Elliptic Neumann problems with highly discontinuous nonlinearities

This paper investigates nonlinear differential problems involving the p-Laplace operator and subject to Neumann boundary value conditions whereby the right-hand side consists of a nonlinearity which is highly discontinuous. Using variational methods suitable for nonsmooth functionals, we prove the e...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics letters Vol. 163; p. 109455
Main Authors D’Aguì, Giuseppina, Morabito, Valeria, Winkert, Patrick
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2025
Subjects
Online AccessGet full text
ISSN0893-9659
DOI10.1016/j.aml.2025.109455

Cover

Loading…
Abstract This paper investigates nonlinear differential problems involving the p-Laplace operator and subject to Neumann boundary value conditions whereby the right-hand side consists of a nonlinearity which is highly discontinuous. Using variational methods suitable for nonsmooth functionals, we prove the existence of at least two nontrivial weak solutions of such problems.
AbstractList This paper investigates nonlinear differential problems involving the p-Laplace operator and subject to Neumann boundary value conditions whereby the right-hand side consists of a nonlinearity which is highly discontinuous. Using variational methods suitable for nonsmooth functionals, we prove the existence of at least two nontrivial weak solutions of such problems.
ArticleNumber 109455
Author D’Aguì, Giuseppina
Winkert, Patrick
Morabito, Valeria
Author_xml – sequence: 1
  givenname: Giuseppina
  orcidid: 0000-0003-2080-8181
  surname: D’Aguì
  fullname: D’Aguì, Giuseppina
  email: dagui@unime.it
  organization: Department of Engineering, University of Messina, 98166 Messina, Italy
– sequence: 2
  givenname: Valeria
  orcidid: 0009-0005-4156-8510
  surname: Morabito
  fullname: Morabito, Valeria
  email: valeria.morabito2@studenti.unime.it
  organization: Department of Engineering, University of Messina, 98166 Messina, Italy
– sequence: 3
  givenname: Patrick
  orcidid: 0000-0003-0320-7026
  surname: Winkert
  fullname: Winkert, Patrick
  email: winkert@math.tu-berlin.de
  organization: Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
BookMark eNp9j8tOwzAQRb0oEi3wAezyAylju25ssYKqPKQKNrC2EmdMp3Kcyk5B_XtSlTWzGc3izL1nxiaxj8jYLYc5B768283rLswFCDXeZqHUhE1BG1mapTKXbJbzDgCkkXrKHtch0H4gV7zhoatjLPapbwJ2ufihYVts6WsbjkVL2fVxoHjoD7kY8wJFrBMNhPmaXfg6ZLz521fs82n9sXopN-_Pr6uHTemEEUMppK60FsChNc3CjwOLxtc1NrzlCrj3ClopK-Gdd1o0UFVaOaGqxqFR6OUV4-e_LvU5J_R2n6ir09FysCdxu7OjuD2J27P4yNyfGRyLfRMmmx1hdNhSQjfYtqd_6F8lImZS
Cites_doi 10.1016/j.jde.2008.02.025
10.1006/jdeq.2001.4092
10.1016/S0377-0427(99)00269-1
10.1016/0022-247X(81)90095-0
10.1016/S0362-546X(00)00171-1
10.1007/s000130050496
10.1016/s0294-1449(16)30389-4
10.1016/j.na.2011.12.003
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.aml.2025.109455
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_aml_2025_109455
S0893965925000023
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEXQZ
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c292t-2387882010d9b4ffff04bfaaeb1d1501ff50d3372fcfc82b07785c257bce95ef3
IEDL.DBID .~1
ISSN 0893-9659
IngestDate Tue Jul 01 05:28:05 EDT 2025
Sat Feb 15 15:52:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiple solution
Neumann problem
34B15
Discontinuous nonlinearity
Nonsmooth analysis
34A36
49J52
35B30
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-2387882010d9b4ffff04bfaaeb1d1501ff50d3372fcfc82b07785c257bce95ef3
ORCID 0009-0005-4156-8510
0000-0003-0320-7026
0000-0003-2080-8181
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0893965925000023
ParticipantIDs crossref_primary_10_1016_j_aml_2025_109455
elsevier_sciencedirect_doi_10_1016_j_aml_2025_109455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Applied mathematics letters
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ricceri (b8) 2000; 75
Bonanno, D’Aguì, Winkert (b11) 2019; 4
Motreanu, Panagiotopoulos (b1) 1999
Bonanno, Candito (b10) 2008; 244
De Giorgi, Buttazzo, Dal Maso (b14) 1983; 74
Marano, Motreanu (b6) 2002; 48
Papageorgiou, Winkert (b13) 2024
Bonanno (b9) 2012; 75
Motreanu, Rădulescu (b12) 2003
Chang (b2) 1981; 80
Marano, Motreanu (b5) 2002; 182
Ricceri (b7) 2000; 113
Szulkin (b4) 1986; 3
Clarke (b3) 1990
Motreanu (10.1016/j.aml.2025.109455_b12) 2003
Bonanno (10.1016/j.aml.2025.109455_b10) 2008; 244
Szulkin (10.1016/j.aml.2025.109455_b4) 1986; 3
Marano (10.1016/j.aml.2025.109455_b5) 2002; 182
Bonanno (10.1016/j.aml.2025.109455_b11) 2019; 4
De Giorgi (10.1016/j.aml.2025.109455_b14) 1983; 74
Chang (10.1016/j.aml.2025.109455_b2) 1981; 80
Ricceri (10.1016/j.aml.2025.109455_b7) 2000; 113
Bonanno (10.1016/j.aml.2025.109455_b9) 2012; 75
Clarke (10.1016/j.aml.2025.109455_b3) 1990
Ricceri (10.1016/j.aml.2025.109455_b8) 2000; 75
Marano (10.1016/j.aml.2025.109455_b6) 2002; 48
Motreanu (10.1016/j.aml.2025.109455_b1) 1999
Papageorgiou (10.1016/j.aml.2025.109455_b13) 2024
References_xml – volume: 244
  start-page: 3031
  year: 2008
  end-page: 3059
  ident: b10
  article-title: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities
  publication-title: J. Differential Equations
– volume: 3
  start-page: 77
  year: 1986
  end-page: 109
  ident: b4
  article-title: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 75
  start-page: 2992
  year: 2012
  end-page: 3007
  ident: b9
  article-title: A critical point theorem via the Ekeland variational principle
  publication-title: Nonlinear Anal.
– volume: 80
  start-page: 102
  year: 1981
  end-page: 129
  ident: b2
  article-title: Variational methods for nondifferentiable functionals and their applications to partial differential equations
  publication-title: J. Math. Anal. Appl.
– year: 1999
  ident: b1
  article-title: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities
– volume: 48
  start-page: 37
  year: 2002
  end-page: 52
  ident: b6
  article-title: On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems
  publication-title: Nonlinear Anal.
– year: 2024
  ident: b13
  article-title: Applied Nonlinear Functional Analysis. An Introduction
– year: 1990
  ident: b3
  article-title: Optimization and Nonsmooth Analysis
– volume: 113
  start-page: 401
  year: 2000
  end-page: 410
  ident: b7
  article-title: A general variational principle and some of its applications
  publication-title: J. Comput. Appl. Math.
– volume: 182
  start-page: 108
  year: 2002
  end-page: 120
  ident: b5
  article-title: Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the
  publication-title: J. Differential Equations
– volume: 75
  start-page: 220
  year: 2000
  end-page: 226
  ident: b8
  article-title: On a three critical points theorem
  publication-title: Arch. Math. (Basel)
– year: 2003
  ident: b12
  article-title: Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems
– volume: 4
  start-page: 709
  year: 2019
  end-page: 725
  ident: b11
  article-title: A two critical points theorem for non-differentiable functions and applications to highly discontinuous PDE’s
  publication-title: Pure Appl. Funct. Anal.
– volume: 74
  start-page: 274
  year: 1983
  end-page: 282
  ident: b14
  article-title: On the lower semicontinuity of certain integral functionals
  publication-title: Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8)
– year: 1999
  ident: 10.1016/j.aml.2025.109455_b1
– volume: 4
  start-page: 709
  issue: 4
  year: 2019
  ident: 10.1016/j.aml.2025.109455_b11
  article-title: A two critical points theorem for non-differentiable functions and applications to highly discontinuous PDE’s
  publication-title: Pure Appl. Funct. Anal.
– volume: 244
  start-page: 3031
  issue: 12
  year: 2008
  ident: 10.1016/j.aml.2025.109455_b10
  article-title: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.02.025
– volume: 74
  start-page: 274
  issue: 5
  year: 1983
  ident: 10.1016/j.aml.2025.109455_b14
  article-title: On the lower semicontinuity of certain integral functionals
  publication-title: Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8)
– volume: 182
  start-page: 108
  issue: 1
  year: 2002
  ident: 10.1016/j.aml.2025.109455_b5
  article-title: Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.2001.4092
– volume: 113
  start-page: 401
  issue: 1–2
  year: 2000
  ident: 10.1016/j.aml.2025.109455_b7
  article-title: A general variational principle and some of its applications
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00269-1
– volume: 80
  start-page: 102
  issue: 1
  year: 1981
  ident: 10.1016/j.aml.2025.109455_b2
  article-title: Variational methods for nondifferentiable functionals and their applications to partial differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(81)90095-0
– year: 2003
  ident: 10.1016/j.aml.2025.109455_b12
– volume: 48
  start-page: 37
  issue: 1
  year: 2002
  ident: 10.1016/j.aml.2025.109455_b6
  article-title: On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(00)00171-1
– volume: 75
  start-page: 220
  issue: 3
  year: 2000
  ident: 10.1016/j.aml.2025.109455_b8
  article-title: On a three critical points theorem
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/s000130050496
– year: 2024
  ident: 10.1016/j.aml.2025.109455_b13
– volume: 3
  start-page: 77
  issue: 2
  year: 1986
  ident: 10.1016/j.aml.2025.109455_b4
  article-title: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/s0294-1449(16)30389-4
– volume: 75
  start-page: 2992
  issue: 5
  year: 2012
  ident: 10.1016/j.aml.2025.109455_b9
  article-title: A critical point theorem via the Ekeland variational principle
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.12.003
– year: 1990
  ident: 10.1016/j.aml.2025.109455_b3
SSID ssj0003938
Score 2.421136
Snippet This paper investigates nonlinear differential problems involving the p-Laplace operator and subject to Neumann boundary value conditions whereby the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109455
SubjectTerms Discontinuous nonlinearity
Multiple solution
Neumann problem
Nonsmooth analysis
Title Elliptic Neumann problems with highly discontinuous nonlinearities
URI https://dx.doi.org/10.1016/j.aml.2025.109455
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvehBfGJ9lBw8CWt3N9lHjrVY6qNF1EJvS5ImUNFa-jh48bc7sw8foBf3suySsOHLZiaTmfkG4FQrg3aPDLxAJBwNlEh7KrLSS1NlVcKlih3lO_cHcW8orkfRqAadKheGwipL2V_I9Fxal29aJZqt2WTSevBR1RIdXkic_qh6KINdJPSXn79_hXlwmVezpsYeta48m3mMl3oh70MYEamSoGy_33TTN33T3YLNcqPI2sVYtqFmpzuw0f9kWV3swgUFXOCSN2xg6Sx-ysryMAtGx6uMqIif3xgl3r5SQYgVWvlsWnBjqHlOpboHw-7lY6fnlTURPBPKcOmhhkWjlVzYY6mFw8sX2imFIneMe7vAucgfc56EzjiThtpPkjQyuC61sTKyju9DHT9kD4A5HiiZamFErITjfuqwuU4VQqVio8MGnFVoZLOC-iKrYsKeMoQuI-iyAroGiAqv7Mf8ZSia_-52-L9uR7BOT0UEzTHUl_OVPcHNwVI389lvwlq7c397R_erm97gA5e6u1g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzx44IVXrmvSR45hAHdt6YZN2i5KskYZgTHsc-PfYfUwgwYUe21itvjR2HNufAe60Muj3iLbb5hFDByXQrgoy4caxylTEhAot1TsP0zAZ8-dJMKlBt6qFobTKUvcXOj3X1uWdVolmazGbtV48NLVEh-cTpz-anh1oEDtVUIdGp9dP0q1CZiJvaE3jXRKogpt5mpd6pwCEHxCvEqeCv9_M0zeT83QIB-Ve0ekUn3MEtWx-DPvDLdHq6gQeKOcCV71x0oyO4-dO2SFm5dAJq0NsxG-fDtXeflBPiA06-s68oMdQy5xN9RTGT4-jbuKWbRFc4wt_7aKRRb-VothTobnFy-PaKoVad4rbu7a1gTdlLPKtsSb2tRdFcWBwaWqTiSCz7Azq-KLsHBzL2krEmhseKm6ZF1scrmOFUKnQaL8J9xUaclGwX8gqLexVInSSoJMFdE3gFV7yxxRK1M5_i138T-wWdpPRcCAHvbR_CXv0pEiouYL6ernJrnGvsNY35b_wBTt7vHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elliptic+Neumann+problems+with+highly+discontinuous+nonlinearities&rft.jtitle=Applied+mathematics+letters&rft.au=D%E2%80%99Agu%C3%AC%2C+Giuseppina&rft.au=Morabito%2C+Valeria&rft.au=Winkert%2C+Patrick&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0893-9659&rft.volume=163&rft_id=info:doi/10.1016%2Fj.aml.2025.109455&rft.externalDocID=S0893965925000023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon