SFF-DA: Spatiotemporal Feature Fusion for Nonintrusively Detecting Anxiety

The early detection of anxiety disorders is crucial in mitigating distress and enhancing outcomes for individuals with mental disorders. Deep learning methods and traditional machine learning approaches are both used for the early screening of mental disorders, particularly those with anxiety sympto...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; p. 1
Main Authors Mo, Haimiao, Li, Yuchen, Han, Peng, Liao, Xiao, Zhang, Wei, Ding, Shuai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The early detection of anxiety disorders is crucial in mitigating distress and enhancing outcomes for individuals with mental disorders. Deep learning methods and traditional machine learning approaches are both used for the early screening of mental disorders, particularly those with anxiety symptoms. These methods excel at extracting spatiotemporal features associated with mental disorders; however, they often overlook potential interrelationships among these features. Furthermore, the effectiveness of existing methods is hindered by disparities in the quality of subject data collected in nonlaboratory settings, limited data sample sizes, and other factors. Therefore, we propose a non-intrusive anxiety detection framework based on spatiotemporal feature fusion. Within this framework, spatiotemporal features are extracted from physiological and behavioural data through a shared feature extraction network. Additionally, we design a few-shot learning architecture to compute the coupling of fused spatiotemporal features, assessing the similarity of various feature types within sample pairs. Furthermore, joint training strategies applied within the framework significantly enhance the performance of classification performance. We validate the performance of our framework through experiments with a real-world seafarer dataset. The experimental results unequivocally demonstrate that our framework outperforms comparative approaches.
AbstractList The early detection of anxiety disorders is crucial in mitigating distress and enhancing outcomes for individuals with mental disorders. Deep learning methods and traditional machine learning approaches are both used for the early screening of mental disorders, particularly those with anxiety symptoms. These methods excel at extracting spatiotemporal features associated with mental disorders; however, they often overlook potential interrelationships among these features. Furthermore, the effectiveness of existing methods is hindered by disparities in the quality of subject data collected in nonlaboratory settings, limited data sample sizes, and other factors. Therefore, we propose a non-intrusive anxiety detection framework based on spatiotemporal feature fusion. Within this framework, spatiotemporal features are extracted from physiological and behavioural data through a shared feature extraction network. Additionally, we design a few-shot learning architecture to compute the coupling of fused spatiotemporal features, assessing the similarity of various feature types within sample pairs. Furthermore, joint training strategies applied within the framework significantly enhance the performance of classification performance. We validate the performance of our framework through experiments with a real-world seafarer dataset. The experimental results unequivocally demonstrate that our framework outperforms comparative approaches.
The early detection of anxiety disorders is crucial in mitigating distress and enhancing outcomes for individuals with mental disorders. Deep learning methods and traditional machine learning approaches are both used for the early screening of mental disorders, particularly those with anxiety symptoms. These methods excel at extracting spatiotemporal features associated with mental disorders; however, they often overlook potential interrelationships among these features. Furthermore, the effectiveness of the existing methods is hindered by disparities in the quality of subject data collected in nonlaboratory settings, limited data sample sizes, and other factors. Therefore, we propose a nonintrusive anxiety detection framework based on spatiotemporal feature fusion. Within this framework, spatiotemporal features are extracted from physiological and behavioral data through a shared feature extraction network. In addition, we design a few-shot learning architecture to compute the coupling of fused spatiotemporal features, assessing the similarity of various feature types within sample pairs. Furthermore, joint training strategies applied within the framework significantly enhance the performance of classification performance. We validate the performance of our framework through experiments with a real-world seafarer dataset. The experimental results unequivocally demonstrate that our framework outperforms comparative approaches.
Author Mo, Haimiao
Liao, Xiao
Ding, Shuai
Li, Yuchen
Han, Peng
Zhang, Wei
Author_xml – sequence: 1
  givenname: Haimiao
  orcidid: 0000-0001-6725-6703
  surname: Mo
  fullname: Mo, Haimiao
  organization: School of Management, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Yuchen
  orcidid: 0000-0002-8825-0527
  surname: Li
  fullname: Li, Yuchen
  organization: Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
– sequence: 3
  givenname: Peng
  orcidid: 0009-0008-5921-9062
  surname: Han
  fullname: Han, Peng
  organization: School of Management, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Xiao
  orcidid: 0009-0009-8779-490X
  surname: Liao
  fullname: Liao, Xiao
  organization: Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
– sequence: 5
  givenname: Wei
  orcidid: 0000-0003-3113-9577
  surname: Zhang
  fullname: Zhang, Wei
  organization: Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
– sequence: 6
  givenname: Shuai
  orcidid: 0000-0002-8384-1950
  surname: Ding
  fullname: Ding, Shuai
  organization: School of Management, Hefei University of Technology, Hefei, China
BookMark eNp9kM1LAzEQxYNUsK3ePXhY8Lw137vxVlrXD6oeWs8hpomkbDdrNiv2vzelPYgHYZiB4b15zG8EBo1vDACXCE4QguJm9fg8wRCTCSEUIYJPwBAxVuSCczwAQwhRmQvK-BkYdd0GQlhwWgzB07Kq8vn0Nlu2Kjofzbb1QdVZZVTsg8mqvnO-yawP2YtvXBNDWnyZepfNTTQ6uuYjmzbfzsTdOTi1qu7MxXGOwVt1t5o95IvX-8fZdJFrLHDM0ZozTBAvberIQlyuS6gZXZcac1MqrCnW1tB3razFWqTiKkkxg7rkkJExuD7cbYP_7E0X5cb3oUmREgtIeUHTzaSCB5UOvuuCsbINbqvCTiIo98RkIib3xOSRWLLwPxbt4p5K-lq5-j_j1cHojDG_cggjQhDyAwU3eUQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2024_3406835
crossref_primary_10_1109_TIM_2024_3352713
Cites_doi 10.3390/electronics8091039
10.1016/j.clinph.2021.05.021
10.3758/s13423-011-0124-7
10.3390/brainsci9030050
10.1111/j.1469-8986.2008.00654.x
10.1038/s41598-020-74710-9
10.3390/brainsci13040685
10.3390/s20247088
10.1016/j.biopsycho.2007.07.005
10.1016/0191-8869(96)00050-5
10.1126/science.1171203
10.1007/978-3-030-01234-2_46
10.1109/TIM.2021.3076850
10.3390/ijerph16071236
10.1080/10615806.2019.1597859
10.1109/MECO52532.2021.9460191
10.1109/TAFFC.2018.2828819
10.1186/s12888-021-03197-z
10.1016/S0140-6736(21)02143-7
10.1109/ICCV.2019.00718
10.1109/CVPR.2018.00046
10.3390/brainsci11040480
10.1016/j.nicl.2019.101813
10.1016/j.bspc.2016.06.020
10.3390/jcm9103064
10.1109/IJCBS.2009.22
10.1109/TAFFC.2020.3021755
10.1002/da.21986
10.1109/ACII.2015.7344583
10.1007/s10608-014-9606-z
10.1016/j.bdr.2022.100314
10.1109/TAFFC.2018.2792000
10.1212/WNL.0000000000002499
10.1109/ICMIPE53131.2021.9698881
10.1016/j.patcog.2020.107197
10.1016/j.pmcj.2018.09.003
10.1145/3343031.3351015
10.1016/j.imu.2018.12.004
10.1109/TIM.2022.3205644
10.3390/s21123998
10.1109/JBHI.2020.2983126
10.1016/j.ins.2019.07.070
10.1007/978-3-030-01261-8_28
10.1109/TAFFC.2019.2936198
10.1109/ICCV48922.2021.00676
10.3390/s19173693
10.1109/TENCONSpring.2017.8069995
10.1016/j.jad.2020.01.032
10.1016/j.marpol.2022.105276
10.1109/TAFFC.2020.2981440
10.1016/j.eswa.2023.120135
10.1109/FG.2019.8756568
10.3390/pr8020155
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3341132
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2023_3341132
10353993
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 202106690030
  funderid: 10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 72293581; 72293580; 72188101
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-1d6523168f2311f028d80c54d8c26e8a2c42cfe4bcaff2c92c96a231250c86053
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:19:25 EDT 2025
Tue Jul 01 03:07:35 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Wed Aug 27 02:37:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-1d6523168f2311f028d80c54d8c26e8a2c42cfe4bcaff2c92c96a231250c86053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3113-9577
0009-0009-8779-490X
0000-0001-6725-6703
0000-0002-8384-1950
0000-0002-8825-0527
0009-0008-5921-9062
PQID 2904674028
PQPubID 85462
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TIM_2023_3341132
crossref_primary_10_1109_TIM_2023_3341132
proquest_journals_2904674028
ieee_primary_10353993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Mesquita (ref42); 33
References_xml – ident: ref17
  doi: 10.3390/electronics8091039
– ident: ref4
  doi: 10.1016/j.clinph.2021.05.021
– ident: ref16
  doi: 10.3758/s13423-011-0124-7
– ident: ref5
  doi: 10.3390/brainsci9030050
– ident: ref24
  doi: 10.1111/j.1469-8986.2008.00654.x
– ident: ref7
  doi: 10.1038/s41598-020-74710-9
– ident: ref8
  doi: 10.3390/brainsci13040685
– ident: ref18
  doi: 10.3390/s20247088
– ident: ref22
  doi: 10.1016/j.biopsycho.2007.07.005
– ident: ref52
  doi: 10.1016/0191-8869(96)00050-5
– ident: ref2
  doi: 10.1126/science.1171203
– ident: ref31
  doi: 10.1007/978-3-030-01234-2_46
– ident: ref43
  doi: 10.1109/TIM.2021.3076850
– ident: ref54
  doi: 10.3390/ijerph16071236
– ident: ref19
  doi: 10.1080/10615806.2019.1597859
– ident: ref32
  doi: 10.1109/MECO52532.2021.9460191
– ident: ref51
  doi: 10.1109/TAFFC.2018.2828819
– ident: ref25
  doi: 10.1186/s12888-021-03197-z
– ident: ref1
  doi: 10.1016/S0140-6736(21)02143-7
– ident: ref47
  doi: 10.1109/ICCV.2019.00718
– ident: ref41
  doi: 10.1109/CVPR.2018.00046
– ident: ref20
  doi: 10.3390/brainsci11040480
– ident: ref29
  doi: 10.1016/j.nicl.2019.101813
– ident: ref14
  doi: 10.1016/j.bspc.2016.06.020
– ident: ref37
  doi: 10.3390/jcm9103064
– ident: ref46
  doi: 10.1109/IJCBS.2009.22
– ident: ref49
  doi: 10.1109/TAFFC.2020.3021755
– ident: ref53
  doi: 10.1002/da.21986
– ident: ref35
  doi: 10.1109/ACII.2015.7344583
– ident: ref3
  doi: 10.1007/s10608-014-9606-z
– ident: ref34
  doi: 10.1016/j.bdr.2022.100314
– volume: 33
  start-page: 2220
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: Rethinking pooling in graph neural networks
– ident: ref38
  doi: 10.1109/TAFFC.2018.2792000
– ident: ref40
  doi: 10.1212/WNL.0000000000002499
– ident: ref10
  doi: 10.1109/ICMIPE53131.2021.9698881
– ident: ref45
  doi: 10.1016/j.patcog.2020.107197
– ident: ref6
  doi: 10.1016/j.pmcj.2018.09.003
– ident: ref30
  doi: 10.1145/3343031.3351015
– ident: ref12
  doi: 10.1016/j.imu.2018.12.004
– ident: ref39
  doi: 10.1109/TIM.2022.3205644
– ident: ref15
  doi: 10.3390/s21123998
– ident: ref50
  doi: 10.1109/JBHI.2020.2983126
– ident: ref33
  doi: 10.1016/j.ins.2019.07.070
– ident: ref44
  doi: 10.1007/978-3-030-01261-8_28
– ident: ref27
  doi: 10.1109/TAFFC.2019.2936198
– ident: ref48
  doi: 10.1109/ICCV48922.2021.00676
– ident: ref21
  doi: 10.3390/s19173693
– ident: ref13
  doi: 10.1109/TENCONSpring.2017.8069995
– ident: ref26
  doi: 10.1016/j.jad.2020.01.032
– ident: ref28
  doi: 10.1016/j.marpol.2022.105276
– ident: ref23
  doi: 10.1109/TAFFC.2020.2981440
– ident: ref36
  doi: 10.1016/j.eswa.2023.120135
– ident: ref9
  doi: 10.1109/FG.2019.8756568
– ident: ref11
  doi: 10.3390/pr8020155
SSID ssj0007647
Score 2.399551
Snippet The early detection of anxiety disorders is crucial in mitigating distress and enhancing outcomes for individuals with mental disorders. Deep learning methods...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anxiety
Anxiety disorders
Data mining
Deep learning
Facial Video Understanding
Feature extraction
Feature Fusion
Few-Shot Learning
Machine learning
Mental disorders
Mouth
Nonintrusive Anxiety Detection
Physiology
Signs and symptoms
Spatiotemporal Feature Extraction
Spatiotemporal phenomena
Training
Title SFF-DA: Spatiotemporal Feature Fusion for Nonintrusively Detecting Anxiety
URI https://ieeexplore.ieee.org/document/10353993
https://www.proquest.com/docview/2904674028
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sQdCDj1qxWmUPXjwkzT7y8lasoRbaS1voLSSbzcXSim1B_fXObpJSFUUIIZDdsJnZnZ2ZnfkG4BZ5miapdC0ndX00UBS1UsfPLB4GAc19NxHG4TYcef2pGMzcWZmsbnJhlFIm-EzZ-tGc5WdLudGuMlzhXAOp8hrU0HIrkrW2Ytf3RAGQSXEFo1pQnUk6YWfyNLR1mXCbo8ymnH3Zg0xRlR-S2Gwv0TGMqoEVUSXP9mad2vLjG2bjv0d-Akelokm6xcw4hT21aMDhDvxgA_ZN-KdcncFgHEVWr3tPxibAusSrmhOtIG5eFYk22qlGUMElI-2_1ZkaKCbn76Sn9CkEfo50F286_rMJ0-hx8tC3yioLlmQhW1s089AYpV6Q453mqG9kgSNdkQWSeSpImBRM5kqkMslzJkO8vASbou4kAzSG-DnUF8uFugDiUukqnnLpJ1TkgidoqTNXokWDggTftaBT0T2WJQS5roQxj40p4oQxcirWnIpLTrXgbtvjpYDf-KNtUxN-p11B8xa0K97G5QJdxSx0dJ0V_NvLX7pdwQF-XRTuljbUkbLqGhWQdXpjJt4nAY_UAA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58IOrBZ8Vq1T148ZA0-8rDW7GG-mgvrdBbSDabi6UVbUH99c5uUqmKIoQQyCbZzOzOfjM7D4Bz5GmWZko6XiYDVFA0dTIvyB0ehSEtApkKa3Dr9vzOg7gdymEVrG5jYbTW1vlMu-bS7uXnEzUzpjKc4dwkUuXLsIoLv6RluNan4A18UabIpDiHERjMdyW9qDm46bqmULjLUWpTzr6sQrasyg9ZbBeYeBt6866VfiWP7myauer9W9bGf_d9B7YqqEla5djYhSU93oPNhQSEe7BmHUDVyz7c9uPYabcuSd-6WFcZq0bEQMTZsybxzJjVCEJc0jMWXBOrgYJy9Eba2uxD4OtIa_xqPEBr8BBfD646TlVnwVEsYlOH5j6qo9QPCzzTAhFHHnpKijxUzNdhypRgqtAiU2lRMBXh4afYFNGTClEd4gewMp6M9SEQSZXUPOMqSKkoBE9RV2dSoU6DogTv1aE5p3uiqiTkphbGKLHKiBclyKnEcCqpOFWHi88nnsoEHH-0rRnCL7QraV6Hxpy3STVFXxIWeabSCv7t0S-PncF6Z9C9T-5venfHsIFfEqXxpQErSGV9gnBkmp3aQfgBPk_XSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SFF-DA%3A+Spatiotemporal+Feature+Fusion+for+Nonintrusively+Detecting+Anxiety&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Mo%2C+Haimiao&rft.au=Li%2C+Yuchen&rft.au=Han%2C+Peng&rft.au=Liao%2C+Xiao&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2023.3341132&rft.externalDocID=10353993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon