
  end-page: 405
  ident: bib43
  publication-title: Chem. Rev.
– volume: 49
  start-page: 256
  year: 2017
  ident: bib47
  publication-title: Quantum Electron
– year: 2020
  ident: bib55
  publication-title: Surf. Eng.
– volume: 105
  start-page: 126
  year: 2013
  end-page: 134
  ident: bib8
  publication-title: Biophys. J.
– volume: 28
  start-page: 2980
  year: 2017
  end-page: 2989
  ident: bib9
  publication-title: Bioconjug Chem.
– volume: 20
  start-page: 42
  year: 2015
  end-page: 56
  ident: bib54
  publication-title: Int. J. Polym. Anal. Charact.
– volume: 29
  start-page: 8523
  year: 2021
  end-page: 8535
  ident: bib23
  publication-title: Opt. Express
– volume: 89
  start-page: 50
  year: 2015
  end-page: 56
  ident: bib45
– volume: 373
  start-page: 71
  year: 2019
  end-page: 77
  ident: bib22
  publication-title: J. Photochem. Photobio. A
– volume: 119
  start-page: 14122
  year: 2015
  end-page: 14128
  ident: bib27
  publication-title: Phys. Chem. B
– volume: 1
  start-page: S109
  year: 2014
  ident: bib38
  publication-title: J. Mater. Sci. Nanotechnol.
– volume: 43
  start-page: 164
  year: 2016
  end-page: 169
  ident: bib49
  publication-title: Ind. Eng. Chem.
– volume: 239
  year: 2020
  ident: bib33
  publication-title: Mater.
– volume: 25
  year: 2014
  ident: bib14
  publication-title: Nanotechnology
– volume: 14
  start-page: 607
  year: 2002
  end-page: 609
  ident: bib1
  publication-title: Adv. Mater.
– volume: 127
  year: 2020
  ident: bib12
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 1704
  year: 2021
  end-page: 1715
  ident: bib17
  publication-title: J. Mater. Chem. A
– volume: 488
  start-page: 326
  year: 2017
  end-page: 335
  ident: bib21
  publication-title: J. Colloid Interface Sci.
– reference: ISO 25178-2: 2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters. Available from:
– volume: 88
  start-page: 2570
  year: 2016
  end-page: 2579
  ident: bib7
  publication-title: Anal. Chem.
– volume: 15
  start-page: 179
  year: 2020
  ident: bib29
  publication-title: Nanoscale Res Lett.
– volume: 74
  start-page: 305
  year: 2019
  end-page: 326
  ident: bib32
  publication-title: Surf. Sci. Rep.
– volume: 830-831
  start-page: 80
  year: 2018
  end-page: 87
  ident: bib50
  publication-title: J. Electroanal. Chem.
– volume: 29
  start-page: 1806635
  year: 2019
  ident: bib15
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 661
  year: 2016
  end-page: 671
  ident: bib35
  publication-title: J. Mater. Chem. C.
– volume: 280
  start-page: 1
  year: 2020
  end-page: 5
  ident: bib53
  publication-title: Mater. Lett.
– reference: Mountains Map® 10 Software (Digital Surf, Besançon, France). Available from:
– year: 2015
  ident: bib44
  article-title: Micro and nanoscale characterization of three-dimensional surfaces: Basics and applications
– volume: 11
  start-page: 7040
  year: 2017
  end-page: 7047
  ident: bib28
  publication-title: ACS Nano
– volume: 120
  start-page: 7655
  year: 2016
  end-page: 7661
  ident: bib10
  publication-title: J. Phys. Chem. C.
– volume: 43
  start-page: 801
  year: 2018
  end-page: 804
  ident: bib11
  publication-title: Opt. Lett.
– volume: 31
  start-page: 7780
  year: 2015
  end-page: 7789
  ident: bib16
  publication-title: Langmuir
– volume: 6
  start-page: 201
  year: 2012
  end-page: 210
  ident: bib5
  publication-title: ACS Nano
– volume: 10
  issue: 3
  year: 2016
  ident: 10.1016/j.colsurfa.2024.135885_bib24
  publication-title: J. Nanophotonics
– volume: 44
  year: 2023
  ident: 10.1016/j.colsurfa.2024.135885_bib48
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106209
– volume: 43
  start-page: 164
  year: 2016
  ident: 10.1016/j.colsurfa.2024.135885_bib49
  publication-title: Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.08.003
– volume: 14
  start-page: 607
  issue: 8
  year: 2002
  ident: 10.1016/j.colsurfa.2024.135885_bib1
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2001422
  issue: 4
  year: 2021
  ident: 10.1016/j.colsurfa.2024.135885_bib31
  publication-title: Adv. Mater. Interfaces
– volume: 74
  start-page: 305
  issue: 6
  year: 2019
  ident: 10.1016/j.colsurfa.2024.135885_bib32
  publication-title: Surf. Sci. Rep.
– volume: 119
  start-page: 14122
  issue: 44
  year: 2015
  ident: 10.1016/j.colsurfa.2024.135885_bib27
  publication-title: Phys. Chem. B
– volume: 297
  start-page: 192
  year: 1997
  ident: 10.1016/j.colsurfa.2024.135885_bib40
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(96)09440-0
– volume: 373
  start-page: 71
  year: 2019
  ident: 10.1016/j.colsurfa.2024.135885_bib22
  publication-title: J. Photochem. Photobio. A
– volume: 85
  start-page: 4364
  year: 2004
  ident: 10.1016/j.colsurfa.2024.135885_bib39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1815072
– volume: 423
  start-page: 800
  year: 2017
  ident: 10.1016/j.colsurfa.2024.135885_bib34
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.264
– volume: 205
  year: 2022
  ident: 10.1016/j.colsurfa.2024.135885_bib20
  publication-title: Biosens. Bioelectron.
– volume: 830-831
  start-page: 80
  year: 2018
  ident: 10.1016/j.colsurfa.2024.135885_bib50
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.10.037
– volume: 69
  start-page: 365
  year: 1969
  ident: 10.1016/j.colsurfa.2024.135885_bib43
  publication-title: Chem. Rev.
  doi: 10.1021/cr60259a005
– volume: 43
  start-page: 801
  issue: 4
  year: 2018
  ident: 10.1016/j.colsurfa.2024.135885_bib11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.000631
– volume: 719
  start-page: 78
  year: 2019
  ident: 10.1016/j.colsurfa.2024.135885_bib46
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.01.042
– volume: 239
  year: 2020
  ident: 10.1016/j.colsurfa.2024.135885_bib33
  publication-title: Mater. Chem. Phys.,
– volume: 54
  start-page: 10112
  issue: 14
  year: 2019
  ident: 10.1016/j.colsurfa.2024.135885_bib36
  publication-title: J. Mater. Sci.
– volume: 308
  start-page: 120
  year: 2019
  ident: 10.1016/j.colsurfa.2024.135885_bib26
  publication-title: Electro Acta
– volume: 28
  start-page: 15370
  year: 2017
  ident: 10.1016/j.colsurfa.2024.135885_bib51
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-7422-4
– volume: 4
  start-page: 661
  issue: 4
  year: 2016
  ident: 10.1016/j.colsurfa.2024.135885_bib35
  publication-title: J. Mater. Chem. C.
– volume: 23
  issue: 5
  year: 2018
  ident: 10.1016/j.colsurfa.2024.135885_bib19
  publication-title: J. Biomed. Opt.
– volume: 29
  start-page: 8523
  issue: 6
  year: 2021
  ident: 10.1016/j.colsurfa.2024.135885_bib23
  publication-title: Opt. Express
  doi: 10.1364/OE.420910
– volume: 10
  start-page: 2470
  issue: 9
  year: 1998
  ident: 10.1016/j.colsurfa.2024.135885_bib3
  publication-title: Chem. Mater.
  doi: 10.1021/cm980163a
– volume: 48
  start-page: 127
  year: 2001
  ident: 10.1016/j.colsurfa.2024.135885_bib42
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(00)00292-5
– volume: 6
  start-page: 201
  issue: 1
  year: 2012
  ident: 10.1016/j.colsurfa.2024.135885_bib5
  publication-title: ACS Nano
– volume: 28
  start-page: 2980
  issue: 12
  year: 2017
  ident: 10.1016/j.colsurfa.2024.135885_bib9
  publication-title: Bioconjug Chem.
– volume: 269
  start-page: 269
  issue: 3
  year: 2018
  ident: 10.1016/j.colsurfa.2024.135885_bib30
  publication-title: J. Microsc.
  doi: 10.1111/jmi.12625
– volume: 11
  start-page: 7040
  issue: 7
  year: 2017
  ident: 10.1016/j.colsurfa.2024.135885_bib28
  publication-title: ACS Nano
– volume: 20
  start-page: 42
  year: 2015
  ident: 10.1016/j.colsurfa.2024.135885_bib54
  publication-title: Int. J. Polym. Anal. Charact.
  doi: 10.1080/1023666X.2014.955400
– volume: 4
  start-page: 1830
  issue: 7
  year: 2019
  ident: 10.1016/j.colsurfa.2024.135885_bib18
  publication-title: ACS Sens
– volume: 49
  start-page: 256
  year: 2017
  ident: 10.1016/j.colsurfa.2024.135885_bib47
  publication-title: Quantum Electron
  doi: 10.1007/s11082-017-1079-3
– volume: 11
  start-page: 832
  issue: 5
  year: 2015
  ident: 10.1016/j.colsurfa.2024.135885_bib2
  publication-title: J. Biomed. Nanotechnol.
– volume: 6
  start-page: 247
  issue: 3
  year: 2011
  ident: 10.1016/j.colsurfa.2024.135885_bib13
  publication-title: Nat. Nanotechnol.
– volume: 89
  start-page: 50
  year: 2015
  ident: 10.1016/j.colsurfa.2024.135885_bib45
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2015.07.024
– ident: 10.1016/j.colsurfa.2024.135885_bib57
– volume: 105
  start-page: 126
  issue: 1
  year: 2013
  ident: 10.1016/j.colsurfa.2024.135885_bib8
  publication-title: Biophys. J.
– volume: 268
  start-page: 1466
  issue: 5216
  year: 1995
  ident: 10.1016/j.colsurfa.2024.135885_bib4
  publication-title: Science
  doi: 10.1126/science.268.5216.1466
– volume: 127
  issue: 4
  year: 2020
  ident: 10.1016/j.colsurfa.2024.135885_bib12
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: S109
  issue: 1
  year: 2014
  ident: 10.1016/j.colsurfa.2024.135885_bib38
  publication-title: J. Mater. Sci. Nanotechnol.
– volume: 25
  issue: 36
  year: 2014
  ident: 10.1016/j.colsurfa.2024.135885_bib14
  publication-title: Nanotechnology
– volume: 401
  year: 2020
  ident: 10.1016/j.colsurfa.2024.135885_bib25
  publication-title: Surf. Coat. Technol.
– volume: 15
  start-page: 179
  issue: 1
  year: 2020
  ident: 10.1016/j.colsurfa.2024.135885_bib29
  publication-title: Nanoscale Res Lett.
  doi: 10.1186/s11671-020-03410-0
– year: 2015
  ident: 10.1016/j.colsurfa.2024.135885_bib44
– volume: 765
  start-page: 180
  year: 2018
  ident: 10.1016/j.colsurfa.2024.135885_bib52
  publication-title: Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.06.213
– volume: 31
  start-page: 7780
  issue: 28
  year: 2015
  ident: 10.1016/j.colsurfa.2024.135885_bib16
  publication-title: Langmuir
– volume: 122
  start-page: 9306
  issue: 9
  year: 2022
  ident: 10.1016/j.colsurfa.2024.135885_bib37
  publication-title: Chem. Rev.
– volume: 280
  start-page: 1
  issue: 128593
  year: 2020
  ident: 10.1016/j.colsurfa.2024.135885_bib53
  publication-title: Mater. Lett.
– volume: 120
  start-page: 7655
  issue: 14
  year: 2016
  ident: 10.1016/j.colsurfa.2024.135885_bib10
  publication-title: J. Phys. Chem. C.
– ident: 10.1016/j.colsurfa.2024.135885_bib56
– volume: 558
  start-page: 1
  year: 2014
  ident: 10.1016/j.colsurfa.2024.135885_bib6
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.01.056
– year: 2020
  ident: 10.1016/j.colsurfa.2024.135885_bib55
  publication-title: Surf. Eng.
– volume: 88
  start-page: 2570
  issue: 4
  year: 2016
  ident: 10.1016/j.colsurfa.2024.135885_bib7
  publication-title: Anal. Chem.
– volume: 29
  start-page: 1806635
  issue: 21
  year: 2019
  ident: 10.1016/j.colsurfa.2024.135885_bib15
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1704
  issue: 4
  year: 2021
  ident: 10.1016/j.colsurfa.2024.135885_bib17
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 827
  year: 2005
  ident: 10.1016/j.colsurfa.2024.135885_bib41
  publication-title: Electrochem. Acta
  doi: 10.1016/j.electacta.2005.05.058
– volume: 488
  start-page: 326
  year: 2017
  ident: 10.1016/j.colsurfa.2024.135885_bib21
  publication-title: J. Colloid Interface Sci.
SSID ssj0004579
Score 2.454993
Snippet In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 135885
SubjectTerms 3D surface microtexture
aluminum oxide
Anodic porous alumina
Atomic force microscopy
Cy3 dye confinement
fluorescence
fluorescent dyes
fractal dimensions
microstructure
Surface microtexture
surface roughness
texture
Title Fluorescence behavior of cyanine fluorophore Cy3 confined in anodic porous alumina: Advanced surface analysis
URI https://dx.doi.org/10.1016/j.colsurfa.2024.135885
https://www.proquest.com/docview/3165858712
Volume 707
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4inKozISa2jiRxyzVRVVAcEClbpZjmOLVJBUpR1Y-O2c00QqCImB1TlbyZ1z_k6--w6hSyLhCY3SwGMJCFB0GEgqXUCpTWIGsZiueiw9PMajMbub8EkLDZpaGJ9WWfv-lU-vvHU90qu12Zvlee8plEQIwYW_HxBMesZPxoTf5Vef0RpjeM23R0TgpdeqhKew9uv7cu48_xBhvgVE4nsq_35A_XDV1fkz3EU7NXDE_dW77aGWLfbR5qDp17aPtteoBQ_Q2_B1Wc4rriZjcVOMj0uHzYcuQA47L1DOXkAKDz4ohsDYwXiG8wLrosxygwGbl8t3rMGB5YW-xv06YQBXnwPr6prS5BCNhzfPg1FQt1YIDJFkEZDEXwFzzVnsnOQkk1GWGhMnOrQWbBX7JMME_n_AUzyW1oRxmjHnAD65lAlKj1C7KAt7jLBgRqRUc2uilCVcQgDEqIaDP0tozDPZQb1Gn2q2YtBQTWrZVDUWUN4CamWBDpKN2tW3vaDAzf8596KxkwL9-9sPXVjQlaIRgC0O8SE5-cf6p2iL-A7Avqg9PEPtxXxpzwGWLNJute-6aKN_ez96_ALxXOJ4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5i5cA4TMA2ARvgSbtGTf0jjrlV1aqWH70MJG6W49giCJKqtIf-9zynjtRNSDvsmthW8p71-Xvye98D-EkVvmGDIglcAgMUkyaKKZ8w5vKMYyxm2h5Lt7Nscs-vHsTDDoy6WpiQVhmxf4PpLVrHJ_1ozf68qvq_U0WllEKG-wHJFfsAu0GdSvRgdzi9nsy2RMOj5B6VSZiwVSj8hMs_v64WPkgQUR66QOShrfL7Z9RfaN0eQeMD-BS5IxluPu8Qdlx9BHujrmXbEexvqQt-hpfx86pZtHJN1pGuHp80nti1qXEc8WFAM3_EUWS0ZgRjY4_PS1LVxNRNWVmC9LxZvRKDGFbV5pIMY84AaX8H1zVR1eQL3I9_3Y0mSeyukFiq6DKhebgFFkbwzHslaKkGZWFtlpvUOXRXFvIMc4QApFQiU86mWVFy75FB-YJLxr5Cr25qdwxEcisLZoSzg4LnQmEMxJnBs7_MWSZKdQL9zp56vhHR0F122ZPuPKCDB_TGAyegOrPrP7aDRqT_59wfnZ802j9cgJjaoa00GyDfEhgi0tP_WP8C9iZ3tzf6Zjq7_gYfaWgIHGrc0-_QWy5W7gxZyrI4j7vwDbkO5Sk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescence+behavior+of+cyanine+fluorophore+Cy3+confined+in+anodic+porous+alumina%3A+Advanced+surface+analysis&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Larosa%2C+Claudio&rft.au=%C5%A2%C4%83lu%2C+%C5%9Etefan&rft.date=2025-02-20&rft.issn=0927-7757&rft.volume=707+p.135885-&rft_id=info:doi/10.1016%2Fj.colsurfa.2024.135885&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon