Fluorescence behavior of cyanine fluorophore Cy3 confined in anodic porous alumina: Advanced surface analysis
In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understand...
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 707; p. 135885 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understanding of the material's surface properties, especially when applied to biological arrays and fluorescent dye confinement. To achieve this, Atomic Force Microscopy (AFM) was employed to obtain precise 3-D surface microtexture data. These measurements were complemented by stereometric analyses, adhering to ISO 25178‐2: 2012 standards, ensuring a robust quantitative and qualitative evaluation of the surface micromorphology. The analysis revealed a clear correlation between surface roughness parameters and micromorphological changes as a function of varied processing conditions. Notably, the increase in certain fabrication parameters led to significant alterations in the superficial texture, with observable changes in the fractal dimension of the surface structure. The APA arrays, fabricated using a specialized anodization technique followed by a tailored annealing procedure, exhibited extraordinarily large pore sizes, ranging from 1 to 2 μm, which are well-suited for accommodating the Cy3 dye molecules. These pore dimensions offer an enhanced capacity for dye confinement, providing a stable environment for the cyanine fluorophore while promoting optimal fluorescence behavior.
[Display omitted] |
---|---|
AbstractList | In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understanding of the material's surface properties, especially when applied to biological arrays and fluorescent dye confinement. To achieve this, Atomic Force Microscopy (AFM) was employed to obtain precise 3-D surface microtexture data. These measurements were complemented by stereometric analyses, adhering to ISO 25178‐2: 2012 standards, ensuring a robust quantitative and qualitative evaluation of the surface micromorphology. The analysis revealed a clear correlation between surface roughness parameters and micromorphological changes as a function of varied processing conditions. Notably, the increase in certain fabrication parameters led to significant alterations in the superficial texture, with observable changes in the fractal dimension of the surface structure. The APA arrays, fabricated using a specialized anodization technique followed by a tailored annealing procedure, exhibited extraordinarily large pore sizes, ranging from 1 to 2 μm, which are well-suited for accommodating the Cy3 dye molecules. These pore dimensions offer an enhanced capacity for dye confinement, providing a stable environment for the cyanine fluorophore while promoting optimal fluorescence behavior.
[Display omitted] In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate their efficacy in confining cyanine fluorophore Cy3. The microstructural characterization of APA plays a pivotal role in enhancing the understanding of the material's surface properties, especially when applied to biological arrays and fluorescent dye confinement. To achieve this, Atomic Force Microscopy (AFM) was employed to obtain precise 3-D surface microtexture data. These measurements were complemented by stereometric analyses, adhering to ISO 25178‐2: 2012 standards, ensuring a robust quantitative and qualitative evaluation of the surface micromorphology. The analysis revealed a clear correlation between surface roughness parameters and micromorphological changes as a function of varied processing conditions. Notably, the increase in certain fabrication parameters led to significant alterations in the superficial texture, with observable changes in the fractal dimension of the surface structure. The APA arrays, fabricated using a specialized anodization technique followed by a tailored annealing procedure, exhibited extraordinarily large pore sizes, ranging from 1 to 2 μm, which are well-suited for accommodating the Cy3 dye molecules. These pore dimensions offer an enhanced capacity for dye confinement, providing a stable environment for the cyanine fluorophore while promoting optimal fluorescence behavior. |
ArticleNumber | 135885 |
Author | Ţălu, Ştefan Larosa, Claudio |
Author_xml | – sequence: 1 givenname: Claudio orcidid: 0000-0001-8156-1552 surname: Larosa fullname: Larosa, Claudio email: claudio.larosa@enea.it organization: Terin Dec CCT. Enea Casaccia C.R., Via Anguillarese 301, Roma, 00123, Italy – sequence: 2 givenname: Ştefan surname: Ţălu fullname: Ţălu, Ştefan email: stefan_ta@yahoo.com, stefan.talu@auto.utcluj.ro organization: The Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu Street, no. 15, Cluj-Napoca, Cluj County 400020, Romania |
BookMark | eNqFkE1LAzEURbOoYFv9C5Klm9YkM_kYV5ZiVSi40XXI5IOmzCQ16RTm35taXbt68Dj38t6ZgUmIwQJwh9ESI8we9ksduzwkp5YEkXqJKyoEnYApaghfcE75NZjlvEcI1ZQ3U9BvuiEmm7UN2sLW7tTJxwSjg3pUwQcL3RmIh12h4HqsoI7Blb2BPkAVovEaHgowZKi6ofdBPcKVOalSZ-DPJaVXBdWN2ecbcOVUl-3t75yDz83zx_p1sX1_eVuvtgtNGnJcEIFR1VBFa-ZcQ4lpsGm1ZkIha6vGMS4EFxXiFNeUNVYj1praOcJq19a8qubg_tJ7SPFrsPkoe19e7DoVbLlUVphRQQXHpKDsguoUc07WyUPyvUqjxEiencq9_HMqz07lxWkJPl2Ctjxy8jbJrP3ZovHJ6qM00f9X8Q0QhIiX |
Cites_doi | 10.1016/j.rinp.2023.106209 10.1016/j.jiec.2016.08.003 10.1016/S0040-6090(96)09440-0 10.1063/1.1815072 10.1016/j.apsusc.2017.06.264 10.1016/j.jelechem.2018.10.037 10.1021/cr60259a005 10.1364/OL.43.000631 10.1016/j.cplett.2019.01.042 10.1007/s10854-017-7422-4 10.1364/OE.420910 10.1021/cm980163a 10.1016/S0167-577X(00)00292-5 10.1111/jmi.12625 10.1080/1023666X.2014.955400 10.1007/s11082-017-1079-3 10.1016/j.porgcoat.2015.07.024 10.1126/science.268.5216.1466 10.1186/s11671-020-03410-0 10.1016/j.jallcom.2018.06.213 10.1016/j.tsf.2014.01.056 10.1016/j.electacta.2005.05.058 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.colsurfa.2024.135885 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_colsurfa_2024_135885 S0927775724027493 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABMAC ABNEU ABNUV ABXRA ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEIPS AEKER AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPD SSG SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCB SSH VH1 WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c292t-2810395a546ff952d91dbcc68a0ee39f678878307514569ec06bd4ff264fb4733 |
IEDL.DBID | .~1 |
ISSN | 0927-7757 |
IngestDate | Fri Jul 11 01:44:07 EDT 2025 Tue Jul 01 04:26:35 EDT 2025 Sat Jan 25 15:58:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Atomic force microscopy Anodic porous alumina Cy3 dye confinement Surface microtexture 3D surface microtexture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-2810395a546ff952d91dbcc68a0ee39f678878307514569ec06bd4ff264fb4733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8156-1552 |
PQID | 3165858712 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3165858712 crossref_primary_10_1016_j_colsurfa_2024_135885 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2024_135885 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Khan, Kumar, Khan (bib2) 2015; 11 Ţălu, Bramowicz, Kulesza, Ghaderi, Solaymani, Savaloni, Babaee (bib49) 2016; 43 Ţălu, Abdolghaderi, Pinto, Matos, Salerno (bib55) 2020 Masuda, Fukuda (bib4) 1995; 268 Nakao, Yokoyama, Kikuchi, Aoyagi, Sakurai (bib5) 2012; 6 Zhai, Y, Li, Wang (bib30) 2018; 269 Rubner, Serrano, Turcotte (bib24) 2016; 10 Thompson (bib40) 1997; 297 Nielsch, Müller, Li, Gösele (bib1) 2002; 14 Tani, Ozeki, Yoshimura (bib27) 2015; 119 Jensen, Andreoli, Gasser (bib33) 2020; 239 Ono, Saito, Asoh (bib41) 2005; 51 Ţălu, Nikola, Sobola, Achour, Solaymani (bib51) 2017; 28 Solaymani, Kulesza, Ţălu, Bramowicz, Nezafat, Dalouji, Rezaee, Karami, Malekzadeh, Dorbidi (bib52) 2018; 765 Thompson (bib6) 2014; 558 Xu, Zheng, Wu, Shen (bib39) 2004; 85 Shim, Lee, Park (bib20) 2022; 205 Gao, Zhang, Liu (bib36) 2019; 54 Yamaguchi, Suzuki, Yokoyama (bib8) 2013; 105 Deng, Wang, Qin (bib12) 2020; 127 Marrs, Petersen, Song (bib23) 2021; 29 Scarpelli, Cecchini, Antonini (bib34) 2017; 423 Liu, Xia, Cheng (bib16) 2015; 31 Yu, Hsu, Hsieh (bib35) 2016; 4 Dejam, Solaymani, Achour, Stach, Ţălu, Nezafat, Dalouji, Shokri, Ghaderi (bib46) 2019; 719 Ţălu (bib44) 2015 Larosa, Ţălu, Reverberi, Salerno (bib53) 2020; 280 Ţălu, Patra, Salerno (bib45) 2015; 89 Heller, Baik, Eurell, Strano (bib7) 2016; 88 Redaelli, Cristiani, Canu (bib17) 2021; 9 Kim, Yoon, Kim (bib31) 2021; 8 Ţălu, Yadav, Mittal, Arman, Luna, Achour, Mardani, Ahmadpourian, Naderi, Zavarian, Hafezi, Saghi, Méndez, Trejo (bib47) 2017; 49 Mountains Map® 10 Software (Digital Surf, Besançon, France). Available from ISO 25178-2: 2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters. Available from Hara, Mori, Ise (bib10) 2016; 120 Diggle, Downie, Goulding (bib43) 1969; 69 Hoseinzadeh, Solaymani, Kulesza, Achour, Ghorannevis, Ţălu, Bramowicz, Ghoranneviss, Rezaee, Boochani, Maozaffari (bib50) 2018; 830-831 Son, Jeon, Lee (bib32) 2019; 74 Larosa, Terencio, Converti, Eggenhöffner (bib38) 2014; 1 Yamashita, Lee, Matsui (bib28) 2017; 11 Gupta, Taylor, Douglas (bib19) 2018; 23 Kotov, Li, Menon (bib15) 2019; 29 Weathers, Kwon, Kim (bib26) 2019; 308 Li, Zhang, Metzger (bib3) 1998; 10 Cao, Xu, Zhang (bib37) 2022; 122 Zaccarelli, Saldi, Bianchi (bib18) 2019; 4 McLellan, Gomez, Nolan (bib25) 2020; 401 Steele, Zhao, Huang (bib14) 2014; 25 Whitesides (bib13) 2011; 6 Oh, Hwang, Jeong (bib22) 2019; 373 Reid, Tourkine, Slagle (bib21) 2017; 488 Sui, Saniger (bib42) 2001; 48 (last accessed September 15th, 2024). Matsuura, Nakanishi, Sakai (bib9) 2017; 28 Elenkova, Zaharieva, Getsova, Manolov, Milanova, Stach, Ţălu (bib54) 2015; 20 Franklin, Wang, Helms (bib29) 2020; 15 Dejam, Kulesza, Sabbaghzadeh, Ghaderi, Solaymani, Ţălu, Bramowicz, Amouamouha, Salehi Shayegan, Sari (bib48) 2023; 44 Nguyen, Hara, Wang (bib11) 2018; 43 Dejam (10.1016/j.colsurfa.2024.135885_bib46) 2019; 719 Cao (10.1016/j.colsurfa.2024.135885_bib37) 2022; 122 Nakao (10.1016/j.colsurfa.2024.135885_bib5) 2012; 6 Jensen (10.1016/j.colsurfa.2024.135885_bib33) 2020; 239 Thompson (10.1016/j.colsurfa.2024.135885_bib40) 1997; 297 Yamaguchi (10.1016/j.colsurfa.2024.135885_bib8) 2013; 105 Ono (10.1016/j.colsurfa.2024.135885_bib41) 2005; 51 Zhai (10.1016/j.colsurfa.2024.135885_bib30) 2018; 269 Tani (10.1016/j.colsurfa.2024.135885_bib27) 2015; 119 Rubner (10.1016/j.colsurfa.2024.135885_bib24) 2016; 10 Ţălu (10.1016/j.colsurfa.2024.135885_bib45) 2015; 89 Oh (10.1016/j.colsurfa.2024.135885_bib22) 2019; 373 Zaccarelli (10.1016/j.colsurfa.2024.135885_bib18) 2019; 4 Hoseinzadeh (10.1016/j.colsurfa.2024.135885_bib50) 2018; 830-831 Ţălu (10.1016/j.colsurfa.2024.135885_bib47) 2017; 49 Kim (10.1016/j.colsurfa.2024.135885_bib31) 2021; 8 Diggle (10.1016/j.colsurfa.2024.135885_bib43) 1969; 69 Son (10.1016/j.colsurfa.2024.135885_bib32) 2019; 74 Larosa (10.1016/j.colsurfa.2024.135885_bib53) 2020; 280 Nguyen (10.1016/j.colsurfa.2024.135885_bib11) 2018; 43 Larosa (10.1016/j.colsurfa.2024.135885_bib38) 2014; 1 Gao (10.1016/j.colsurfa.2024.135885_bib36) 2019; 54 Hara (10.1016/j.colsurfa.2024.135885_bib10) 2016; 120 Franklin (10.1016/j.colsurfa.2024.135885_bib29) 2020; 15 Marrs (10.1016/j.colsurfa.2024.135885_bib23) 2021; 29 Xu (10.1016/j.colsurfa.2024.135885_bib39) 2004; 85 Masuda (10.1016/j.colsurfa.2024.135885_bib4) 1995; 268 Whitesides (10.1016/j.colsurfa.2024.135885_bib13) 2011; 6 Sui (10.1016/j.colsurfa.2024.135885_bib42) 2001; 48 Ţălu (10.1016/j.colsurfa.2024.135885_bib44) 2015 10.1016/j.colsurfa.2024.135885_bib56 Shim (10.1016/j.colsurfa.2024.135885_bib20) 2022; 205 10.1016/j.colsurfa.2024.135885_bib57 Steele (10.1016/j.colsurfa.2024.135885_bib14) 2014; 25 Kotov (10.1016/j.colsurfa.2024.135885_bib15) 2019; 29 Ţălu (10.1016/j.colsurfa.2024.135885_bib49) 2016; 43 Elenkova (10.1016/j.colsurfa.2024.135885_bib54) 2015; 20 Khan (10.1016/j.colsurfa.2024.135885_bib2) 2015; 11 Thompson (10.1016/j.colsurfa.2024.135885_bib6) 2014; 558 Yamashita (10.1016/j.colsurfa.2024.135885_bib28) 2017; 11 Ţălu (10.1016/j.colsurfa.2024.135885_bib51) 2017; 28 Ţălu (10.1016/j.colsurfa.2024.135885_bib55) 2020 McLellan (10.1016/j.colsurfa.2024.135885_bib25) 2020; 401 Dejam (10.1016/j.colsurfa.2024.135885_bib48) 2023; 44 Li (10.1016/j.colsurfa.2024.135885_bib3) 1998; 10 Liu (10.1016/j.colsurfa.2024.135885_bib16) 2015; 31 Redaelli (10.1016/j.colsurfa.2024.135885_bib17) 2021; 9 Solaymani (10.1016/j.colsurfa.2024.135885_bib52) 2018; 765 Gupta (10.1016/j.colsurfa.2024.135885_bib19) 2018; 23 Weathers (10.1016/j.colsurfa.2024.135885_bib26) 2019; 308 Heller (10.1016/j.colsurfa.2024.135885_bib7) 2016; 88 Scarpelli (10.1016/j.colsurfa.2024.135885_bib34) 2017; 423 Matsuura (10.1016/j.colsurfa.2024.135885_bib9) 2017; 28 Yu (10.1016/j.colsurfa.2024.135885_bib35) 2016; 4 Reid (10.1016/j.colsurfa.2024.135885_bib21) 2017; 488 Deng (10.1016/j.colsurfa.2024.135885_bib12) 2020; 127 Nielsch (10.1016/j.colsurfa.2024.135885_bib1) 2002; 14 |
References_xml | – volume: 54 start-page: 10112 year: 2019 end-page: 10123 ident: bib36 publication-title: J. Mater. Sci. – volume: 4 start-page: 1830 year: 2019 end-page: 1838 ident: bib18 publication-title: ACS Sens – volume: 308 start-page: 120 year: 2019 end-page: 130 ident: bib26 publication-title: Electro Acta – volume: 51 start-page: 827 year: 2005 end-page: 833 ident: bib41 publication-title: Electrochem. Acta – volume: 269 start-page: 269 year: 2018 end-page: 276 ident: bib30 publication-title: J. Microsc. – volume: 8 start-page: 2001422 year: 2021 ident: bib31 publication-title: Adv. Mater. Interfaces – volume: 719 start-page: 78 year: 2019 end-page: 90 ident: bib46 publication-title: Lett. – volume: 85 start-page: 4364 year: 2004 ident: bib39 publication-title: Appl. Phys. Lett. – volume: 44 year: 2023 ident: bib48 publication-title: Results Phys. – reference: (last accessed September 15th, 2024). – volume: 558 start-page: 1 year: 2014 end-page: 8 ident: bib6 publication-title: Thin Solid Films – volume: 765 start-page: 180 year: 2018 end-page: 185 ident: bib52 publication-title: Alloy. Compd. – volume: 11 start-page: 832 year: 2015 end-page: 838 ident: bib2 publication-title: J. Biomed. Nanotechnol. – volume: 423 start-page: 800 year: 2017 end-page: 811 ident: bib34 publication-title: Appl. Surf. Sci. – volume: 205 year: 2022 ident: bib20 publication-title: Biosens. Bioelectron. – volume: 23 year: 2018 ident: bib19 publication-title: J. Biomed. Opt. – volume: 10 year: 2016 ident: bib24 publication-title: J. Nanophotonics – volume: 48 start-page: 127 year: 2001 end-page: 136 ident: bib42 publication-title: Mater. Lett. – volume: 401 year: 2020 ident: bib25 publication-title: Surf. Coat. Technol. – volume: 297 start-page: 192 year: 1997 end-page: 201 ident: bib40 publication-title: Thin Solid Films – volume: 122 start-page: 9306 year: 2022 end-page: 9335 ident: bib37 publication-title: Chem. Rev. – volume: 268 start-page: 1466 year: 1995 end-page: 1468 ident: bib4 publication-title: Science – volume: 10 start-page: 2470 year: 1998 end-page: 2480 ident: bib3 publication-title: Chem. Mater. – volume: 28 start-page: 15370 year: 2017 end-page: 15379 ident: bib51 publication-title: J. Mater. Sci. Mater. Electron. – volume: 6 start-page: 247 year: 2011 end-page: 252 ident: bib13 publication-title: Nat. Nanotechnol. – volume: 69 start-page: 365 year: 1969 end-page: 405 ident: bib43 publication-title: Chem. Rev. – volume: 49 start-page: 256 year: 2017 ident: bib47 publication-title: Quantum Electron – year: 2020 ident: bib55 publication-title: Surf. Eng. – volume: 105 start-page: 126 year: 2013 end-page: 134 ident: bib8 publication-title: Biophys. J. – volume: 28 start-page: 2980 year: 2017 end-page: 2989 ident: bib9 publication-title: Bioconjug Chem. – volume: 20 start-page: 42 year: 2015 end-page: 56 ident: bib54 publication-title: Int. J. Polym. Anal. Charact. – volume: 29 start-page: 8523 year: 2021 end-page: 8535 ident: bib23 publication-title: Opt. Express – volume: 89 start-page: 50 year: 2015 end-page: 56 ident: bib45 – volume: 373 start-page: 71 year: 2019 end-page: 77 ident: bib22 publication-title: J. Photochem. Photobio. A – volume: 119 start-page: 14122 year: 2015 end-page: 14128 ident: bib27 publication-title: Phys. Chem. B – volume: 1 start-page: S109 year: 2014 ident: bib38 publication-title: J. Mater. Sci. Nanotechnol. – volume: 43 start-page: 164 year: 2016 end-page: 169 ident: bib49 publication-title: Ind. Eng. Chem. – volume: 239 year: 2020 ident: bib33 publication-title: Mater. – volume: 25 year: 2014 ident: bib14 publication-title: Nanotechnology – volume: 14 start-page: 607 year: 2002 end-page: 609 ident: bib1 publication-title: Adv. Mater. – volume: 127 year: 2020 ident: bib12 publication-title: J. Appl. Phys. – volume: 9 start-page: 1704 year: 2021 end-page: 1715 ident: bib17 publication-title: J. Mater. Chem. A – volume: 488 start-page: 326 year: 2017 end-page: 335 ident: bib21 publication-title: J. Colloid Interface Sci. – reference: ISO 25178-2: 2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters. Available from: – volume: 88 start-page: 2570 year: 2016 end-page: 2579 ident: bib7 publication-title: Anal. Chem. – volume: 15 start-page: 179 year: 2020 ident: bib29 publication-title: Nanoscale Res Lett. – volume: 74 start-page: 305 year: 2019 end-page: 326 ident: bib32 publication-title: Surf. Sci. Rep. – volume: 830-831 start-page: 80 year: 2018 end-page: 87 ident: bib50 publication-title: J. Electroanal. Chem. – volume: 29 start-page: 1806635 year: 2019 ident: bib15 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 661 year: 2016 end-page: 671 ident: bib35 publication-title: J. Mater. Chem. C. – volume: 280 start-page: 1 year: 2020 end-page: 5 ident: bib53 publication-title: Mater. Lett. – reference: Mountains Map® 10 Software (Digital Surf, Besançon, France). Available from: – year: 2015 ident: bib44 article-title: Micro and nanoscale characterization of three-dimensional surfaces: Basics and applications – volume: 11 start-page: 7040 year: 2017 end-page: 7047 ident: bib28 publication-title: ACS Nano – volume: 120 start-page: 7655 year: 2016 end-page: 7661 ident: bib10 publication-title: J. Phys. Chem. C. – volume: 43 start-page: 801 year: 2018 end-page: 804 ident: bib11 publication-title: Opt. Lett. – volume: 31 start-page: 7780 year: 2015 end-page: 7789 ident: bib16 publication-title: Langmuir – volume: 6 start-page: 201 year: 2012 end-page: 210 ident: bib5 publication-title: ACS Nano – volume: 10 issue: 3 year: 2016 ident: 10.1016/j.colsurfa.2024.135885_bib24 publication-title: J. Nanophotonics – volume: 44 year: 2023 ident: 10.1016/j.colsurfa.2024.135885_bib48 publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106209 – volume: 43 start-page: 164 year: 2016 ident: 10.1016/j.colsurfa.2024.135885_bib49 publication-title: Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.08.003 – volume: 14 start-page: 607 issue: 8 year: 2002 ident: 10.1016/j.colsurfa.2024.135885_bib1 publication-title: Adv. Mater. – volume: 8 start-page: 2001422 issue: 4 year: 2021 ident: 10.1016/j.colsurfa.2024.135885_bib31 publication-title: Adv. Mater. Interfaces – volume: 74 start-page: 305 issue: 6 year: 2019 ident: 10.1016/j.colsurfa.2024.135885_bib32 publication-title: Surf. Sci. Rep. – volume: 119 start-page: 14122 issue: 44 year: 2015 ident: 10.1016/j.colsurfa.2024.135885_bib27 publication-title: Phys. Chem. B – volume: 297 start-page: 192 year: 1997 ident: 10.1016/j.colsurfa.2024.135885_bib40 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(96)09440-0 – volume: 373 start-page: 71 year: 2019 ident: 10.1016/j.colsurfa.2024.135885_bib22 publication-title: J. Photochem. Photobio. A – volume: 85 start-page: 4364 year: 2004 ident: 10.1016/j.colsurfa.2024.135885_bib39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1815072 – volume: 423 start-page: 800 year: 2017 ident: 10.1016/j.colsurfa.2024.135885_bib34 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.264 – volume: 205 year: 2022 ident: 10.1016/j.colsurfa.2024.135885_bib20 publication-title: Biosens. Bioelectron. – volume: 830-831 start-page: 80 year: 2018 ident: 10.1016/j.colsurfa.2024.135885_bib50 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.10.037 – volume: 69 start-page: 365 year: 1969 ident: 10.1016/j.colsurfa.2024.135885_bib43 publication-title: Chem. Rev. doi: 10.1021/cr60259a005 – volume: 43 start-page: 801 issue: 4 year: 2018 ident: 10.1016/j.colsurfa.2024.135885_bib11 publication-title: Opt. Lett. doi: 10.1364/OL.43.000631 – volume: 719 start-page: 78 year: 2019 ident: 10.1016/j.colsurfa.2024.135885_bib46 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.01.042 – volume: 239 year: 2020 ident: 10.1016/j.colsurfa.2024.135885_bib33 publication-title: Mater. Chem. Phys., – volume: 54 start-page: 10112 issue: 14 year: 2019 ident: 10.1016/j.colsurfa.2024.135885_bib36 publication-title: J. Mater. Sci. – volume: 308 start-page: 120 year: 2019 ident: 10.1016/j.colsurfa.2024.135885_bib26 publication-title: Electro Acta – volume: 28 start-page: 15370 year: 2017 ident: 10.1016/j.colsurfa.2024.135885_bib51 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-7422-4 – volume: 4 start-page: 661 issue: 4 year: 2016 ident: 10.1016/j.colsurfa.2024.135885_bib35 publication-title: J. Mater. Chem. C. – volume: 23 issue: 5 year: 2018 ident: 10.1016/j.colsurfa.2024.135885_bib19 publication-title: J. Biomed. Opt. – volume: 29 start-page: 8523 issue: 6 year: 2021 ident: 10.1016/j.colsurfa.2024.135885_bib23 publication-title: Opt. Express doi: 10.1364/OE.420910 – volume: 10 start-page: 2470 issue: 9 year: 1998 ident: 10.1016/j.colsurfa.2024.135885_bib3 publication-title: Chem. Mater. doi: 10.1021/cm980163a – volume: 48 start-page: 127 year: 2001 ident: 10.1016/j.colsurfa.2024.135885_bib42 publication-title: Mater. Lett. doi: 10.1016/S0167-577X(00)00292-5 – volume: 6 start-page: 201 issue: 1 year: 2012 ident: 10.1016/j.colsurfa.2024.135885_bib5 publication-title: ACS Nano – volume: 28 start-page: 2980 issue: 12 year: 2017 ident: 10.1016/j.colsurfa.2024.135885_bib9 publication-title: Bioconjug Chem. – volume: 269 start-page: 269 issue: 3 year: 2018 ident: 10.1016/j.colsurfa.2024.135885_bib30 publication-title: J. Microsc. doi: 10.1111/jmi.12625 – volume: 11 start-page: 7040 issue: 7 year: 2017 ident: 10.1016/j.colsurfa.2024.135885_bib28 publication-title: ACS Nano – volume: 20 start-page: 42 year: 2015 ident: 10.1016/j.colsurfa.2024.135885_bib54 publication-title: Int. J. Polym. Anal. Charact. doi: 10.1080/1023666X.2014.955400 – volume: 4 start-page: 1830 issue: 7 year: 2019 ident: 10.1016/j.colsurfa.2024.135885_bib18 publication-title: ACS Sens – volume: 49 start-page: 256 year: 2017 ident: 10.1016/j.colsurfa.2024.135885_bib47 publication-title: Quantum Electron doi: 10.1007/s11082-017-1079-3 – volume: 11 start-page: 832 issue: 5 year: 2015 ident: 10.1016/j.colsurfa.2024.135885_bib2 publication-title: J. Biomed. Nanotechnol. – volume: 6 start-page: 247 issue: 3 year: 2011 ident: 10.1016/j.colsurfa.2024.135885_bib13 publication-title: Nat. Nanotechnol. – volume: 89 start-page: 50 year: 2015 ident: 10.1016/j.colsurfa.2024.135885_bib45 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2015.07.024 – ident: 10.1016/j.colsurfa.2024.135885_bib57 – volume: 105 start-page: 126 issue: 1 year: 2013 ident: 10.1016/j.colsurfa.2024.135885_bib8 publication-title: Biophys. J. – volume: 268 start-page: 1466 issue: 5216 year: 1995 ident: 10.1016/j.colsurfa.2024.135885_bib4 publication-title: Science doi: 10.1126/science.268.5216.1466 – volume: 127 issue: 4 year: 2020 ident: 10.1016/j.colsurfa.2024.135885_bib12 publication-title: J. Appl. Phys. – volume: 1 start-page: S109 issue: 1 year: 2014 ident: 10.1016/j.colsurfa.2024.135885_bib38 publication-title: J. Mater. Sci. Nanotechnol. – volume: 25 issue: 36 year: 2014 ident: 10.1016/j.colsurfa.2024.135885_bib14 publication-title: Nanotechnology – volume: 401 year: 2020 ident: 10.1016/j.colsurfa.2024.135885_bib25 publication-title: Surf. Coat. Technol. – volume: 15 start-page: 179 issue: 1 year: 2020 ident: 10.1016/j.colsurfa.2024.135885_bib29 publication-title: Nanoscale Res Lett. doi: 10.1186/s11671-020-03410-0 – year: 2015 ident: 10.1016/j.colsurfa.2024.135885_bib44 – volume: 765 start-page: 180 year: 2018 ident: 10.1016/j.colsurfa.2024.135885_bib52 publication-title: Alloy. Compd. doi: 10.1016/j.jallcom.2018.06.213 – volume: 31 start-page: 7780 issue: 28 year: 2015 ident: 10.1016/j.colsurfa.2024.135885_bib16 publication-title: Langmuir – volume: 122 start-page: 9306 issue: 9 year: 2022 ident: 10.1016/j.colsurfa.2024.135885_bib37 publication-title: Chem. Rev. – volume: 280 start-page: 1 issue: 128593 year: 2020 ident: 10.1016/j.colsurfa.2024.135885_bib53 publication-title: Mater. Lett. – volume: 120 start-page: 7655 issue: 14 year: 2016 ident: 10.1016/j.colsurfa.2024.135885_bib10 publication-title: J. Phys. Chem. C. – ident: 10.1016/j.colsurfa.2024.135885_bib56 – volume: 558 start-page: 1 year: 2014 ident: 10.1016/j.colsurfa.2024.135885_bib6 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.01.056 – year: 2020 ident: 10.1016/j.colsurfa.2024.135885_bib55 publication-title: Surf. Eng. – volume: 88 start-page: 2570 issue: 4 year: 2016 ident: 10.1016/j.colsurfa.2024.135885_bib7 publication-title: Anal. Chem. – volume: 29 start-page: 1806635 issue: 21 year: 2019 ident: 10.1016/j.colsurfa.2024.135885_bib15 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1704 issue: 4 year: 2021 ident: 10.1016/j.colsurfa.2024.135885_bib17 publication-title: J. Mater. Chem. A – volume: 51 start-page: 827 year: 2005 ident: 10.1016/j.colsurfa.2024.135885_bib41 publication-title: Electrochem. Acta doi: 10.1016/j.electacta.2005.05.058 – volume: 488 start-page: 326 year: 2017 ident: 10.1016/j.colsurfa.2024.135885_bib21 publication-title: J. Colloid Interface Sci. |
SSID | ssj0004579 |
Score | 2.454993 |
Snippet | In this study, an advanced analysis of the three-dimensional (3-D) surface microtexture of anodic porous alumina (APA) arrays was conducted to investigate... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 135885 |
SubjectTerms | 3D surface microtexture aluminum oxide Anodic porous alumina Atomic force microscopy Cy3 dye confinement fluorescence fluorescent dyes fractal dimensions microstructure Surface microtexture surface roughness texture |
Title | Fluorescence behavior of cyanine fluorophore Cy3 confined in anodic porous alumina: Advanced surface analysis |
URI | https://dx.doi.org/10.1016/j.colsurfa.2024.135885 https://www.proquest.com/docview/3165858712 |
Volume | 707 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4inKozISa2jiRxyzVRVVAcEClbpZjmOLVJBUpR1Y-O2c00QqCImB1TlbyZ1z_k6--w6hSyLhCY3SwGMJCFB0GEgqXUCpTWIGsZiueiw9PMajMbub8EkLDZpaGJ9WWfv-lU-vvHU90qu12Zvlee8plEQIwYW_HxBMesZPxoTf5Vef0RpjeM23R0TgpdeqhKew9uv7cu48_xBhvgVE4nsq_35A_XDV1fkz3EU7NXDE_dW77aGWLfbR5qDp17aPtteoBQ_Q2_B1Wc4rriZjcVOMj0uHzYcuQA47L1DOXkAKDz4ohsDYwXiG8wLrosxygwGbl8t3rMGB5YW-xv06YQBXnwPr6prS5BCNhzfPg1FQt1YIDJFkEZDEXwFzzVnsnOQkk1GWGhMnOrQWbBX7JMME_n_AUzyW1oRxmjHnAD65lAlKj1C7KAt7jLBgRqRUc2uilCVcQgDEqIaDP0tozDPZQb1Gn2q2YtBQTWrZVDUWUN4CamWBDpKN2tW3vaDAzf8596KxkwL9-9sPXVjQlaIRgC0O8SE5-cf6p2iL-A7Avqg9PEPtxXxpzwGWLNJute-6aKN_ez96_ALxXOJ4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5i5cA4TMA2ARvgSbtGTf0jjrlV1aqWH70MJG6W49giCJKqtIf-9zynjtRNSDvsmthW8p71-Xvye98D-EkVvmGDIglcAgMUkyaKKZ8w5vKMYyxm2h5Lt7Nscs-vHsTDDoy6WpiQVhmxf4PpLVrHJ_1ozf68qvq_U0WllEKG-wHJFfsAu0GdSvRgdzi9nsy2RMOj5B6VSZiwVSj8hMs_v64WPkgQUR66QOShrfL7Z9RfaN0eQeMD-BS5IxluPu8Qdlx9BHujrmXbEexvqQt-hpfx86pZtHJN1pGuHp80nti1qXEc8WFAM3_EUWS0ZgRjY4_PS1LVxNRNWVmC9LxZvRKDGFbV5pIMY84AaX8H1zVR1eQL3I9_3Y0mSeyukFiq6DKhebgFFkbwzHslaKkGZWFtlpvUOXRXFvIMc4QApFQiU86mWVFy75FB-YJLxr5Cr25qdwxEcisLZoSzg4LnQmEMxJnBs7_MWSZKdQL9zp56vhHR0F122ZPuPKCDB_TGAyegOrPrP7aDRqT_59wfnZ802j9cgJjaoa00GyDfEhgi0tP_WP8C9iZ3tzf6Zjq7_gYfaWgIHGrc0-_QWy5W7gxZyrI4j7vwDbkO5Sk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescence+behavior+of+cyanine+fluorophore+Cy3+confined+in+anodic+porous+alumina%3A+Advanced+surface+analysis&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Larosa%2C+Claudio&rft.au=%C5%A2%C4%83lu%2C+%C5%9Etefan&rft.date=2025-02-20&rft.issn=0927-7757&rft.volume=707+p.135885-&rft_id=info:doi/10.1016%2Fj.colsurfa.2024.135885&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |