Distributed (ATC) Gradient Descent for High Dimension Sparse Regression

We study linear regression from data distributed over a network of agents (with no master node) by means of LASSO estimation, in high-dimension , which allows the ambient dimension to grow faster than the sample size. While there is a vast literature of distributed algorithms applicable to the probl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 69; no. 8; p. 1
Main Authors Ji, Yao, Scutari, Gesualdo, Sun, Ying, Honnappa, Harsha
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2023.3267742

Cover

Abstract We study linear regression from data distributed over a network of agents (with no master node) by means of LASSO estimation, in high-dimension , which allows the ambient dimension to grow faster than the sample size. While there is a vast literature of distributed algorithms applicable to the problem, statistical and computational guarantees of most of them remain unclear in high dimension. This paper provides a first statistical study of the Distributed Gradient Descent (DGD) in the Adapt-Then-Combine (ATC) form. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions-which hold with high probability for standard data generation models-suitable conditions on the network connectivity and algorithm tuning, DGD-ATC converges globally at a linear rate to an estimate that is within the centralized statistical precision of the model. In the worst-case scenario, the total number of communications to statistical optimality grows logarithmically with the ambient dimension, which improves on the communication complexity of DGD in the Combine-Then-Adapt (CTA) form, scaling linearly with the dimension. This reveals that mixing gradient information among agents, as DGD-ATC does, is critical in high-dimensions to obtain favorable rate scalings.
AbstractList We study linear regression from data distributed over a network of agents (with no server node) by means of LASSO estimation, in high-dimension, which allows the ambient dimension to grow faster than the sample size. While there is a vast literature of distributed algorithms applicable to the problem, statistical and computational guarantees of most of them remain unclear in high dimension. This paper provides a first statistical study of the Distributed Gradient Descent (DGD) in the Adapt-Then-Combine (ATC) form. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions–which hold with high probability for standard data generation models–suitable conditions on the network connectivity and algorithm tuning, DGD-ATC converges globally at a linear rate to an estimate that is within the centralized statistical precision of the model. In the worst-case scenario, the total number of communications to statistical optimality grows logarithmically with the ambient dimension, which improves on the communication complexity of DGD in the Combine-Then-Adapt (CTA) form, scaling linearly with the dimension. This reveals that mixing gradient information among agents, as DGD-ATC does, is critical in high-dimensions to obtain favorable rate scalings.
We study linear regression from data distributed over a network of agents (with no master node) by means of LASSO estimation, in high-dimension , which allows the ambient dimension to grow faster than the sample size. While there is a vast literature of distributed algorithms applicable to the problem, statistical and computational guarantees of most of them remain unclear in high dimension. This paper provides a first statistical study of the Distributed Gradient Descent (DGD) in the Adapt-Then-Combine (ATC) form. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions-which hold with high probability for standard data generation models-suitable conditions on the network connectivity and algorithm tuning, DGD-ATC converges globally at a linear rate to an estimate that is within the centralized statistical precision of the model. In the worst-case scenario, the total number of communications to statistical optimality grows logarithmically with the ambient dimension, which improves on the communication complexity of DGD in the Combine-Then-Adapt (CTA) form, scaling linearly with the dimension. This reveals that mixing gradient information among agents, as DGD-ATC does, is critical in high-dimensions to obtain favorable rate scalings.
Author Scutari, Gesualdo
Sun, Ying
Ji, Yao
Honnappa, Harsha
Author_xml – sequence: 1
  givenname: Yao
  surname: Ji
  fullname: Ji, Yao
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Gesualdo
  orcidid: 0000-0002-6453-6870
  surname: Scutari
  fullname: Scutari, Gesualdo
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
  organization: School of Electrical Engineering and Computer Science, The Pennsylvania State University, State College, PA, USA
– sequence: 4
  givenname: Harsha
  surname: Honnappa
  fullname: Honnappa, Harsha
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNp9UE1PAjEQbYwmAnr34GETL3pY7Me2uz0SUCAhMVE8N6U7xRLYxbYc_Pd2hYPx4OnNTN6bmff66LxpG0DohuAhIVg-LufLIcWUDRkVZVnQM9QjnJe5FLw4Rz2MSZXLoqguUT-ETWoLTmgPTScuRO9Whwh1dj9ajh-yqde1gyZmEwimQ9v6bObWH9nE7aAJrm2yt732AbJXWHsI3eQKXVi9DXB9wgF6f35ajmf54mU6H48WuaGSxpxwVmBuasmEJmVNKlnWsq6YrlLFhV1ZIY3hhAtGmNUVLo2tQUgLhTVYUjZAd8e9e99-HiBEtWkPvkknFa1YSZL7H5Y4soxvQ_BglXFRx_Rn9NptFcGqC02l0FQXmjqFloT4j3Dv3U77r_8kt0eJA4BfdIIZTza-AdhAd8s
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3428325
crossref_primary_10_1109_TSP_2024_3460690
Cites_doi 10.1561/9781601988515
10.1007/s00365-007-9003-x
10.1109/TSP.2015.2461520
10.1145/1961189.1961199
10.1109/TSP.2021.3086579
10.1137/14096668X
10.1109/TAC.2010.2041686
10.1007/s00365-010-9117-4
10.1214/17-AOS1587
10.1137/130943170
10.1109/JPROC.2018.2817461
10.1109/TAC.2017.2730481
10.1109/TCNS.2017.2698261
10.1109/TSP.2014.2304432
10.1109/Allerton.2012.6483273
10.1007/s00365-007-9005-8
10.1137/19M1244822
10.1016/j.jpdc.2006.08.010
10.1137/18M121784X
10.1137/19M1259973
10.1109/TSIPN.2016.2524588
10.1109/TSP.2020.3008605
10.1109/TSP.2018.2818081
10.1017/CBO9780511794308.006
10.1109/TSP.2012.2198470
10.1109/TSP.2011.2146776
10.1080/01621459.2018.1429274
10.1214/12-AOS1032
10.1109/TSP.2012.2217338
10.1007/s43670-022-00032-8
10.1109/TAC.2014.2363299
10.1109/TAC.2014.2298712
10.1016/j.crma.2008.03.014
10.1201/b18401
10.1109/TAC.2008.2009515
10.1109/TSIPN.2018.2846183
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2023.3267742
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1
ExternalDocumentID 10_1109_TIT_2023_3267742
10103556
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research Global
  grantid: N00014-21-1-2673
  funderid: 10.13039/100007297
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
3EH
5VS
AAYOK
AAYXX
ABFSI
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c292t-153405cd936a17d1897d9d83a889756fbf69cc5156313fa807cfde69fe4fc0923
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 06:25:25 EDT 2025
Tue Jul 01 02:16:22 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Wed Aug 27 02:21:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-153405cd936a17d1897d9d83a889756fbf69cc5156313fa807cfde69fe4fc0923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6453-6870
PQID 2837132692
PQPubID 36024
PageCount 1
ParticipantIDs crossref_primary_10_1109_TIT_2023_3267742
proquest_journals_2837132692
crossref_citationtrail_10_1109_TIT_2023_3267742
ieee_primary_10103556
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
loh (ref24) 2011; 24
ref12
ref15
ref14
ref11
ref10
nedi? (ref30) 2010; 55
ref17
ref16
ref19
ref18
bao (ref4) 2021; 130
nedi? (ref28) 2016; 27
wellner (ref46) 2013
vershynin (ref43) 2018
scaman (ref34) 2017
ref51
ref50
ref48
ref47
ref42
ref41
sivakumar (ref38) 2015; 28
ref49
ref8
ref7
ref6
ref5
auzinger (ref3) 2011
ref40
ref35
ref37
ref36
ref31
ref33
ref2
ref1
nedi? (ref29) 2009; 54
wainwright (ref44) 2019
ref23
ref26
ref25
ref21
wang (ref45) 2017; 70
raskutti (ref32) 2010; 11
ref27
chafaï (ref9) 2012; 37
lee (ref22) 2017; 18
sun (ref39) 2022
ji (ref20) 2021
References_xml – ident: ref33
  doi: 10.1561/9781601988515
– ident: ref5
  doi: 10.1007/s00365-007-9003-x
– ident: ref36
  doi: 10.1109/TSP.2015.2461520
– volume: 24
  start-page: 1
  year: 2011
  ident: ref24
  article-title: High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1145/1961189.1961199
– ident: ref47
  doi: 10.1109/TSP.2021.3086579
– ident: ref35
  doi: 10.1137/14096668X
– volume: 130
  start-page: 46
  year: 2021
  ident: ref4
  article-title: One-round communication efficient distributed M-estimation
  publication-title: Proc Int Conf Artif Intell Statist
– year: 2021
  ident: ref20
  article-title: Distributed sparse regression via penalization
  publication-title: arXiv 2111 06530
– volume: 55
  start-page: 922
  year: 2010
  ident: ref30
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2041686
– ident: ref1
  doi: 10.1007/s00365-010-9117-4
– ident: ref6
  doi: 10.1214/17-AOS1587
– ident: ref50
  doi: 10.1137/130943170
– ident: ref27
  doi: 10.1109/JPROC.2018.2817461
– ident: ref48
  doi: 10.1109/TAC.2017.2730481
– ident: ref31
  doi: 10.1109/TCNS.2017.2698261
– volume: 11
  start-page: 2241
  year: 2010
  ident: ref32
  article-title: Restricted eigenvalue properties for correlated Gaussian designs
  publication-title: J Mach Learn Res
– year: 2013
  ident: ref46
  publication-title: Weak Convergence and Empirical Processes With Applications to Statistics
– start-page: 3027
  year: 2017
  ident: ref34
  article-title: Optimal algorithms for smooth and strongly convex distributed optimization in networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref37
  doi: 10.1109/TSP.2014.2304432
– year: 2011
  ident: ref3
  publication-title: Iterative Solution of Large Linear Systems
– ident: ref11
  doi: 10.1109/Allerton.2012.6483273
– ident: ref26
  doi: 10.1007/s00365-007-9005-8
– ident: ref7
  doi: 10.1137/19M1244822
– year: 2019
  ident: ref44
  publication-title: High-dimensional statistics A non-asymptotic viewpoint
– ident: ref23
  doi: 10.1016/j.jpdc.2006.08.010
– volume: 28
  start-page: 1
  year: 2015
  ident: ref38
  article-title: Beyond sub-Gaussian measurements: High-dimensional structured estimation with sub-exponential designs
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1137/18M121784X
– volume: 27
  start-page: 2597
  year: 2016
  ident: ref28
  article-title: Achieving geometric convergence for distributed optimization over time-varying graphs
  publication-title: SIAM J Optim
– ident: ref40
  doi: 10.1137/19M1259973
– ident: ref25
  doi: 10.1109/TSIPN.2016.2524588
– ident: ref49
  doi: 10.1109/TSP.2020.3008605
– ident: ref51
  doi: 10.1109/TSP.2018.2818081
– ident: ref42
  doi: 10.1017/CBO9780511794308.006
– ident: ref12
  doi: 10.1109/TSP.2012.2198470
– ident: ref18
  doi: 10.1109/TSP.2011.2146776
– year: 2022
  ident: ref39
  article-title: High-dimensional inference over networks: Linear convergence and statistical guarantees
  publication-title: arXiv 2201 08507
– ident: ref21
  doi: 10.1080/01621459.2018.1429274
– volume: 18
  start-page: 115
  year: 2017
  ident: ref22
  article-title: Communication-efficient sparse regression
  publication-title: J Mach Learn Res
– year: 2018
  ident: ref43
  publication-title: High-Dimensional Probability An Introduction with Applications in Data Science
– volume: 70
  start-page: 3636
  year: 2017
  ident: ref45
  article-title: Efficient distributed learning with sparsity
  publication-title: Proc Int Conf Mach Learn
– ident: ref2
  doi: 10.1214/12-AOS1032
– ident: ref41
  doi: 10.1109/TSP.2012.2217338
– ident: ref14
  doi: 10.1007/s43670-022-00032-8
– volume: 37
  year: 2012
  ident: ref9
  publication-title: Interactions betweens compressed sensing random matrices and high dimensional geometry
– ident: ref17
  doi: 10.1109/TAC.2014.2363299
– ident: ref19
  doi: 10.1109/TAC.2014.2298712
– ident: ref8
  doi: 10.1016/j.crma.2008.03.014
– ident: ref15
  doi: 10.1201/b18401
– volume: 54
  start-page: 48
  year: 2009
  ident: ref29
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2008.2009515
– ident: ref16
  doi: 10.1109/TSIPN.2018.2846183
SSID ssj0014512
Score 2.462727
Snippet We study linear regression from data distributed over a network of agents (with no master node) by means of LASSO estimation, in high-dimension , which allows...
We study linear regression from data distributed over a network of agents (with no server node) by means of LASSO estimation, in high-dimension, which allows...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Convergence
Convexity
Distributed optimization
high-dimension statistics
linear convergence
Linear regression
Mesh networks
Optimization
Probability
Smoothness
sparse linear regression
Standard data
Statistical analysis
Tuning
Title Distributed (ATC) Gradient Descent for High Dimension Sparse Regression
URI https://ieeexplore.ieee.org/document/10103556
https://www.proquest.com/docview/2837132692
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjBQKEUUCvLAQIekeaceqxZakOgAqdQtSvxgALVVSRd-PWc7qQoIxBQPsWX5fL7vfOfvAK49j4rAz3L0TVDdgkBSK_ekb8k4V9Yr57Hm7nycRpNZ8DAP5-Vjdf0WRgihk8-ErZo6ls-XbKOuylDDXQftY1SDGu4z81hrGzIIQtdQg7uoweh0VDFJh_aS-8RWZcJtxCoId7wvNkgXVflxEmvzcteAaTUxk1Xyam-K3GYf3zgb_z3zIzgsgSYZmJ1xDHti0YRGVcSBlDrdhIMdRsITGI8Uka6qgSU4uRkkwy4Zr3VWWEFGhvmJIMwlKj2EjFRlAHXbRp5X6B8L8iReTFrtogWzu9tkOLHKWgsW86hXWHjwIXRjnPpR5sbc7dOYU973sz62wkjmMqKMIfiJfNeXWd-JmeQiolIEkjmIEk-hvlguxBkQKqWOTyIW8AOBxpCHWeBK_EqGw-dt6FWrn7KSiFzVw3hLtUPi0BTllSp5paW82tDd9lgZEo4__m2p5d_5z6x8GzqVhNNSTd9TRf2D7nhEvfNful3AvhrdpPx1oF6sN-ISYUiRX-nt9wmEmNWR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBZxHl6YGBDknzcJJ6RJRSoO0AqdQtSvxgALUI0oVfz9lOEA-BmOLBTiKfz_ed7_wdwGkQMEnDvEDfBNWNUsWcIlCho5JCW69CJIa7cziK-2N6M4km1WV1cxdGSmmSz6SrmyaWL2Z8ro_KUMN9D-1jvAjLaPhpZK9rfQQNaORbcnAfdRjdjjoq6bF2ep26ulC4i2gFAU_wxQqZsio_9mJjYHobMKp_zeaVPLrzsnD52zfWxn__-yasV1CTnNu1sQULcroNG3UZB1Jp9TasfeIk3IGrrqbS1VWwpCBn5-lFi1y9mLywknQt9xNBoEt0ggjp6toA-ryN3D-jhyzJnXywibXTBox7l-lF36mqLTg8YEHp4NaH4I0LFsa5nwi_wxLBRCfMO9iKYlWomHGO8CcO_VDlHS_hSsiYKUkV9xAn7sLSdDaVe0CYUiZCiWggpBLNoYhy6it8Ko6vL5rQrmc_4xUVua6I8ZQZl8RjGcor0_LKKnk1ofUx4tnScPzRt6Gn_1M_O_NNOKwlnFWK-ppp8h90yGMW7P8y7ARW-ulwkA2uR7cHsKq_ZBMAD2GpfJnLIwQlZXFsluI74CXY3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+%28ATC%29+Gradient+Descent+for+High+Dimension+Sparse+Regression&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Yao%2C+Ji&rft.au=Scutari%2C+Gesualdo&rft.au=Sun%2C+Ying&rft.au=Honnappa%2C+Harsha&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=8&rft.spage=5253&rft_id=info:doi/10.1109%2FTIT.2023.3267742&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon