Order Cancellation Law in a Semigroup of Closed Convex Sets

In this paper we generalize Robinson's version of an order cancellation law in which some unbounded subsets of a vector space are cancellative elements. We introduce the notion of weakly narrow sets in normed spaces, study their properties and prove the order cancellation law where the canceled...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 26; no. 6; pp. 1281 - 1302
Main Authors Grzybowski, Jerzy, Przybycień, Hubert
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.12.2022
Online AccessGet full text

Cover

Loading…
Abstract In this paper we generalize Robinson's version of an order cancellation law in which some unbounded subsets of a vector space are cancellative elements. We introduce the notion of weakly narrow sets in normed spaces, study their properties and prove the order cancellation law where the canceled set is weakly narrow. Also, we prove the order cancellation law for closed convex subsets of topological vector space where the canceled set has bounded Hausdorff-like distance from its recession cone. We topologically embed the semigroup of closed convex sets sharing a recession cone having bounded Hausdorff-like distance from it into a topological vector space. This result extends Bielawski and Tabor's generalization of Rådström theorem.
AbstractList In this paper we generalize Robinson's version of an order cancellation law in which some unbounded subsets of a vector space are cancellative elements. We introduce the notion of weakly narrow sets in normed spaces, study their properties and prove the order cancellation law where the canceled set is weakly narrow. Also, we prove the order cancellation law for closed convex subsets of topological vector space where the canceled set has bounded Hausdorff-like distance from its recession cone. We topologically embed the semigroup of closed convex sets sharing a recession cone having bounded Hausdorff-like distance from it into a topological vector space. This result extends Bielawski and Tabor's generalization of Rådström theorem.
Author Przybycień, Hubert
Grzybowski, Jerzy
Author_xml – sequence: 1
  givenname: Jerzy
  surname: Grzybowski
  fullname: Grzybowski, Jerzy
– sequence: 2
  givenname: Hubert
  surname: Przybycień
  fullname: Przybycień, Hubert
BookMark eNo9j01LxDAURYOMYGd05VrIXuokL0n7iispjgqFWajrkiaptHSaIalf_95iRbhwF_dw4azJavSjI-SSsxvOM8W2U3_YArCMiROSAIBMM1R8RRLOIE-VxPyMrGPsGQPMeJaQ232wLtBSj8YNg546P9JKf9JupJo-u0P3Fvz7kfqWloOPztLSjx_ua56meE5OWz1Ed_HXG_K6u38pH9Nq__BU3lWpgQKmFGQrlC4aIxrAwgGiKFq0aHPLpRaOWYXSaM4a1hirsZE8V04YCTk6FFJsyPXya4KPMbi2PobuoMN3zVn9613P3vXiPdNXC93HyYd_FHKOc5j4AVJjVY4
CitedBy_id crossref_primary_10_2478_mjpaa_2023_0026
Cites_doi 10.1515/tmj-2016-0020
10.1007/BF01350091
10.1007/BF02052480
10.53733/26
10.1007/s11590-021-01710-7
10.4064/sm-17-2-151-164
10.1007/s00233-021-10160-7
10.1007/s10898-019-00865-z
10.1007/BF02589354
10.1515/dema-2009-0405
10.1080/02331934.2016.1213249
10.1007/978-1-4612-5200-9_5
10.1007/BFb0121132
10.1007/s10957-017-1167-3
10.1090/S0002-9939-1952-0045938-2
10.1137/19M1293478
10.1007/s00233-011-9327-5
10.2307/1970554
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.11650/tjm/220603
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2224-6851
EndPage 1302
ExternalDocumentID 10_11650_tjm_220603
27187180
GroupedDBID -~X
123
29Q
2WC
AAFWJ
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
AENEX
AFBOV
AFFOW
ALMA_UNASSIGNED_HOLDINGS
E3Z
EBS
EJD
FRP
JSODD
JST
OK1
RBV
RPE
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c292t-24f35a9bc3b289e28839f8d8d7d14a3e0d584ca10b0bcda8b4175e3c4278e8343
ISSN 1027-5487
IngestDate Fri Aug 23 01:47:03 EDT 2024
Fri Feb 02 07:07:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c292t-24f35a9bc3b289e28839f8d8d7d14a3e0d584ca10b0bcda8b4175e3c4278e8343
OpenAccessLink https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-26/issue-6/Order-Cancellation-Law-in-a-Semigroup-of-Closed-Convex-Sets/10.11650/tjm/220603.pdf
PageCount 22
ParticipantIDs crossref_primary_10_11650_tjm_220603
jstor_primary_27187180
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Taiwanese journal of mathematics
PublicationYear 2022
Publisher Mathematical Society of the Republic of China
Publisher_xml – name: Mathematical Society of the Republic of China
References 22
23
24
25
26
27
28
29
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 12
– ident: 24
  doi: 10.1515/tmj-2016-0020
– ident: 29
  doi: 10.1007/BF01350091
– ident: 28
– ident: 10
  doi: 10.1007/BF02052480
– ident: 20
  doi: 10.53733/26
– ident: 14
  doi: 10.1007/s11590-021-01710-7
– ident: 26
– ident: 3
  doi: 10.4064/sm-17-2-151-164
– ident: 22
– ident: 23
  doi: 10.1007/s00233-021-10160-7
– ident: 17
– ident: 18
  doi: 10.1007/s10898-019-00865-z
– ident: 5
– ident: 19
  doi: 10.1007/BF02589354
– ident: 4
  doi: 10.1515/dema-2009-0405
– ident: 21
  doi: 10.1080/02331934.2016.1213249
– ident: 13
– ident: 15
– ident: 9
  doi: 10.1007/978-1-4612-5200-9_5
– ident: 7
  doi: 10.1007/BFb0121132
– ident: 1
  doi: 10.1007/s10957-017-1167-3
– ident: 25
  doi: 10.1090/S0002-9939-1952-0045938-2
– ident: 6
– ident: 8
– ident: 11
  doi: 10.1137/19M1293478
– ident: 16
  doi: 10.1007/s00233-011-9327-5
– ident: 27
– ident: 2
  doi: 10.2307/1970554
SSID ssj0028616
Score 2.344613
Snippet In this paper we generalize Robinson's version of an order cancellation law in which some unbounded subsets of a vector space are cancellative elements. We...
SourceID crossref
jstor
SourceType Aggregation Database
Publisher
StartPage 1281
Title Order Cancellation Law in a Semigroup of Closed Convex Sets
URI https://www.jstor.org/stable/27187180
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEF-ifdGH0lZF21r2QZ_k6rm7uezRpxraSiAtSBSfDPt1EDGXohf8-Oud2d1srsVCWwhHshc2YX7DfOz9ZoaQPamsKQos-9WulwlnZSaF05ClWMCfs6ryZMzh9-LkTAwuuhedzmWLtTRv9Efz-Gxdyf-gCmuAK1bJ_gOyaVNYgPeAL1wBYbj-FcY_sG_mQR-Buw6cNn_eP6kPFBiB6cSXbHjCxfXsFo9ykWJ-D7dC-6ZFUDpSkzuFkyjbfSSmqZ9rirq_3Tw-6NldnHQ9cPAxWVa89QB2Yr_f3ZfCO7Q5crbbpwqM_cbQGKbfwJ4kkT8aSQunLnbgDnyRMOQ7mk9IcjPMgYJ38WsQgIiskLGtbLS5oUo-6lbbgOKDvZYzxseqzxt6iCwBnuZqiiUtLC9yvvRoiWfIwPPCK18hLxgYIrSAp8fnKSGXhR-Nm_51rN_EvQ9h58Ow7y8RS5u06kOQ0SvyMuYO9HNQhNek4-o3ZH0pxNsN8smrBG2rBAWVoJOaKppUgs4qGlSCBpWgqBKb5Ozrl1H_JIvzMTLDStZkTFS8q0ptuIa02eHc6LKSVtqePRKKu9xCdGnUUa5zbaySWkCs6LjB6SpOcsG3yGo9q902odwYIQV3jFkuTFVKV3CTG60rBp607O2QvYUMxj9DG5SxTx9BVGMQ1TiIaodsefmk7ywAePunG-_I2lL93pPV5mbudiHMa_QHj9UTXLZSmg
link.rule.ids 315,783,787,27936,27937
linkProvider Project Euclid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Order+Cancellation+Law+in+a+Semigroup+of+Closed+Convex+Sets&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Grzybowski%2C+Jerzy&rft.au=Przybycie%C5%84%2C+Hubert&rft.date=2022-12-01&rft.pub=Mathematical+Society+of+the+Republic+of+China&rft.issn=1027-5487&rft.eissn=2224-6851&rft.volume=26&rft.issue=6&rft.spage=1281&rft.epage=1302&rft_id=info:doi/10.11650%2Ftjm%2F220603&rft.externalDocID=27187180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon