Drosophila-Vision-Inspired Motion Perception Model and Its Application in Saliency Detection

Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural computations remains incomplete due to the gap in computational biology. Drosophila vision has been proven to be considerably more sensitive i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on consumer electronics Vol. 70; no. 1; pp. 819 - 830
Main Authors Chen, Zhe, Mu, Qi, Han, Guangjie, Lu, Huimin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0098-3063
1558-4127
DOI10.1109/TCE.2024.3355512

Cover

Loading…
Abstract Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural computations remains incomplete due to the gap in computational biology. Drosophila vision has been proven to be considerably more sensitive in response to object motion, approaching approximately 10 times the speed of humans. Hence, modeling Drosophila vision is desired for advancing computer vision for consumer electronics. Applying the Drosophila vision model may achieve an optimal tradeoff between accuracy and efficiency in vision tasks. This study proposes a Drosophila-vision-inspired motion perception (DVMP) model that integrates successive computational layers from the superficial retina with the central complex. This bio-inspired model can efficiently extract motion saliency in dynamic scenes. Ablation studies and the final evaluation results of our DVMP model provide an intuitive paradigm for gaining better insight into the neural mechanisms involved in Drosophila vision. Also, extensive experimental comparisons using both data-independent and learning-based saliency detection methods demonstrate the potential performance and speed of our DVMP model, implying that it can be easily applied in consumer electronics, e.g., mobile phones and robots.
AbstractList Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural computations remains incomplete due to the gap in computational biology. Drosophila vision has been proven to be considerably more sensitive in response to object motion, approaching approximately 10 times the speed of humans. Hence, modeling Drosophila vision is desired for advancing computer vision for consumer electronics. Applying the Drosophila vision model may achieve an optimal tradeoff between accuracy and efficiency in vision tasks. This study proposes a Drosophila-vision-inspired motion perception (DVMP) model that integrates successive computational layers from the superficial retina with the central complex. This bio-inspired model can efficiently extract motion saliency in dynamic scenes. Ablation studies and the final evaluation results of our DVMP model provide an intuitive paradigm for gaining better insight into the neural mechanisms involved in Drosophila vision. Also, extensive experimental comparisons using both data-independent and learning-based saliency detection methods demonstrate the potential performance and speed of our DVMP model, implying that it can be easily applied in consumer electronics, e.g., mobile phones and robots.
Author Chen, Zhe
Lu, Huimin
Mu, Qi
Han, Guangjie
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0002-2250-5371
  surname: Chen
  fullname: Chen, Zhe
  email: chenzhe@hhu.edu.cn
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 2
  givenname: Qi
  orcidid: 0009-0005-7534-5999
  surname: Mu
  fullname: Mu, Qi
  email: Muki@hhu.edu.cn
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 3
  givenname: Guangjie
  orcidid: 0000-0002-6921-7369
  surname: Han
  fullname: Han, Guangjie
  email: hanguangjie@gmail.com
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 4
  givenname: Huimin
  orcidid: 0000-0001-9794-3221
  surname: Lu
  fullname: Lu, Huimin
  email: dr.huimin.lu@ieee.org
  organization: School of Automation, Southeast University, Nanjing, China
BookMark eNp9UD1PwzAUtFCRKIWdgSESc8rzV2KPVVugUiuQKExIkeO8CFchCXY69N-TfgyIgel93b3T3SUZ1E2NhNxQGFMK-n49nY8ZMDHmXEpJ2RkZUilVLChLB2QIoFXMIeEX5DKEDQAVkqkh-Zj5JjTtp6tM_O6Ca-p4UYfWeSyiVdP1c_SC3mJ7aFdNgVVk6iJadCGatG3lrDlcXB29msphbXfRDDu0--0VOS9NFfD6VEfk7WG-nj7Fy-fHxXSyjC3TrIup1NYWgNJwo1LKlM0TYKVUqJRIJU-4Al0ykSc9nFJGc0BVlFwIyyBROR-Ru-Pf1jffWwxdtmm2vu4lMw5CC011QnsUHFG2txw8llnr3Zfxu4xCts8w6zPM9hlmpwx7SvKHYl13MNx546r_iLdHokPEXzoCuOYp_wFPbn9U
CODEN ITCEDA
CitedBy_id crossref_primary_10_3390_biomimetics10010051
crossref_primary_10_1109_TCE_2024_3430354
crossref_primary_10_1109_TGRS_2024_3470900
Cites_doi 10.1109/TCSVT.2018.2859773
10.1023/b:visi.0000029664.99615.94
10.1038/s41598-020-75628-y
10.1109/TCSVT.2016.2595324
10.1109/CVPR.2016.85
10.1109/TIP.2018.2813165
10.1523/JNEUROSCI.1707-18.2019
10.1109/TIP.2023.3261747
10.1007/978-3-642-15555-0_21
10.1016/j.neuron.2011.05.023
10.1109/TIP.2014.2336549
10.1162/artl_a_00297
10.1109/JPROC.2014.2312916
10.1016/j.cviu.2016.04.009
10.1109/IROS.2017.8206254
10.1038/nature09545
10.1038/360068a0
10.2478/jaiscr-2014-0001
10.1016/j.cub.2012.01.007
10.1109/ICCV.2017.487
10.1016/j.neuron.2016.09.017
10.1109/TMM.2022.3171688
10.1109/CVPR.2009.5206596
10.1016/j.neucom.2018.09.093
10.1016/j.cub.2019.11.075
10.1126/science.1058237
10.1016/j.cub.2022.04.023
10.1007/978-3-540-30301-5_63
10.1371/journal.pcbi.1000701
10.1109/CVPR.2019.00875
10.1109/CVPR.2018.00187
10.1109/TIP.2017.2754941
10.1109/ROBIO.2017.8324652
10.1109/TPAMI.2017.2662005
10.1073/pnas.2010749117
10.1109/TPAMI.2012.120
10.1007/978-3-030-58558-7_13
10.1007/s00359-019-01383-9
10.1016/S1672-6529(14)60040-8
10.1038/35093002
10.1038/nn.2595
10.1002/9783527680863.ch17
10.1038/s41467-019-10721-z
10.1007/978-3-030-01252-6_44
10.1016/j.cub.2015.01.013
10.1016/j.conb.2011.12.013
10.1016/j.neunet.2018.04.001
10.1145/358669.358692
10.1109/TIP.2015.2460013
10.1016/j.neuron.2017.03.010
10.7554/eLife.50678
10.1109/TCYB.2018.2869384
10.1109/CIAPP.2017.8167232
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2024.3355512
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 830
ExternalDocumentID 10_1109_TCE_2024_3355512
10403937
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20201311
  funderid: 10.13039/501100004608
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC3005401
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62073120
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c292t-159ccd0e5a3a87128cb602f58e88475363809f24b62921121b0e8df344c2068b3
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Mon Jun 30 14:32:51 EDT 2025
Tue Jul 01 00:42:05 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Wed Aug 27 02:06:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-159ccd0e5a3a87128cb602f58e88475363809f24b62921121b0e8df344c2068b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-7534-5999
0000-0002-6921-7369
0000-0001-9794-3221
0000-0002-2250-5371
PQID 3049491961
PQPubID 85469
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCE_2024_3355512
crossref_citationtrail_10_1109_TCE_2024_3355512
proquest_journals_3049491961
ieee_primary_10403937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref37
  doi: 10.1109/TCSVT.2018.2859773
– ident: ref40
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref12
  doi: 10.1038/s41598-020-75628-y
– ident: ref30
  doi: 10.1109/TCSVT.2016.2595324
– ident: ref50
  doi: 10.1109/CVPR.2016.85
– ident: ref33
  doi: 10.1109/TIP.2018.2813165
– ident: ref8
  doi: 10.1523/JNEUROSCI.1707-18.2019
– ident: ref28
  doi: 10.1109/TIP.2023.3261747
– ident: ref49
  doi: 10.1007/978-3-642-15555-0_21
– ident: ref21
  doi: 10.1016/j.neuron.2011.05.023
– ident: ref32
  doi: 10.1109/TIP.2014.2336549
– ident: ref9
  doi: 10.1162/artl_a_00297
– ident: ref18
  doi: 10.1109/JPROC.2014.2312916
– ident: ref10
  doi: 10.1016/j.cviu.2016.04.009
– ident: ref26
  doi: 10.1109/IROS.2017.8206254
– ident: ref20
  doi: 10.1038/nature09545
– ident: ref39
  doi: 10.1038/360068a0
– ident: ref24
  doi: 10.2478/jaiscr-2014-0001
– ident: ref15
  doi: 10.1016/j.cub.2012.01.007
– ident: ref53
  doi: 10.1109/ICCV.2017.487
– ident: ref19
  doi: 10.1016/j.neuron.2016.09.017
– ident: ref27
  doi: 10.1109/TMM.2022.3171688
– ident: ref52
  doi: 10.1109/CVPR.2009.5206596
– ident: ref44
  doi: 10.1016/j.neucom.2018.09.093
– ident: ref7
  doi: 10.1016/j.cub.2019.11.075
– ident: ref11
  doi: 10.1126/science.1058237
– ident: ref16
  doi: 10.1016/j.cub.2022.04.023
– ident: ref42
  doi: 10.1007/978-3-540-30301-5_63
– ident: ref3
  doi: 10.1371/journal.pcbi.1000701
– ident: ref36
  doi: 10.1109/CVPR.2019.00875
– ident: ref48
  doi: 10.1109/CVPR.2018.00187
– ident: ref34
  doi: 10.1109/TIP.2017.2754941
– ident: ref14
  doi: 10.1109/ROBIO.2017.8324652
– ident: ref31
  doi: 10.1109/TPAMI.2017.2662005
– ident: ref46
  doi: 10.1073/pnas.2010749117
– ident: ref47
  doi: 10.1109/TPAMI.2012.120
– ident: ref38
  doi: 10.1007/978-3-030-58558-7_13
– ident: ref5
  doi: 10.1007/s00359-019-01383-9
– ident: ref41
  doi: 10.1016/S1672-6529(14)60040-8
– ident: ref1
  doi: 10.1038/35093002
– ident: ref45
  doi: 10.1038/nn.2595
– ident: ref22
  doi: 10.1002/9783527680863.ch17
– ident: ref6
  doi: 10.1038/s41467-019-10721-z
– ident: ref35
  doi: 10.1007/978-3-030-01252-6_44
– ident: ref17
  doi: 10.1016/j.cub.2015.01.013
– ident: ref23
  doi: 10.1016/j.conb.2011.12.013
– ident: ref13
  doi: 10.1016/j.neunet.2018.04.001
– ident: ref43
  doi: 10.1145/358669.358692
– ident: ref29
  doi: 10.1109/TIP.2015.2460013
– ident: ref4
  doi: 10.1016/j.neuron.2017.03.010
– ident: ref2
  doi: 10.7554/eLife.50678
– ident: ref25
  doi: 10.1109/TCYB.2018.2869384
– ident: ref51
  doi: 10.1109/CIAPP.2017.8167232
SSID ssj0014528
Score 2.4117346
Snippet Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 819
SubjectTerms Ablation
Biological system modeling
Biomimetics
computational model
Computational modeling
Computer vision
Consumer electronics
Drosophila vision
Electronics
Feature extraction
Fruit flies
Insects
Motion perception
Object motion
Salience
saliency
Saliency detection
Sensitivity
Task analysis
Visualization
Title Drosophila-Vision-Inspired Motion Perception Model and Its Application in Saliency Detection
URI https://ieeexplore.ieee.org/document/10403937
https://www.proquest.com/docview/3049491961
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ukx78xIii6cGLh43RdqM7Ej4CJhATwXAwWdquS4hkGBgX_3pfuw1Ro_G2Q9s0fa99v7f38UPoLhTUI4ltfUlbDgOb54hESke2EiKIoDKw_CmjcTCYsoeZPyuK1W0tjNbaJp9p13zaWH68VBvzqwxuODOlpK19tA-eW16stQ0ZMJ_wskEm4GBaxiS9sDHp9MATJMylYF39Jvligyypyo-X2JqX_jEalxvLs0pe3U0mXfX-rWfjv3d-go4KoInbuWacoj2dnqHDnfaD5-ilu7IsBvOFcJ5tjbkzTE3kXcd4ZNl98OM27wUb1rQFFmmMh9katz8D33ie4ieA86aIE3d1ZpO70iqa9nuTzsAp2BYcRUKSOYBrlIo97QsqwIsiXMkAxOhzzcGC-RQuqhcmhMkAhgNKa0pP8zihjCniBVzSC1RJl6m-RNjngvm0FQN04wBQOCiE8hQgIxpLIjWvoUZ5_pEqWpEbRoxFZF0SL4xAYpGRWFRIrIbutzPe8jYcf4ytGgHsjMvPvobqpYyj4qKuIxNlZCE8Q82rX6ZdowOzep6pXUeVbLXRNwBEMnlrFfADbtbW4g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnDhkJJ6SZ0jYlELtEKiIA5Ike04UkUVEKQXvp6xk5RNIG45jGXLY3veZJYHcBArFtLMt75k7YCjzQtUpnWg2xlVVDEdef6UXj_q3PKLe3FfFav7WhhrrU8-s0336WP56ZMZu19leMO5KyVtT8MsGn7RKsu1JkEDLqisW2QiEmZ1VDKMjwYnZ-gLUt5kaF9Fi36xQp5W5cdb7A3M-RL066WVeSWPzXGhm-btW9fGf699GRYrqEmOy7OxAlM2X4WFTw0I1-Dh9MXzGAxHKrjzVeZBN3exd5uSnuf3IdeTzBfieNNGROUp6Rav5Pgj9E2GOblBQO_KOMmpLXx6V74Ot-dng5NOUPEtBIbGtAgQ2RiThlYoptCPotLoCBUppJVowwTDqxrGGeU6QnHEaS0dWplmjHNDw0hqtgEz-VNuN4EIqbhg7RTBm0SIIvFImNAgNmKpptrKBhzV-5-Yqhm548QYJd4pCeMENZY4jSWVxhpwOBnxXDbi-EN23Sngk1y59w3YqXWcVFf1NXFxRh7jQ9Ta-mXYPsx1Br2r5Krbv9yGeTdTmbe9AzPFy9juIiwp9J4_jO_RUNor
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drosophila-Vision-Inspired+Motion+Perception+Model+and+Its+Application+in+Saliency+Detection&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Chen%2C+Zhe&rft.au=Mu%2C+Qi&rft.au=Han%2C+Guangjie&rft.au=Lu%2C+Huimin&rft.date=2024-02-01&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=1&rft.spage=819&rft.epage=830&rft_id=info:doi/10.1109%2FTCE.2024.3355512&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCE_2024_3355512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon