Drosophila-Vision-Inspired Motion Perception Model and Its Application in Saliency Detection
Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural computations remains incomplete due to the gap in computational biology. Drosophila vision has been proven to be considerably more sensitive i...
Saved in:
Published in | IEEE transactions on consumer electronics Vol. 70; no. 1; pp. 819 - 830 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0098-3063 1558-4127 |
DOI | 10.1109/TCE.2024.3355512 |
Cover
Loading…
Abstract | Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural computations remains incomplete due to the gap in computational biology. Drosophila vision has been proven to be considerably more sensitive in response to object motion, approaching approximately 10 times the speed of humans. Hence, modeling Drosophila vision is desired for advancing computer vision for consumer electronics. Applying the Drosophila vision model may achieve an optimal tradeoff between accuracy and efficiency in vision tasks. This study proposes a Drosophila-vision-inspired motion perception (DVMP) model that integrates successive computational layers from the superficial retina with the central complex. This bio-inspired model can efficiently extract motion saliency in dynamic scenes. Ablation studies and the final evaluation results of our DVMP model provide an intuitive paradigm for gaining better insight into the neural mechanisms involved in Drosophila vision. Also, extensive experimental comparisons using both data-independent and learning-based saliency detection methods demonstrate the potential performance and speed of our DVMP model, implying that it can be easily applied in consumer electronics, e.g., mobile phones and robots. |
---|---|
AbstractList | Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural computations remains incomplete due to the gap in computational biology. Drosophila vision has been proven to be considerably more sensitive in response to object motion, approaching approximately 10 times the speed of humans. Hence, modeling Drosophila vision is desired for advancing computer vision for consumer electronics. Applying the Drosophila vision model may achieve an optimal tradeoff between accuracy and efficiency in vision tasks. This study proposes a Drosophila-vision-inspired motion perception (DVMP) model that integrates successive computational layers from the superficial retina with the central complex. This bio-inspired model can efficiently extract motion saliency in dynamic scenes. Ablation studies and the final evaluation results of our DVMP model provide an intuitive paradigm for gaining better insight into the neural mechanisms involved in Drosophila vision. Also, extensive experimental comparisons using both data-independent and learning-based saliency detection methods demonstrate the potential performance and speed of our DVMP model, implying that it can be easily applied in consumer electronics, e.g., mobile phones and robots. |
Author | Chen, Zhe Lu, Huimin Mu, Qi Han, Guangjie |
Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0002-2250-5371 surname: Chen fullname: Chen, Zhe email: chenzhe@hhu.edu.cn organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 2 givenname: Qi orcidid: 0009-0005-7534-5999 surname: Mu fullname: Mu, Qi email: Muki@hhu.edu.cn organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 3 givenname: Guangjie orcidid: 0000-0002-6921-7369 surname: Han fullname: Han, Guangjie email: hanguangjie@gmail.com organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 4 givenname: Huimin orcidid: 0000-0001-9794-3221 surname: Lu fullname: Lu, Huimin email: dr.huimin.lu@ieee.org organization: School of Automation, Southeast University, Nanjing, China |
BookMark | eNp9UD1PwzAUtFCRKIWdgSESc8rzV2KPVVugUiuQKExIkeO8CFchCXY69N-TfgyIgel93b3T3SUZ1E2NhNxQGFMK-n49nY8ZMDHmXEpJ2RkZUilVLChLB2QIoFXMIeEX5DKEDQAVkqkh-Zj5JjTtp6tM_O6Ca-p4UYfWeSyiVdP1c_SC3mJ7aFdNgVVk6iJadCGatG3lrDlcXB29msphbXfRDDu0--0VOS9NFfD6VEfk7WG-nj7Fy-fHxXSyjC3TrIup1NYWgNJwo1LKlM0TYKVUqJRIJU-4Al0ykSc9nFJGc0BVlFwIyyBROR-Ru-Pf1jffWwxdtmm2vu4lMw5CC011QnsUHFG2txw8llnr3Zfxu4xCts8w6zPM9hlmpwx7SvKHYl13MNx546r_iLdHokPEXzoCuOYp_wFPbn9U |
CODEN | ITCEDA |
CitedBy_id | crossref_primary_10_3390_biomimetics10010051 crossref_primary_10_1109_TCE_2024_3430354 crossref_primary_10_1109_TGRS_2024_3470900 |
Cites_doi | 10.1109/TCSVT.2018.2859773 10.1023/b:visi.0000029664.99615.94 10.1038/s41598-020-75628-y 10.1109/TCSVT.2016.2595324 10.1109/CVPR.2016.85 10.1109/TIP.2018.2813165 10.1523/JNEUROSCI.1707-18.2019 10.1109/TIP.2023.3261747 10.1007/978-3-642-15555-0_21 10.1016/j.neuron.2011.05.023 10.1109/TIP.2014.2336549 10.1162/artl_a_00297 10.1109/JPROC.2014.2312916 10.1016/j.cviu.2016.04.009 10.1109/IROS.2017.8206254 10.1038/nature09545 10.1038/360068a0 10.2478/jaiscr-2014-0001 10.1016/j.cub.2012.01.007 10.1109/ICCV.2017.487 10.1016/j.neuron.2016.09.017 10.1109/TMM.2022.3171688 10.1109/CVPR.2009.5206596 10.1016/j.neucom.2018.09.093 10.1016/j.cub.2019.11.075 10.1126/science.1058237 10.1016/j.cub.2022.04.023 10.1007/978-3-540-30301-5_63 10.1371/journal.pcbi.1000701 10.1109/CVPR.2019.00875 10.1109/CVPR.2018.00187 10.1109/TIP.2017.2754941 10.1109/ROBIO.2017.8324652 10.1109/TPAMI.2017.2662005 10.1073/pnas.2010749117 10.1109/TPAMI.2012.120 10.1007/978-3-030-58558-7_13 10.1007/s00359-019-01383-9 10.1016/S1672-6529(14)60040-8 10.1038/35093002 10.1038/nn.2595 10.1002/9783527680863.ch17 10.1038/s41467-019-10721-z 10.1007/978-3-030-01252-6_44 10.1016/j.cub.2015.01.013 10.1016/j.conb.2011.12.013 10.1016/j.neunet.2018.04.001 10.1145/358669.358692 10.1109/TIP.2015.2460013 10.1016/j.neuron.2017.03.010 10.7554/eLife.50678 10.1109/TCYB.2018.2869384 10.1109/CIAPP.2017.8167232 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
DOI | 10.1109/TCE.2024.3355512 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-4127 |
EndPage | 830 |
ExternalDocumentID | 10_1109_TCE_2024_3355512 10403937 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20201311 funderid: 10.13039/501100004608 – fundername: National Key Research and Development Program of China grantid: 2022YFC3005401 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62073120 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SP 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c292t-159ccd0e5a3a87128cb602f58e88475363809f24b62921121b0e8df344c2068b3 |
IEDL.DBID | RIE |
ISSN | 0098-3063 |
IngestDate | Mon Jun 30 14:32:51 EDT 2025 Tue Jul 01 00:42:05 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Wed Aug 27 02:06:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-159ccd0e5a3a87128cb602f58e88475363809f24b62921121b0e8df344c2068b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-7534-5999 0000-0002-6921-7369 0000-0001-9794-3221 0000-0002-2250-5371 |
PQID | 3049491961 |
PQPubID | 85469 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCE_2024_3355512 crossref_citationtrail_10_1109_TCE_2024_3355512 proquest_journals_3049491961 ieee_primary_10403937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on consumer electronics |
PublicationTitleAbbrev | T-CE |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref37 doi: 10.1109/TCSVT.2018.2859773 – ident: ref40 doi: 10.1023/b:visi.0000029664.99615.94 – ident: ref12 doi: 10.1038/s41598-020-75628-y – ident: ref30 doi: 10.1109/TCSVT.2016.2595324 – ident: ref50 doi: 10.1109/CVPR.2016.85 – ident: ref33 doi: 10.1109/TIP.2018.2813165 – ident: ref8 doi: 10.1523/JNEUROSCI.1707-18.2019 – ident: ref28 doi: 10.1109/TIP.2023.3261747 – ident: ref49 doi: 10.1007/978-3-642-15555-0_21 – ident: ref21 doi: 10.1016/j.neuron.2011.05.023 – ident: ref32 doi: 10.1109/TIP.2014.2336549 – ident: ref9 doi: 10.1162/artl_a_00297 – ident: ref18 doi: 10.1109/JPROC.2014.2312916 – ident: ref10 doi: 10.1016/j.cviu.2016.04.009 – ident: ref26 doi: 10.1109/IROS.2017.8206254 – ident: ref20 doi: 10.1038/nature09545 – ident: ref39 doi: 10.1038/360068a0 – ident: ref24 doi: 10.2478/jaiscr-2014-0001 – ident: ref15 doi: 10.1016/j.cub.2012.01.007 – ident: ref53 doi: 10.1109/ICCV.2017.487 – ident: ref19 doi: 10.1016/j.neuron.2016.09.017 – ident: ref27 doi: 10.1109/TMM.2022.3171688 – ident: ref52 doi: 10.1109/CVPR.2009.5206596 – ident: ref44 doi: 10.1016/j.neucom.2018.09.093 – ident: ref7 doi: 10.1016/j.cub.2019.11.075 – ident: ref11 doi: 10.1126/science.1058237 – ident: ref16 doi: 10.1016/j.cub.2022.04.023 – ident: ref42 doi: 10.1007/978-3-540-30301-5_63 – ident: ref3 doi: 10.1371/journal.pcbi.1000701 – ident: ref36 doi: 10.1109/CVPR.2019.00875 – ident: ref48 doi: 10.1109/CVPR.2018.00187 – ident: ref34 doi: 10.1109/TIP.2017.2754941 – ident: ref14 doi: 10.1109/ROBIO.2017.8324652 – ident: ref31 doi: 10.1109/TPAMI.2017.2662005 – ident: ref46 doi: 10.1073/pnas.2010749117 – ident: ref47 doi: 10.1109/TPAMI.2012.120 – ident: ref38 doi: 10.1007/978-3-030-58558-7_13 – ident: ref5 doi: 10.1007/s00359-019-01383-9 – ident: ref41 doi: 10.1016/S1672-6529(14)60040-8 – ident: ref1 doi: 10.1038/35093002 – ident: ref45 doi: 10.1038/nn.2595 – ident: ref22 doi: 10.1002/9783527680863.ch17 – ident: ref6 doi: 10.1038/s41467-019-10721-z – ident: ref35 doi: 10.1007/978-3-030-01252-6_44 – ident: ref17 doi: 10.1016/j.cub.2015.01.013 – ident: ref23 doi: 10.1016/j.conb.2011.12.013 – ident: ref13 doi: 10.1016/j.neunet.2018.04.001 – ident: ref43 doi: 10.1145/358669.358692 – ident: ref29 doi: 10.1109/TIP.2015.2460013 – ident: ref4 doi: 10.1016/j.neuron.2017.03.010 – ident: ref2 doi: 10.7554/eLife.50678 – ident: ref25 doi: 10.1109/TCYB.2018.2869384 – ident: ref51 doi: 10.1109/CIAPP.2017.8167232 |
SSID | ssj0014528 |
Score | 2.4117346 |
Snippet | Vision in Drosophila has been the subject of extensive behavioral, physiological, and anatomical studies. However, our understanding of its underlying neural... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 819 |
SubjectTerms | Ablation Biological system modeling Biomimetics computational model Computational modeling Computer vision Consumer electronics Drosophila vision Electronics Feature extraction Fruit flies Insects Motion perception Object motion Salience saliency Saliency detection Sensitivity Task analysis Visualization |
Title | Drosophila-Vision-Inspired Motion Perception Model and Its Application in Saliency Detection |
URI | https://ieeexplore.ieee.org/document/10403937 https://www.proquest.com/docview/3049491961 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Ukx78xIii6cGLh43RdqM7Ej4CJhATwXAwWdquS4hkGBgX_3pfuw1Ro_G2Q9s0fa99v7f38UPoLhTUI4ltfUlbDgOb54hESke2EiKIoDKw_CmjcTCYsoeZPyuK1W0tjNbaJp9p13zaWH68VBvzqwxuODOlpK19tA-eW16stQ0ZMJ_wskEm4GBaxiS9sDHp9MATJMylYF39Jvligyypyo-X2JqX_jEalxvLs0pe3U0mXfX-rWfjv3d-go4KoInbuWacoj2dnqHDnfaD5-ilu7IsBvOFcJ5tjbkzTE3kXcd4ZNl98OM27wUb1rQFFmmMh9katz8D33ie4ieA86aIE3d1ZpO70iqa9nuTzsAp2BYcRUKSOYBrlIo97QsqwIsiXMkAxOhzzcGC-RQuqhcmhMkAhgNKa0pP8zihjCniBVzSC1RJl6m-RNjngvm0FQN04wBQOCiE8hQgIxpLIjWvoUZ5_pEqWpEbRoxFZF0SL4xAYpGRWFRIrIbutzPe8jYcf4ytGgHsjMvPvobqpYyj4qKuIxNlZCE8Q82rX6ZdowOzep6pXUeVbLXRNwBEMnlrFfADbtbW4g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnDhkJJ6SZ0jYlELtEKiIA5Ike04UkUVEKQXvp6xk5RNIG45jGXLY3veZJYHcBArFtLMt75k7YCjzQtUpnWg2xlVVDEdef6UXj_q3PKLe3FfFav7WhhrrU8-s0336WP56ZMZu19leMO5KyVtT8MsGn7RKsu1JkEDLqisW2QiEmZ1VDKMjwYnZ-gLUt5kaF9Fi36xQp5W5cdb7A3M-RL066WVeSWPzXGhm-btW9fGf699GRYrqEmOy7OxAlM2X4WFTw0I1-Dh9MXzGAxHKrjzVeZBN3exd5uSnuf3IdeTzBfieNNGROUp6Rav5Pgj9E2GOblBQO_KOMmpLXx6V74Ot-dng5NOUPEtBIbGtAgQ2RiThlYoptCPotLoCBUppJVowwTDqxrGGeU6QnHEaS0dWplmjHNDw0hqtgEz-VNuN4EIqbhg7RTBm0SIIvFImNAgNmKpptrKBhzV-5-Yqhm548QYJd4pCeMENZY4jSWVxhpwOBnxXDbi-EN23Sngk1y59w3YqXWcVFf1NXFxRh7jQ9Ta-mXYPsx1Br2r5Krbv9yGeTdTmbe9AzPFy9juIiwp9J4_jO_RUNor |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drosophila-Vision-Inspired+Motion+Perception+Model+and+Its+Application+in+Saliency+Detection&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Chen%2C+Zhe&rft.au=Mu%2C+Qi&rft.au=Han%2C+Guangjie&rft.au=Lu%2C+Huimin&rft.date=2024-02-01&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=1&rft.spage=819&rft.epage=830&rft_id=info:doi/10.1109%2FTCE.2024.3355512&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCE_2024_3355512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |