Application of confocal laser microscopy for identification of modern and fossil pollen grains, an example in palm Mauritiinae
Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images...
Saved in:
Published in | Review of palaeobotany and palynology Vol. 327; p. 105140 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images are suitable for several image analysis techniques that could help improve the accuracy and reproducibility of taxa identification. Here, using the palm subtribe Mauritiinae (Arecaceae: Calamoideae: Lepidocaryeae) as a model group, we identify modern and fossil pollen grains using CSLM images coupled with ImageJ/Fiji 1.54f plugins and machine learning statistical analyses. Modern taxa pollen grains including Lepidocaryum tenue Mart., Mauritia flexuosa L.f., Mauritiella armata (Mart.) Burret and Mauritiella aculeata (Kunth) Burret were obtained from Smithsonian Tropical Research Institute (STRI) pollen collection or herbarium exsiccates. Fossil pollen of Grimsdalea magnaclavata Germeraad et al. 1968, and Mauritiidites franciscoi (van der Hammen) van der Hammen & Garcia de Mutis 1966, both from Miocene, and Mauritia pollen type from Holocene were obtained from STRI collection. We measured nine shape and exine quantitative parameters, and one qualitative parameter (pollen aperture). Pollen volume was the most important variable (28.270 mean decrease accuracy), followed by pollen aperture (15.003), Skewness (13.466), and spine density (10.246). The machine learning analysis, which included CART and Random Forests, correctly identified both fossil and extant grains. CSLM and the quantitative analysis of morphological traits are a new frontier in palynological studies.
•We developed a framework for fossil and modern pollen grain identification.•We used confocal laser scanning microscopy images coupled with open-source image processor software, and machine learning analysis.•Pollen’s shape and surface structure showed higher accuracy in machine learning classification than light microscopy morphological traits.•Our framework opens new perspective for automate and digital pollen identification in any plant group.•Our analysis pipeline will become powerful tools to unravel the true potential of palynology. |
---|---|
AbstractList | Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images are suitable for several image analysis techniques that could help improve the accuracy and reproducibility of taxa identification. Here, using the palm subtribe Mauritiinae (Arecaceae: Calamoideae: Lepidocaryeae) as a model group, we identify modern and fossil pollen grains using CSLM images coupled with ImageJ/Fiji 1.54f plugins and machine learning statistical analyses. Modern taxa pollen grains including Lepidocaryum tenue Mart., Mauritia flexuosa L.f., Mauritiella armata (Mart.) Burret and Mauritiella aculeata (Kunth) Burret were obtained from Smithsonian Tropical Research Institute (STRI) pollen collection or herbarium exsiccates. Fossil pollen of Grimsdalea magnaclavata Germeraad et al. 1968, and Mauritiidites franciscoi (van der Hammen) van der Hammen & Garcia de Mutis 1966, both from Miocene, and Mauritia pollen type from Holocene were obtained from STRI collection. We measured nine shape and exine quantitative parameters, and one qualitative parameter (pollen aperture). Pollen volume was the most important variable (28.270 mean decrease accuracy), followed by pollen aperture (15.003), Skewness (13.466), and spine density (10.246). The machine learning analysis, which included CART and Random Forests, correctly identified both fossil and extant grains. CSLM and the quantitative analysis of morphological traits are a new frontier in palynological studies. Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images are suitable for several image analysis techniques that could help improve the accuracy and reproducibility of taxa identification. Here, using the palm subtribe Mauritiinae (Arecaceae: Calamoideae: Lepidocaryeae) as a model group, we identify modern and fossil pollen grains using CSLM images coupled with ImageJ/Fiji 1.54f plugins and machine learning statistical analyses. Modern taxa pollen grains including Lepidocaryum tenue Mart., Mauritia flexuosa L.f., Mauritiella armata (Mart.) Burret and Mauritiella aculeata (Kunth) Burret were obtained from Smithsonian Tropical Research Institute (STRI) pollen collection or herbarium exsiccates. Fossil pollen of Grimsdalea magnaclavata Germeraad et al. 1968, and Mauritiidites franciscoi (van der Hammen) van der Hammen & Garcia de Mutis 1966, both from Miocene, and Mauritia pollen type from Holocene were obtained from STRI collection. We measured nine shape and exine quantitative parameters, and one qualitative parameter (pollen aperture). Pollen volume was the most important variable (28.270 mean decrease accuracy), followed by pollen aperture (15.003), Skewness (13.466), and spine density (10.246). The machine learning analysis, which included CART and Random Forests, correctly identified both fossil and extant grains. CSLM and the quantitative analysis of morphological traits are a new frontier in palynological studies. •We developed a framework for fossil and modern pollen grain identification.•We used confocal laser scanning microscopy images coupled with open-source image processor software, and machine learning analysis.•Pollen’s shape and surface structure showed higher accuracy in machine learning classification than light microscopy morphological traits.•Our framework opens new perspective for automate and digital pollen identification in any plant group.•Our analysis pipeline will become powerful tools to unravel the true potential of palynology. |
ArticleNumber | 105140 |
Author | Silva-Caminha, Silane A.F. Castañeda, Marcela Collevatti, Rosane G. Jaramillo, Carlos |
Author_xml | – sequence: 1 givenname: Rosane G. surname: Collevatti fullname: Collevatti, Rosane G. email: rosanegc68@icloud.com organization: Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil – sequence: 2 givenname: Marcela surname: Castañeda fullname: Castañeda, Marcela organization: Smithsonian Tropical Research Institute, Balboa, Ancón, Panama – sequence: 3 givenname: Silane A.F. surname: Silva-Caminha fullname: Silva-Caminha, Silane A.F. organization: Faculdade de Geociências, Universidade Federal de Mato Grosso, Cuiabá, Brazil – sequence: 4 givenname: Carlos surname: Jaramillo fullname: Jaramillo, Carlos organization: Smithsonian Tropical Research Institute, Balboa, Ancón, Panama |
BookMark | eNqFkE9P3DAQxa0KpC7bfoXKxx7I4j-Jk9xAqC1IIC70bHnHk2pWjh3sLCqXfnay2iJx4zTSzHtP835n7CSmiIx9k2IjhTQXu03G58mFbdoooepl2chafGIr2bV9JYxsTthKCF1Xxpj2MzsrZSeEkE3Trti_q2kKBG6mFHkaOKQ4JHCBB1cw85EgpwJpeuFDypw8xpmGd_oxecyRu-gXQSkU-JRCwMj_ZEexnC8Xjn_dOAXkFPny5sjv3T7TTBQdfmGngwsFv_6fa_b754_H65vq7uHX7fXVXQWqV3MlO7N1qlMguh6HvtZe-NYbNL41CpzUElEbDwh62zagnOkkmM619dDrDrRes-_H3Cmnpz2W2Y5UAENwEdO-WK0WTn2jlug1M0fpoXnJONgp0-jyi5XCHoDbnX0Dbg_A7RH4Yrw8GnEp8kyYbQHCCOgpI8zWJ_oo4hW6SJFH |
Cites_doi | 10.1016/j.forsciint.2006.07.012 10.1038/srep40663 10.1111/2041-210X.12752 10.1136/bjo.2008.150615 10.1017/S1431927609094367 10.1890/07-0539.1 10.1016/j.earscirev.2020.103384 10.7171/jbt.15-2602-003 10.1080/00173130152625914 10.2110/jsr.2020.030 10.1023/A:1010933404324 10.1046/j.1365-2699.1999.00280.x 10.1371/journal.pone.0039129 10.21608/taec.2022.258213 10.1038/nmeth.2019 10.1016/S0034-6667(97)00060-2 10.1080/00173139709362610 10.1016/0034-6667(81)90013-0 10.1093/botlinnean/boaa014 10.3390/electronics9050761 10.1111/jbi.14098 10.1016/j.pbiomolbio.2021.09.001 10.1080/00173130152591877 10.1111/nph.12848 10.1002/cpcy.39 10.1111/jmi.12496 10.54991/jop.2022.538 10.1038/nmeth.2089 10.1111/nph.19186 10.1111/j.1600-0587.2009.06299.x 10.1111/j.1365-2818.2006.01706.x 10.1208/pt010317 10.1186/1471-2105-9-307 10.1080/01916122.2022.2070294 10.1016/j.revpalbo.2011.08.006 10.1086/677680 10.1080/01916122.2011.642258 10.11646/palaeoentomology.4.3.14 10.1111/jmi.12639 10.1080/00173130601173897 10.1016/0262-8856(92)90076-F 10.2307/2398913 10.1016/j.coal.2020.103445 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.revpalbo.2024.105140 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1879-0615 |
ExternalDocumentID | 10_1016_j_revpalbo_2024_105140 S0034666724000915 |
GeographicLocations | Fiji |
GeographicLocations_xml | – name: Fiji |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K WH7 WUQ XPP ZMT ZY4 ~02 ~G- ~KM AAFWJ AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c292t-186ba282c089ef943d0d7d6e6d762ca131ee36dcec3b75c2a681c68a74f938c33 |
IEDL.DBID | .~1 |
ISSN | 0034-6667 |
IngestDate | Wed Jul 02 03:21:46 EDT 2025 Tue Jul 01 02:48:17 EDT 2025 Sat Jun 29 15:31:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ImageJ Lepidocaryeae Palynology Arecaceae Species assignment Paleontology Random forests CART |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-186ba282c089ef943d0d7d6e6d762ca131ee36dcec3b75c2a681c68a74f938c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3206195294 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3206195294 crossref_primary_10_1016_j_revpalbo_2024_105140 elsevier_sciencedirect_doi_10_1016_j_revpalbo_2024_105140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Review of palaeobotany and palynology |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lebrun (bb0145) 2018 Rull (bb0230) 2001; 40 Pesce, Laurino, Scardigli, Yang, Boas, Hof, Destrieux, Costantini, Pavone (bb0200) 2022; 168 Quamar, Singh, Garg, Tripathi, Farooqui, Shukla, Prasad (bb0215) 2022; 46 Shah, Crawshaw, Boek (bb0255) 2017; 265 Castro, Rejón, Fendri, Jiménez-Quesada, Zafra, Jiménez-López, Rodríguez-García, Alché (bb0050) 2010 Mander, Punyasena (bb0150) 2014; 175 Martin, Harvey (bb0160) 2017; 8 Breiman, Friedman, Olshen, Stone (bb0040) 1984 Cutler, Thomas, Beard, Cutler, Hess, Gibson, Lawler (bb0065) 2007; 88 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bb0240) 2012; 9 Drobnič, Kos, Pustišek (bb0070) 2020; 9 Fu, Li, Su, Ca, Huang (bb0085) 2021; 4 Muller (bb0175) 1979; 66 Scott (bb0250) 1989; 10 Petford, Miller (bb0205) 1992; 77 Holt, Allen, Hodgson, Marsland, Flenley (bb0110) 2011; 167 Moro, Valdrè, Mesto, Scordari, Lacalamita, Ventura, Bellatreccia, Scirè, Schingaro (bb0170) 2017; 7 Yuxiong (bib286) Karperien (bb0130) 2013 Breiman (bb0035) 2001; 45 Holt, Bennett (bb0105) 2014; 203 Bolte, Cordelières (bb0030) 2006; 224 Erdtman (bb0080) 1986 Lamprecht, Schäfer, Lehr (bb0140) 2000; 1 Trivedi, Srivastava, Farooqui, Khan, Pokharia, Ferguson, Singh (bb0280) 2022; 71 Harley, Baker (bb0100) 2001; 40 Strobl, Boulesteix, Kneib, Augustin (bb0270) 2008; 9 Salih, Jones, Bass, Cox (bb0235) 1997; 36 Chinga (bb0060) 2018 Hackley, Jubb, Burruss, Beaven (bb0095) 2020; 223 Vitha, Bryant, Zwa, Holzenburgh (bb0285) 2009; 15 Bogotá-Ángel, Huang, Jardine, Chazot, Salamanca, Banks, Pardo-Trujillo, Plata, Dueñas, Star, Langelaan, Eisawi, Umeji, Enuenwemba, Parmar, da Silveira, Lim, Prasad, Morley, Bacon, Hoorn (bb0025) 2021; 48 Steinberg (bb0265) 2009 Elliott (bb0075) 2020; 92 Taia (bb0275) 2022; 42 Hurley, Nakamura, Rosenberg (bb0115) 2021; 91 Koenderink, van Doorn (bb0135) 1992; 10 Caal, Bekel, Dembele, Rougeot, Jouffroy-Bapicot, Lebas, Langlois, Roiban, Fellah, Piat, Thibaud, Cuny, Masenelli-Varlot (bb0045) 2021 Sivaguru, Mander, Fried, Punyasena (bb0260) 2012; 7 Chevalier, Davis, Heiri, Seppä, Chase, Gajewski, Lacourse, Telford, Finsinger, Guiot, Kühl, Maezumi, Tipton, Carter, Brussel, Phelps, Dawson, Zanon, Vallé, Nolan, Mauri, Vernal, Izumi, Holmström, Marsicek, Goring, Sommer, Chaput, Kupriyanov (bb0055) 2020; 210 Patel, McGhee (bb0190) 2009; 93 Rangel, Diniz-Filho, Bini (bb0220) 2010; 33 Gravilova, Zavialova, Tekleva, Karasev (bb0090) 2018; 269 Mao (bb0155) 2016 Schneider, Rasband, Eliceiri (bb0245) 2012; 9 Mildenhall, Wiltshire, Bryant (bb0165) 2006; 163 Jonkman, Brown (bb0125) 2015; 26 Odgaar (bb0180) 1999; 26 Acuña, Rodriguez (bb0005) 2004 Payne (bb0195) 1981; 35 Bayguinov, Oakley, Shih, Geanon, Joens, Fitzpatrick (bb0020) 2018; 85 Jones, Bryant (bb0120) 2007; 46 Pocknall, Jarzen (bb0210) 2012; 36 Rull (bb0225) 1998; 100 Barnes (bb0015) 2023; 240 Pacini, Franchi (bb0185) 2020; 193 Bogotá-Ángel (10.1016/j.revpalbo.2024.105140_bb0025) 2021; 48 Gravilova (10.1016/j.revpalbo.2024.105140_bb0090) 2018; 269 Chevalier (10.1016/j.revpalbo.2024.105140_bb0055) 2020; 210 Erdtman (10.1016/j.revpalbo.2024.105140_bb0080) 1986 Caal (10.1016/j.revpalbo.2024.105140_bb0045) 2021 Chinga (10.1016/j.revpalbo.2024.105140_bb0060) Breiman (10.1016/j.revpalbo.2024.105140_bb0035) 2001; 45 Lamprecht (10.1016/j.revpalbo.2024.105140_bb0140) 2000; 1 Pacini (10.1016/j.revpalbo.2024.105140_bb0185) 2020; 193 Sivaguru (10.1016/j.revpalbo.2024.105140_bb0260) 2012; 7 Bolte (10.1016/j.revpalbo.2024.105140_bb0030) 2006; 224 Pocknall (10.1016/j.revpalbo.2024.105140_bb0210) 2012; 36 Schneider (10.1016/j.revpalbo.2024.105140_bb0245) 2012; 9 Jonkman (10.1016/j.revpalbo.2024.105140_bb0125) 2015; 26 Pesce (10.1016/j.revpalbo.2024.105140_bb0200) 2022; 168 Yuxiong (10.1016/j.revpalbo.2024.105140_bib286) Holt (10.1016/j.revpalbo.2024.105140_bb0110) 2011; 167 Martin (10.1016/j.revpalbo.2024.105140_bb0160) 2017; 8 Moro (10.1016/j.revpalbo.2024.105140_bb0170) 2017; 7 Cutler (10.1016/j.revpalbo.2024.105140_bb0065) 2007; 88 Mander (10.1016/j.revpalbo.2024.105140_bb0150) 2014; 175 Bayguinov (10.1016/j.revpalbo.2024.105140_bb0020) 2018; 85 Schindelin (10.1016/j.revpalbo.2024.105140_bb0240) 2012; 9 Hackley (10.1016/j.revpalbo.2024.105140_bb0095) 2020; 223 Taia (10.1016/j.revpalbo.2024.105140_bb0275) 2022; 42 Elliott (10.1016/j.revpalbo.2024.105140_bb0075) 2020; 92 Hurley (10.1016/j.revpalbo.2024.105140_bb0115) 2021; 91 Shah (10.1016/j.revpalbo.2024.105140_bb0255) 2017; 265 Scott (10.1016/j.revpalbo.2024.105140_bb0250) 1989; 10 Breiman (10.1016/j.revpalbo.2024.105140_bb0040) 1984 Jones (10.1016/j.revpalbo.2024.105140_bb0120) 2007; 46 Acuña (10.1016/j.revpalbo.2024.105140_bb0005) 2004 Trivedi (10.1016/j.revpalbo.2024.105140_bb0280) 2022; 71 Karperien (10.1016/j.revpalbo.2024.105140_bb0130) Lebrun (10.1016/j.revpalbo.2024.105140_bb0145) Castro (10.1016/j.revpalbo.2024.105140_bb0050) 2010 Fu (10.1016/j.revpalbo.2024.105140_bb0085) 2021; 4 Strobl (10.1016/j.revpalbo.2024.105140_bb0270) 2008; 9 Vitha (10.1016/j.revpalbo.2024.105140_bb0285) 2009; 15 Barnes (10.1016/j.revpalbo.2024.105140_bb0015) 2023; 240 Drobnič (10.1016/j.revpalbo.2024.105140_bb0070) 2020; 9 Holt (10.1016/j.revpalbo.2024.105140_bb0105) 2014; 203 Rull (10.1016/j.revpalbo.2024.105140_bb0230) 2001; 40 Patel (10.1016/j.revpalbo.2024.105140_bb0190) 2009; 93 Koenderink (10.1016/j.revpalbo.2024.105140_bb0135) 1992; 10 Harley (10.1016/j.revpalbo.2024.105140_bb0100) 2001; 40 Rangel (10.1016/j.revpalbo.2024.105140_bb0220) 2010; 33 Odgaar (10.1016/j.revpalbo.2024.105140_bb0180) 1999; 26 Muller (10.1016/j.revpalbo.2024.105140_bb0175) 1979; 66 Salih (10.1016/j.revpalbo.2024.105140_bb0235) 1997; 36 Payne (10.1016/j.revpalbo.2024.105140_bb0195) 1981; 35 Steinberg (10.1016/j.revpalbo.2024.105140_bb0265) 2009 Quamar (10.1016/j.revpalbo.2024.105140_bb0215) 2022; 46 Mao (10.1016/j.revpalbo.2024.105140_bb0155) Rull (10.1016/j.revpalbo.2024.105140_bb0225) 1998; 100 Mildenhall (10.1016/j.revpalbo.2024.105140_bb0165) 2006; 163 Petford (10.1016/j.revpalbo.2024.105140_bb0205) 1992; 77 |
References_xml | – volume: 33 start-page: 46 year: 2010 end-page: 50 ident: bb0220 article-title: SAM: a comprehensive application for spatial analysis in macroecology publication-title: Ecography – start-page: 607 year: 2010 end-page: 613 ident: bb0050 article-title: Taxonomical discrimination of pollen grains by using confocal laser scanning microscopy (CLSM) imaging of autofluorescence publication-title: Microscopy: Science, Technology, Applications and Education – volume: 40( start-page: 163 year: 2001 end-page: 167 ident: bb0230 article-title: A morphometric study of Early Miocene Mauritiidites from northern South America: palaeoecological and evolutionary implications publication-title: Grana – volume: 223 year: 2020 ident: bb0095 article-title: Fluorescence spectroscopy of ancient sedimentary organic matter via confocal laser scanning microscopy (CLSM) publication-title: Int. J. Coal Geol. – volume: 92 year: 2020 ident: bb0075 article-title: Confocal microscopy: principles and modern practices publication-title: Curr. Protoc. Cytom. – volume: 10 start-page: 1 year: 1989 end-page: 3 ident: bb0250 article-title: Geological applications of laser scanning microscopy publication-title: Microsc. Anal. – volume: 240 start-page: 1305 year: 2023 end-page: 1326 ident: bb0015 publication-title: New Phytol. – volume: 10 start-page: 557 year: 1992 end-page: 565 ident: bb0135 article-title: Surface shape and curvature scales publication-title: Image Vision Computation – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bb0240 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 265 start-page: 261 year: 2017 end-page: 271 ident: bb0255 article-title: Three-dimensional imaging of porous media using confocal laser scanning microscopy publication-title: J. Microsc. – volume: 26 start-page: 54 year: 2015 end-page: 65 ident: bb0125 article-title: Any way you slice it - a comparison of confocal microscopy techniques publication-title: J. Biomol. Tech. – volume: 100 start-page: 109 year: 1998 end-page: 122 ident: bb0225 article-title: Biogeographical and evolutionary considerations of publication-title: Rev. Palaeobot. Palynol. – volume: 163 start-page: 163 year: 2006 end-page: 172 ident: bb0165 article-title: Forensic palynology: why do it and how it works publication-title: Forensic Sci. Int. – volume: 15 start-page: 622 year: 2009 end-page: 623 ident: bb0285 article-title: Confocal imaging of pollen publication-title: Microsc. Microanal. – volume: 88 start-page: 2783 year: 2007 end-page: 2792 ident: bb0065 article-title: Random forests for classification in ecology publication-title: Ecology – start-page: 639 year: 2004 end-page: 647 ident: bb0005 article-title: The treatment of missing values and its effect on classifier accuracy publication-title: Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation – volume: 46 start-page: 20 year: 2007 end-page: 33 ident: bb0120 article-title: A comparison of pollen counts: light versus scanning electron microscopy publication-title: Grana – volume: 48 start-page: 1001 year: 2021 end-page: 1022 ident: bb0025 article-title: Climate and geological change as drivers of Mauritiinae palm biogeography publication-title: J. Biogeogr. – year: 2018 ident: bb0145 article-title: Morphodig – volume: 77 start-page: 529 year: 1992 end-page: 533 ident: bb0205 article-title: Three-dimensional imaging of fission tracks using confocal scanning laser microscopy publication-title: Am. Mineral. – year: 2013 ident: bb0130 article-title: FracLac V2.0f for ImageJ – volume: 93 start-page: 853 year: 2009 end-page: 860 ident: bb0190 article-title: In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review publication-title: Br. J. Ophthalmol. – year: 1984 ident: bb0040 article-title: Classification and Regression Trees – volume: 224 start-page: 213 year: 2006 end-page: 232 ident: bb0030 article-title: A guided tour into subcellular colocalization analysis in light microscopy publication-title: J. Microsc. – volume: 8 start-page: 892 year: 2017 end-page: 897 ident: bb0160 article-title: The global pollen project: a new tool for pollen identification and the dissemination of physical reference collections publication-title: Methods Ecol. Evol. – volume: 4 start-page: 266 year: 2021 end-page: 278 ident: bb0085 article-title: Application of confocal laser scanning microscopy to the study of amber bioinclusions publication-title: Palaeoentomology – volume: 91 start-page: 735 year: 2021 end-page: 750 ident: bb0115 article-title: Microporosity quantification using confocal microscopy publication-title: J. Sediment. Res. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bb0245 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 40 start-page: 45 year: 2001 end-page: 77 ident: bb0100 article-title: Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of record of palm-like pollen the fossil publication-title: Grana – year: 2016 ident: bb0155 article-title: Nearest Neighbor Distances Calculation with ImageJ – volume: 193 start-page: 141 year: 2020 end-page: 164 ident: bb0185 article-title: Pollen biodiversity – why are pollen grains different despite having the same function? A review publication-title: Bot. J. Linn. Soc. – volume: 9 start-page: 307 year: 2008 end-page: 317 ident: bb0270 article-title: Conditional variable importance for random forests publication-title: BMC Bioinform. – volume: 26 start-page: 7 year: 1999 end-page: 17 ident: bb0180 article-title: Fossil pollen as a record of past biodiversity publication-title: J. Biogeogr. – volume: 35 start-page: 39 year: 1981 end-page: 59 ident: bb0195 article-title: Structure and function in angiosperm pollen wall evolution publication-title: Rev. Paleobot. Palynol. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0035 article-title: Random forests publication-title: Mach. Learn. – volume: 210 year: 2020 ident: bb0055 article-title: Pollen-based climate reconstruction techniques for late Quaternary studies publication-title: Earth Sci. Rev. – volume: 9 start-page: 761 year: 2020 ident: bb0070 article-title: On the interpretability of machine learning models and experimental feature selection in case of multicollinear data publication-title: Electronics – volume: 168 start-page: 3 year: 2022 end-page: 9 ident: bb0200 article-title: Exploring the human cerebral cortex using confocal microscopy publication-title: Prog. Biophys. Mol. Biol. – volume: 203 start-page: 735 year: 2014 end-page: 742 ident: bb0105 article-title: Principles and methods for automated palynology publication-title: New Phytol. – volume: 42 start-page: 27 year: 2022 end-page: 42 ident: bb0275 article-title: Pollen grain diversity and application in taxonomy and evolution publication-title: Taeckholmia – volume: 66 start-page: 593 year: 1979 end-page: 632 ident: bb0175 article-title: Form and function in Angiosperm pollen publication-title: Ann. Mo. Bot. Gard. – volume: 85 start-page: e39 year: 2018 ident: bb0020 article-title: Modern laser scanning confocal microscopy publication-title: Curr. Protoc. Cytomet. – volume: 167 start-page: 175 year: 2011 end-page: 183 ident: bb0110 article-title: Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory publication-title: Rev. Palaeobot. Palynol. – year: 2018 ident: bb0060 article-title: Waveness roughness – start-page: 208 year: 2009 end-page: 232 ident: bb0265 article-title: CART: Classification and Regression Trees publication-title: The Top Ten Algorithms in Data Mining – volume: 269 start-page: 291 year: 2018 end-page: 309 ident: bb0090 article-title: Potential of CLSM in studying some modern and fossil palynological objects publication-title: J. Microsc. – ident: bib286 article-title: Nearest neighbor distance calculation with ImageJ. free available at – year: 1986 ident: bb0080 article-title: Pollen morphology and plant taxonomy. Angiosperms publication-title: Pollen Morphology and Plant Taxonomy. Angiosperms – volume: 175 start-page: 931 year: 2014 end-page: 945 ident: bb0150 article-title: On the taxonomic resolution of pollen and spore records of Earth’s vegetation publication-title: Int. J. Plant Sci. – volume: 7 year: 2017 ident: bb0170 article-title: Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging publication-title: Sci. Rep. – year: 2021 ident: bb0045 article-title: Pollen 3D: an application of 3D reconstruction for the scanning electron microscope publication-title: International Symposium on Optomechatronic Technology, November, Besançon, France – volume: 71 start-page: 123 year: 2022 end-page: 142 ident: bb0280 article-title: Pollen morphological study in subfamily Papilionoideae using Confocal Laser Scanning Microscopy publication-title: J. Palaeosci. – volume: 7 year: 2012 ident: bb0260 article-title: Capturing the surface texture and shape of pollen: a comparison of microscopy techniques publication-title: PloS One – volume: 46 start-page: 1 year: 2022 end-page: 13 ident: bb0215 article-title: Pollen characters and their evolutionary and taxonomic significance: using light and confocal laser scanning microscope to study diverse plant pollen taxa from central India publication-title: Palynology – volume: 1 start-page: 17 year: 2000 ident: bb0140 article-title: Structural analysis of microparticles by confocal laser scanning microscopy publication-title: AAPS PharmSciTech – volume: 36 start-page: 134 year: 2012 end-page: 143 ident: bb0210 article-title: Germeraad, Hopping & Muller: an enigmatic pollen type from the Neogene of northern South America publication-title: Palynology – volume: 36 start-page: 215 year: 1997 end-page: 224 ident: bb0235 article-title: Confocal imaging of exine as a tool for grass pollen analysis publication-title: Grana – start-page: 607 year: 2010 ident: 10.1016/j.revpalbo.2024.105140_bb0050 article-title: Taxonomical discrimination of pollen grains by using confocal laser scanning microscopy (CLSM) imaging of autofluorescence – ident: 10.1016/j.revpalbo.2024.105140_bb0145 – volume: 163 start-page: 163 year: 2006 ident: 10.1016/j.revpalbo.2024.105140_bb0165 article-title: Forensic palynology: why do it and how it works publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2006.07.012 – volume: 7 year: 2017 ident: 10.1016/j.revpalbo.2024.105140_bb0170 article-title: Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging publication-title: Sci. Rep. doi: 10.1038/srep40663 – volume: 77 start-page: 529 year: 1992 ident: 10.1016/j.revpalbo.2024.105140_bb0205 article-title: Three-dimensional imaging of fission tracks using confocal scanning laser microscopy publication-title: Am. Mineral. – volume: 8 start-page: 892 year: 2017 ident: 10.1016/j.revpalbo.2024.105140_bb0160 article-title: The global pollen project: a new tool for pollen identification and the dissemination of physical reference collections publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12752 – year: 1986 ident: 10.1016/j.revpalbo.2024.105140_bb0080 article-title: Pollen morphology and plant taxonomy. Angiosperms – volume: 93 start-page: 853 year: 2009 ident: 10.1016/j.revpalbo.2024.105140_bb0190 article-title: In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.2008.150615 – volume: 15 start-page: 622 year: 2009 ident: 10.1016/j.revpalbo.2024.105140_bb0285 article-title: Confocal imaging of pollen publication-title: Microsc. Microanal. doi: 10.1017/S1431927609094367 – volume: 88 start-page: 2783 year: 2007 ident: 10.1016/j.revpalbo.2024.105140_bb0065 article-title: Random forests for classification in ecology publication-title: Ecology doi: 10.1890/07-0539.1 – ident: 10.1016/j.revpalbo.2024.105140_bib286 – ident: 10.1016/j.revpalbo.2024.105140_bb0130 – volume: 210 year: 2020 ident: 10.1016/j.revpalbo.2024.105140_bb0055 article-title: Pollen-based climate reconstruction techniques for late Quaternary studies publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103384 – volume: 26 start-page: 54 year: 2015 ident: 10.1016/j.revpalbo.2024.105140_bb0125 article-title: Any way you slice it - a comparison of confocal microscopy techniques publication-title: J. Biomol. Tech. doi: 10.7171/jbt.15-2602-003 – volume: 40( start-page: 163 year: 2001 ident: 10.1016/j.revpalbo.2024.105140_bb0230 article-title: A morphometric study of Early Miocene Mauritiidites from northern South America: palaeoecological and evolutionary implications publication-title: Grana doi: 10.1080/00173130152625914 – volume: 91 start-page: 735 year: 2021 ident: 10.1016/j.revpalbo.2024.105140_bb0115 article-title: Microporosity quantification using confocal microscopy publication-title: J. Sediment. Res. doi: 10.2110/jsr.2020.030 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.revpalbo.2024.105140_bb0035 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 26 start-page: 7 year: 1999 ident: 10.1016/j.revpalbo.2024.105140_bb0180 article-title: Fossil pollen as a record of past biodiversity publication-title: J. Biogeogr. doi: 10.1046/j.1365-2699.1999.00280.x – start-page: 208 year: 2009 ident: 10.1016/j.revpalbo.2024.105140_bb0265 article-title: CART: Classification and Regression Trees – ident: 10.1016/j.revpalbo.2024.105140_bb0060 – volume: 7 year: 2012 ident: 10.1016/j.revpalbo.2024.105140_bb0260 article-title: Capturing the surface texture and shape of pollen: a comparison of microscopy techniques publication-title: PloS One doi: 10.1371/journal.pone.0039129 – volume: 42 start-page: 27 year: 2022 ident: 10.1016/j.revpalbo.2024.105140_bb0275 article-title: Pollen grain diversity and application in taxonomy and evolution publication-title: Taeckholmia doi: 10.21608/taec.2022.258213 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.revpalbo.2024.105140_bb0240 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 100 start-page: 109 year: 1998 ident: 10.1016/j.revpalbo.2024.105140_bb0225 article-title: Biogeographical and evolutionary considerations of Mauritia (Arecaceae), based on palynological evidence publication-title: Rev. Palaeobot. Palynol. doi: 10.1016/S0034-6667(97)00060-2 – volume: 36 start-page: 215 year: 1997 ident: 10.1016/j.revpalbo.2024.105140_bb0235 article-title: Confocal imaging of exine as a tool for grass pollen analysis publication-title: Grana doi: 10.1080/00173139709362610 – volume: 35 start-page: 39 year: 1981 ident: 10.1016/j.revpalbo.2024.105140_bb0195 article-title: Structure and function in angiosperm pollen wall evolution publication-title: Rev. Paleobot. Palynol. doi: 10.1016/0034-6667(81)90013-0 – volume: 193 start-page: 141 year: 2020 ident: 10.1016/j.revpalbo.2024.105140_bb0185 article-title: Pollen biodiversity – why are pollen grains different despite having the same function? A review publication-title: Bot. J. Linn. Soc. doi: 10.1093/botlinnean/boaa014 – volume: 9 start-page: 761 year: 2020 ident: 10.1016/j.revpalbo.2024.105140_bb0070 article-title: On the interpretability of machine learning models and experimental feature selection in case of multicollinear data publication-title: Electronics doi: 10.3390/electronics9050761 – volume: 48 start-page: 1001 year: 2021 ident: 10.1016/j.revpalbo.2024.105140_bb0025 article-title: Climate and geological change as drivers of Mauritiinae palm biogeography publication-title: J. Biogeogr. doi: 10.1111/jbi.14098 – volume: 168 start-page: 3 year: 2022 ident: 10.1016/j.revpalbo.2024.105140_bb0200 article-title: Exploring the human cerebral cortex using confocal microscopy publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2021.09.001 – volume: 40 start-page: 45 year: 2001 ident: 10.1016/j.revpalbo.2024.105140_bb0100 article-title: Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of record of palm-like pollen the fossil publication-title: Grana doi: 10.1080/00173130152591877 – volume: 203 start-page: 735 year: 2014 ident: 10.1016/j.revpalbo.2024.105140_bb0105 article-title: Principles and methods for automated palynology publication-title: New Phytol. doi: 10.1111/nph.12848 – volume: 85 start-page: e39 year: 2018 ident: 10.1016/j.revpalbo.2024.105140_bb0020 article-title: Modern laser scanning confocal microscopy publication-title: Curr. Protoc. Cytomet. doi: 10.1002/cpcy.39 – volume: 265 start-page: 261 year: 2017 ident: 10.1016/j.revpalbo.2024.105140_bb0255 article-title: Three-dimensional imaging of porous media using confocal laser scanning microscopy publication-title: J. Microsc. doi: 10.1111/jmi.12496 – volume: 71 start-page: 123 year: 2022 ident: 10.1016/j.revpalbo.2024.105140_bb0280 article-title: Pollen morphological study in subfamily Papilionoideae using Confocal Laser Scanning Microscopy publication-title: J. Palaeosci. doi: 10.54991/jop.2022.538 – ident: 10.1016/j.revpalbo.2024.105140_bb0155 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.revpalbo.2024.105140_bb0245 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 240 start-page: 1305 year: 2023 ident: 10.1016/j.revpalbo.2024.105140_bb0015 publication-title: New Phytol. doi: 10.1111/nph.19186 – volume: 33 start-page: 46 year: 2010 ident: 10.1016/j.revpalbo.2024.105140_bb0220 article-title: SAM: a comprehensive application for spatial analysis in macroecology publication-title: Ecography doi: 10.1111/j.1600-0587.2009.06299.x – volume: 224 start-page: 213 year: 2006 ident: 10.1016/j.revpalbo.2024.105140_bb0030 article-title: A guided tour into subcellular colocalization analysis in light microscopy publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2006.01706.x – volume: 10 start-page: 1 year: 1989 ident: 10.1016/j.revpalbo.2024.105140_bb0250 article-title: Geological applications of laser scanning microscopy publication-title: Microsc. Anal. – volume: 1 start-page: 17 year: 2000 ident: 10.1016/j.revpalbo.2024.105140_bb0140 article-title: Structural analysis of microparticles by confocal laser scanning microscopy publication-title: AAPS PharmSciTech doi: 10.1208/pt010317 – volume: 9 start-page: 307 year: 2008 ident: 10.1016/j.revpalbo.2024.105140_bb0270 article-title: Conditional variable importance for random forests publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-307 – volume: 46 start-page: 1 year: 2022 ident: 10.1016/j.revpalbo.2024.105140_bb0215 article-title: Pollen characters and their evolutionary and taxonomic significance: using light and confocal laser scanning microscope to study diverse plant pollen taxa from central India publication-title: Palynology doi: 10.1080/01916122.2022.2070294 – volume: 167 start-page: 175 year: 2011 ident: 10.1016/j.revpalbo.2024.105140_bb0110 article-title: Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory publication-title: Rev. Palaeobot. Palynol. doi: 10.1016/j.revpalbo.2011.08.006 – volume: 175 start-page: 931 year: 2014 ident: 10.1016/j.revpalbo.2024.105140_bb0150 article-title: On the taxonomic resolution of pollen and spore records of Earth’s vegetation publication-title: Int. J. Plant Sci. doi: 10.1086/677680 – volume: 36 start-page: 134 year: 2012 ident: 10.1016/j.revpalbo.2024.105140_bb0210 article-title: Grimsdalea magnaclavata Germeraad, Hopping & Muller: an enigmatic pollen type from the Neogene of northern South America publication-title: Palynology doi: 10.1080/01916122.2011.642258 – start-page: 639 year: 2004 ident: 10.1016/j.revpalbo.2024.105140_bb0005 article-title: The treatment of missing values and its effect on classifier accuracy – volume: 92 year: 2020 ident: 10.1016/j.revpalbo.2024.105140_bb0075 article-title: Confocal microscopy: principles and modern practices publication-title: Curr. Protoc. Cytom. – year: 2021 ident: 10.1016/j.revpalbo.2024.105140_bb0045 article-title: Pollen 3D: an application of 3D reconstruction for the scanning electron microscope – volume: 4 start-page: 266 year: 2021 ident: 10.1016/j.revpalbo.2024.105140_bb0085 article-title: Application of confocal laser scanning microscopy to the study of amber bioinclusions publication-title: Palaeoentomology doi: 10.11646/palaeoentomology.4.3.14 – volume: 269 start-page: 291 year: 2018 ident: 10.1016/j.revpalbo.2024.105140_bb0090 article-title: Potential of CLSM in studying some modern and fossil palynological objects publication-title: J. Microsc. doi: 10.1111/jmi.12639 – volume: 46 start-page: 20 year: 2007 ident: 10.1016/j.revpalbo.2024.105140_bb0120 article-title: A comparison of pollen counts: light versus scanning electron microscopy publication-title: Grana doi: 10.1080/00173130601173897 – volume: 10 start-page: 557 year: 1992 ident: 10.1016/j.revpalbo.2024.105140_bb0135 article-title: Surface shape and curvature scales publication-title: Image Vision Computation doi: 10.1016/0262-8856(92)90076-F – volume: 66 start-page: 593 year: 1979 ident: 10.1016/j.revpalbo.2024.105140_bb0175 article-title: Form and function in Angiosperm pollen publication-title: Ann. Mo. Bot. Gard. doi: 10.2307/2398913 – year: 1984 ident: 10.1016/j.revpalbo.2024.105140_bb0040 – volume: 223 year: 2020 ident: 10.1016/j.revpalbo.2024.105140_bb0095 article-title: Fluorescence spectroscopy of ancient sedimentary organic matter via confocal laser scanning microscopy (CLSM) publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2020.103445 |
SSID | ssj0001557 |
Score | 2.3918293 |
Snippet | Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 105140 |
SubjectTerms | Arecaceae CART confocal laser scanning microscopy exine Fiji fossils herbaria Holocene epoch image analysis ImageJ Lepidocaryeae light microscopy Mauritia flexuosa Mauritiella armata Miocene epoch paleobotany Paleontology Palynology pollen quantitative analysis Random forests research institutions Species assignment statistical analysis |
Title | Application of confocal laser microscopy for identification of modern and fossil pollen grains, an example in palm Mauritiinae |
URI | https://dx.doi.org/10.1016/j.revpalbo.2024.105140 https://www.proquest.com/docview/3206195294 |
Volume | 327 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQVSUuFfShAgW5EseGxbHj2McVKmyL4AQSN8uxxyiIza6WBcGF396ZPIBWlXroMckkij3jedjfzDC2F2PC5RdNFq3yGKBon9myspkoU-WTEiImOtE9PdOTC_XzsrhcYYdDLgzBKnvd3-n0Vlv3d0b9bI7mdU05vlKh810SChKtHiWaK1WSlO8_vcA80F52dTOlyoj6VZbw9f4C7uf-pqIkwFxRy1tBmyB_N1B_qOrW_hyts3e948jH3b9tsBVo3rO3x21j3scP7Gn8chLNZ4ljmJvITHH0jmHBp4S7owyUR45eKq9jDxJ6pp-2PdG4byIS4Dq54XPaUmj4FfWQuP2GTzg8eKolzOuG43im_JRKEi3ruvHwkV0cfT8_nGR9b4Us5DZfZsLoymO4FQ6MhWSVjAexjBp0RO0YvJACQOoYIMiqLELutRFBG1-qZKUJUn5iq82sgc-MhwDeSFGBl14JMKYAXQSvZNJCaxs32WiYUDfvSmi4AVt27QYWOGKB61iwyeww7-43YXCo5__57teBUQ5XCh1_-AZmd7dO5ui72CK3aus_vr_N1uiqwwB-YavLxR3soF-yrHZbwdtlb8Y_TiZnvwDXQuXJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbooqq9VH0K6MuVemy6OHYc-7hChaWwewKJm-XY4yqIza6WpYILv52ZTUJLVamHXmM7SmY834w9L8Y-x5hQ_KLJolUeDyjaZ7asbCbKVPmkhIiJPLqTqR6fqu9nxdkG2-tzYSisssP-FtPXaN09GXbUHC7qmnJ8pULju6QoSNR6xSO2SdWpigHbHB0ejaf3gIwqsy2dKVVGC35LFD7_uoSfC39RUR5grqjrraB7kL_rqD_Qeq2C9p-zZ53tyEft571gG9C8ZI8P1r15b16x29EvZzSfJ44n3USaiqOBDEs-o9A7SkK54Wio8jp2cUL382frtmjcNxEnoKhc8AXdKjT8B7WRuPyCIxyuPZUT5nXD8X9mfEJViVZ13Xh4zU73v53sjbOuvUIWcpuvMmF05fHEFXaNhWSVjLuxjBp0RIAMXkgBIHUMEGRVFiH32oigjS9VstIEKd-wQTNvYIvxEMAbKSrw0isBxhSgi-CVTFpobeM2G_YEdYu2iobrw8vOXc8CRyxwLQu2me3p7h7sB4dQ_8-1n3pGORQW8oD4BuZXl07maL7YIrdq5z_e_5E9GZ9Mjt3x4fToLXtKI21I4Ds2WC2v4D2aKavqQ7cN7wC2yeh6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+confocal+laser+microscopy+for+identification+of+modern+and+fossil+pollen+grains%2C+an+example+in+palm+Mauritiinae&rft.jtitle=Review+of+palaeobotany+and+palynology&rft.au=Collevatti%2C+Rosane+G.&rft.au=Casta%C3%B1eda%2C+Marcela&rft.au=Silva-Caminha%2C+Silane+A.F.&rft.au=Jaramillo%2C+Carlos&rft.date=2024-08-01&rft.issn=0034-6667&rft.volume=327&rft.spage=105140&rft_id=info:doi/10.1016%2Fj.revpalbo.2024.105140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_revpalbo_2024_105140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6667&client=summon |