Collaborative Learning at the Edge for Air Pollution Prediction

The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep learning model performance. R...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; p. 1
Main Authors Wardana, I Nyoman Kusuma, Gardner, Julian W., Fahmy, Suhaib A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2023.3341116

Cover

Abstract The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep learning model performance. Research on collaborative learning at the edge has not specifically focused so far on air quality prediction, which is the subject of this work.We compare three collaborative learning strategies and implement them on edge devices, such as the Raspberry Pi and Jetson Nano, with communication facilitated through the MQTT protocol. Federated learning is shown to enhance model accuracy in comparison to local training alone. An approach called clustered model exchange reduces communication costs during training. Finally, our proposed spatiotemporal data exchange approach exploits information from neighboring sensing stations to enhance model performance. It achieves the highest accuracy in air quality predictions, outperforming other methods in minimizing loss during training. It results in RMSE improvements ranging from 0.525% to 8.934% when compared to models that are only trained locally. We compare the real training costs of the three methods on real hardware to validate them.
AbstractList The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep learning model performance. Research on collaborative learning at the edge has not specifically focused so far on air quality prediction, which is the subject of this work.We compare three collaborative learning strategies and implement them on edge devices, such as the Raspberry Pi and Jetson Nano, with communication facilitated through the MQTT protocol. Federated learning is shown to enhance model accuracy in comparison to local training alone. An approach called clustered model exchange reduces communication costs during training. Finally, our proposed spatiotemporal data exchange approach exploits information from neighboring sensing stations to enhance model performance. It achieves the highest accuracy in air quality predictions, outperforming other methods in minimizing loss during training. It results in RMSE improvements ranging from 0.525% to 8.934% when compared to models that are only trained locally. We compare the real training costs of the three methods on real hardware to validate them.
The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep-learning (DL) model performance. Research on collaborative learning at the edge has not specifically focused so far on air quality prediction, which is the subject of this work. We compare three collaborative learning strategies and implement them on edge devices, such as the Raspberry Pi and Jetson Nano, with communication facilitated through the MQTT protocol. Federated learning (FL) is shown to enhance model accuracy in comparison to local training alone. An approach called clustered model exchange reduces communication costs during training. Finally, our proposed spatiotemporal data exchange approach exploits information from neighboring sensing stations to enhance model performance. It achieves the highest accuracy in air quality predictions, outperforming other methods in minimizing loss during training. It results in RMSE improvements ranging from 0.525% to 8.934% when compared to models that are only trained locally. We compare the real training costs of the three methods on real hardware to validate them.
Author Fahmy, Suhaib A.
Wardana, I Nyoman Kusuma
Gardner, Julian W.
Author_xml – sequence: 1
  givenname: I Nyoman Kusuma
  orcidid: 0000-0003-2486-253X
  surname: Wardana
  fullname: Wardana, I Nyoman Kusuma
  organization: School of Engineering, University of Warwick, Coventry, UK
– sequence: 2
  givenname: Julian W.
  orcidid: 0000-0002-4706-0049
  surname: Gardner
  fullname: Gardner, Julian W.
  organization: School of Engineering, University of Warwick, Coventry, UK
– sequence: 3
  givenname: Suhaib A.
  orcidid: 0000-0003-0568-5048
  surname: Fahmy
  fullname: Fahmy, Suhaib A.
  organization: King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
BookMark eNp9kDFPwzAQRi1UJEphZ2CwxJxytmMnnlBVFahURIcyWxfHKa5CUhwXiX9PonZADEx3w_fuPr1LMmraxhFyw2DKGOj7zfJlyoGLqRApY0ydkTGTMku0UnxExgAsT3Qq1QW57LodAGQqzcbkYd7WNRZtwOi_HF05DI1vthQjje-OLsqto1Ub6MwHuu6jh-jbhq6DK70d1ityXmHduevTnJC3x8Vm_pysXp-W89kqsVzzmPSNSlSAkueiYBlwbgsoNGqdO0wxL0oQmHJnNZQyLyzPpcYMbcVtWeUWxYTcHe_uQ_t5cF00u_YQmv6l4RqUzFgqoU-pY8qGtuuCq4z1EYeeMaCvDQMzyDK9LDPIMidZPQh_wH3wHxi-_0Nuj4h3zv2KC8mFUuIHs7J2Dw
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2025_3541666
crossref_primary_10_1016_j_cosrev_2024_100636
Cites_doi 10.1038/s41597-021-00891-1
10.1016/j.scitotenv.2017.06.266
10.1016/j.chemosphere.2020.129035
10.1109/JSEN.2021.3076767
10.1038/s41598-020-79148-7
10.1016/j.eneco.2018.01.014
10.1016/j.aej.2020.12.009
10.1016/j.comcom.2020.01.044
10.1016/j.aei.2020.101092
10.1109/TIM.2021.3091511
10.1016/j.scitotenv.2020.143734
10.1016/j.iot.2020.100346
10.1109/ACCESS.2019.2925082
10.1109/MNET.2018.1700202
10.1109/JIOT.2018.2882588
10.1016/j.atmosenv.2022.119204
10.1016/j.ecoinf.2019.101019
10.1016/j.envres.2015.11.004
10.1109/ACCESS.2019.2951425
10.1007/s00521-022-07224-2
10.1109/TCC.2020.2978846
10.1109/ACCESS.2020.2971348
10.1016/j.procs.2020.07.042
10.1109/TIM.2020.3034987
10.26599/TST.2021.9010045
10.1098/rspa.2017.0457
10.1016/j.scs.2019.101471
10.3390/s21041064
10.1109/ACCESS.2019.2941732
10.1109/ACCESS.2019.2897028
10.3390/ijerph18031333
10.1016/j.scitotenv.2019.01.333
10.1109/JIOT.2022.3150363
10.1016/j.iot.2021.100428
10.1109/ACCESS.2022.3183634
10.1109/TII.2021.3088057
10.1007/s11432-019-2705-2
10.3390/su12062570
10.1109/TPDS.2021.3098467
10.1016/j.jclepro.2020.125341
10.1109/TNNLS.2022.3160699
10.1109/ACCESS.2019.2921578
10.1016/j.atmosenv.2017.01.020
10.1038/s41467-019-10196-y
10.1016/j.envpol.2017.08.114
10.1109/COMST.2021.3058573
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2023.3341116
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2023_3341116
10352366
Genre orig-research
GrantInformation_xml – fundername: Indonesia Endowment Fund for Education (LPDP), Ministry of Finance, the Republic of Indonesia
  grantid: S-1027/LPDP.4/2019
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-111da60a5283b17022cb0b9a998ea4a8bd03a42ec90d58bc2859a7acf2cdf8ca3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 08:32:27 EDT 2025
Tue Jul 01 03:07:35 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Aug 27 02:37:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-111da60a5283b17022cb0b9a998ea4a8bd03a42ec90d58bc2859a7acf2cdf8ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0568-5048
0000-0002-4706-0049
0000-0003-2486-253X
PQID 2906571450
PQPubID 85462
PageCount 1
ParticipantIDs proquest_journals_2906571450
crossref_primary_10_1109_TIM_2023_3341116
crossref_citationtrail_10_1109_TIM_2023_3341116
ieee_primary_10352366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Zhang (ref29) 2020
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
McMahan (ref36)
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Abadi (ref46) 2016
ref40
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Song (ref35); 31
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Tavenard (ref45) 2020; 21
References_xml – ident: ref23
  doi: 10.1038/s41597-021-00891-1
– ident: ref11
  doi: 10.1016/j.scitotenv.2017.06.266
– ident: ref6
  doi: 10.1016/j.chemosphere.2020.129035
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref36
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref41
  doi: 10.1109/JSEN.2021.3076767
– year: 2016
  ident: ref46
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv:1603.04467
– ident: ref32
  doi: 10.1038/s41598-020-79148-7
– ident: ref4
  doi: 10.1016/j.eneco.2018.01.014
– ident: ref27
  doi: 10.1016/j.aej.2020.12.009
– ident: ref48
  doi: 10.1016/j.comcom.2020.01.044
– ident: ref47
  doi: 10.1016/j.aei.2020.101092
– ident: ref9
  doi: 10.1109/TIM.2021.3091511
– ident: ref5
  doi: 10.1016/j.scitotenv.2020.143734
– ident: ref15
  doi: 10.1016/j.iot.2020.100346
– volume: 21
  start-page: 1
  issue: 118
  year: 2020
  ident: ref45
  article-title: Tslearn, a machine learning toolkit for time series data
  publication-title: J. Mach. Learn. Res.
– ident: ref1
  doi: 10.1109/ACCESS.2019.2925082
– ident: ref17
  doi: 10.1109/MNET.2018.1700202
– ident: ref21
  doi: 10.1109/JIOT.2018.2882588
– ident: ref13
  doi: 10.1016/j.atmosenv.2022.119204
– ident: ref24
  doi: 10.1016/j.ecoinf.2019.101019
– ident: ref7
  doi: 10.1016/j.envres.2015.11.004
– ident: ref49
  doi: 10.1109/ACCESS.2019.2951425
– ident: ref2
  doi: 10.1007/s00521-022-07224-2
– ident: ref34
  doi: 10.1109/TCC.2020.2978846
– year: 2020
  ident: ref29
  article-title: Deep-AIR: A hybrid CNN-LSTM framework for fine-grained air pollution forecast
  publication-title: arXiv:2001.11957
– ident: ref31
  doi: 10.1109/ACCESS.2020.2971348
– ident: ref51
  doi: 10.1016/j.procs.2020.07.042
– ident: ref10
  doi: 10.1109/TIM.2020.3034987
– ident: ref33
  doi: 10.26599/TST.2021.9010045
– ident: ref43
  doi: 10.1098/rspa.2017.0457
– ident: ref22
  doi: 10.1016/j.scs.2019.101471
– ident: ref44
  doi: 10.3390/s21041064
– ident: ref19
  doi: 10.1109/ACCESS.2019.2941732
– ident: ref30
  doi: 10.1109/ACCESS.2019.2897028
– ident: ref8
  doi: 10.3390/ijerph18031333
– ident: ref28
  doi: 10.1016/j.scitotenv.2019.01.333
– ident: ref40
  doi: 10.1109/JIOT.2022.3150363
– ident: ref16
  doi: 10.1016/j.iot.2021.100428
– ident: ref14
  doi: 10.1109/ACCESS.2022.3183634
– ident: ref42
  doi: 10.1109/TII.2021.3088057
– ident: ref39
  doi: 10.1007/s11432-019-2705-2
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref35
  article-title: Collaborative learning for deep neural networks
– ident: ref26
  doi: 10.3390/su12062570
– ident: ref37
  doi: 10.1109/TPDS.2021.3098467
– ident: ref18
  doi: 10.1016/j.jclepro.2020.125341
– ident: ref38
  doi: 10.1109/TNNLS.2022.3160699
– ident: ref50
  doi: 10.1109/ACCESS.2019.2921578
– ident: ref20
  doi: 10.1016/j.atmosenv.2017.01.020
– ident: ref3
  doi: 10.1038/s41467-019-10196-y
– ident: ref25
  doi: 10.1016/j.envpol.2017.08.114
– ident: ref12
  doi: 10.1109/COMST.2021.3058573
SSID ssj0007647
Score 2.4167273
Snippet The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Air pollution
Air quality
Atmospheric modeling
Collaborative learning
Data exchange
Data models
Deep learning
edge devices
Federated learning
Model accuracy
Monitoring
Outdoor air quality
Sensors
spatiotemporal
Spatiotemporal data
Spatiotemporal phenomena
Training
Title Collaborative Learning at the Edge for Air Pollution Prediction
URI https://ieeexplore.ieee.org/document/10352366
https://www.proquest.com/docview/2906571450
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4IiYkefCBGFM0evHho2bbblp4MIRA0kXCAhFuzL4jRgIHiwV_v7LZFotF4a9LdZjszu_PN7uw3ALcKQbEM_NhBAwkcJkPmiERSB72DQIeDJiVstsUwGkzY4zScFpfV7V0YrbVNPtOuebRn-WopN2arDGc4woUgiipQQTvLL2ttl904YjlBpoczGGFBeSZJk9b44ck1ZcLdANdsz5Q23_FBtqjKj5XYupf-MQzLgeVZJS_uJhOu_PjG2fjvkZ_AUQE0SSe3jFPY04saHO7QD9Zg36Z_yvUZ3He_zOFdk4J0dU54RhAgkp6aa4LolnSeV2RkiiMbdZLRypzymMc6TPq9cXfgFKUVHOknfuagFBSPKDfULsKL0ZFLQUXCMfjSnPG2UDTgzNcyoSpsC2lo7njM5cyXataWPDiH6mK50BdA9AxjLO7NIvxBJvEd5xj3Kg91IGmsgwa0SmGnsuAdN-UvXlMbf9AkRfWkRj1poZ4G3G17vOWcG3-0rRtp77TLBd2AZqnQtJiV69RQ24exx0J6-Uu3KzjAr7N8j6UJ1Wy10deIOjJxY63tE7K50Dk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5RjFEP_kCMKGoPXjxsdlu3sZMhBAIKhAMk3Ja2K8RowMDw4F_vazeQaDTelqzNuvde-77Xvn4P4DZBUCw9N7TQQDyLSZ9ZIpLUQu8g0OGgSQmTbdELWkP2OPJH-WV1cxdGKWWSz5StH81ZfjKTS71VhjMc4YIXBNuwg46f-dl1rfXCGwYso8h0cA4jMFidStLoftDu2rpQuO3hqu3o4uYbXsiUVfmxFhsH0zyC3mpoWV7Ji71MhS0_vrE2_nvsx3CYQ01Sy2zjBLbUtAgHGwSERdg1CaBycQoP9S-DeFckp12dEJ4ShIikkUwUQXxLas9z0tflkbVCSX-uz3n0YwmGzcag3rLy4gqWdCM3tVAKCQ8o1-QuwgnRlUtBRcQx_FKc8apIqMeZq2REE78qpCa64yGXY1cm46rk3hkUprOpOgeixhhlcWcc4A8yie84x8g3cVAHkobKK8P9StixzJnHdQGM19hEIDSKUT2xVk-cq6cMd-sebxnrxh9tS1raG-0yQZehslJonM_LRazJ7f3QYT69-KXbDey1Bt1O3Gn3ni5hH7_Esh2XChTS-VJdIQZJxbWxvE_Go9OG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning+at+the+Edge+for+Air+Pollution+Prediction&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wardana%2C+I+Nyoman+Kusuma&rft.au=Gardner%2C+Julian+W.&rft.au=Fahmy%2C+Suhaib+A.&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2023.3341116&rft.externalDocID=10352366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon