Collaborative Learning at the Edge for Air Pollution Prediction
The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep learning model performance. R...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2023.3341116 |
Cover
Abstract | The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep learning model performance. Research on collaborative learning at the edge has not specifically focused so far on air quality prediction, which is the subject of this work.We compare three collaborative learning strategies and implement them on edge devices, such as the Raspberry Pi and Jetson Nano, with communication facilitated through the MQTT protocol. Federated learning is shown to enhance model accuracy in comparison to local training alone. An approach called clustered model exchange reduces communication costs during training. Finally, our proposed spatiotemporal data exchange approach exploits information from neighboring sensing stations to enhance model performance. It achieves the highest accuracy in air quality predictions, outperforming other methods in minimizing loss during training. It results in RMSE improvements ranging from 0.525% to 8.934% when compared to models that are only trained locally. We compare the real training costs of the three methods on real hardware to validate them. |
---|---|
AbstractList | The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep learning model performance. Research on collaborative learning at the edge has not specifically focused so far on air quality prediction, which is the subject of this work.We compare three collaborative learning strategies and implement them on edge devices, such as the Raspberry Pi and Jetson Nano, with communication facilitated through the MQTT protocol. Federated learning is shown to enhance model accuracy in comparison to local training alone. An approach called clustered model exchange reduces communication costs during training. Finally, our proposed spatiotemporal data exchange approach exploits information from neighboring sensing stations to enhance model performance. It achieves the highest accuracy in air quality predictions, outperforming other methods in minimizing loss during training. It results in RMSE improvements ranging from 0.525% to 8.934% when compared to models that are only trained locally. We compare the real training costs of the three methods on real hardware to validate them. The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different monitoring stations is spatially and temporally correlated, and hence, collaborative learning can improve deep-learning (DL) model performance. Research on collaborative learning at the edge has not specifically focused so far on air quality prediction, which is the subject of this work. We compare three collaborative learning strategies and implement them on edge devices, such as the Raspberry Pi and Jetson Nano, with communication facilitated through the MQTT protocol. Federated learning (FL) is shown to enhance model accuracy in comparison to local training alone. An approach called clustered model exchange reduces communication costs during training. Finally, our proposed spatiotemporal data exchange approach exploits information from neighboring sensing stations to enhance model performance. It achieves the highest accuracy in air quality predictions, outperforming other methods in minimizing loss during training. It results in RMSE improvements ranging from 0.525% to 8.934% when compared to models that are only trained locally. We compare the real training costs of the three methods on real hardware to validate them. |
Author | Fahmy, Suhaib A. Wardana, I Nyoman Kusuma Gardner, Julian W. |
Author_xml | – sequence: 1 givenname: I Nyoman Kusuma orcidid: 0000-0003-2486-253X surname: Wardana fullname: Wardana, I Nyoman Kusuma organization: School of Engineering, University of Warwick, Coventry, UK – sequence: 2 givenname: Julian W. orcidid: 0000-0002-4706-0049 surname: Gardner fullname: Gardner, Julian W. organization: School of Engineering, University of Warwick, Coventry, UK – sequence: 3 givenname: Suhaib A. orcidid: 0000-0003-0568-5048 surname: Fahmy fullname: Fahmy, Suhaib A. organization: King Abdullah University of Science and Technology, Thuwal, Saudi Arabia |
BookMark | eNp9kDFPwzAQRi1UJEphZ2CwxJxytmMnnlBVFahURIcyWxfHKa5CUhwXiX9PonZADEx3w_fuPr1LMmraxhFyw2DKGOj7zfJlyoGLqRApY0ydkTGTMku0UnxExgAsT3Qq1QW57LodAGQqzcbkYd7WNRZtwOi_HF05DI1vthQjje-OLsqto1Ub6MwHuu6jh-jbhq6DK70d1ityXmHduevTnJC3x8Vm_pysXp-W89kqsVzzmPSNSlSAkueiYBlwbgsoNGqdO0wxL0oQmHJnNZQyLyzPpcYMbcVtWeUWxYTcHe_uQ_t5cF00u_YQmv6l4RqUzFgqoU-pY8qGtuuCq4z1EYeeMaCvDQMzyDK9LDPIMidZPQh_wH3wHxi-_0Nuj4h3zv2KC8mFUuIHs7J2Dw |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2025_3541666 crossref_primary_10_1016_j_cosrev_2024_100636 |
Cites_doi | 10.1038/s41597-021-00891-1 10.1016/j.scitotenv.2017.06.266 10.1016/j.chemosphere.2020.129035 10.1109/JSEN.2021.3076767 10.1038/s41598-020-79148-7 10.1016/j.eneco.2018.01.014 10.1016/j.aej.2020.12.009 10.1016/j.comcom.2020.01.044 10.1016/j.aei.2020.101092 10.1109/TIM.2021.3091511 10.1016/j.scitotenv.2020.143734 10.1016/j.iot.2020.100346 10.1109/ACCESS.2019.2925082 10.1109/MNET.2018.1700202 10.1109/JIOT.2018.2882588 10.1016/j.atmosenv.2022.119204 10.1016/j.ecoinf.2019.101019 10.1016/j.envres.2015.11.004 10.1109/ACCESS.2019.2951425 10.1007/s00521-022-07224-2 10.1109/TCC.2020.2978846 10.1109/ACCESS.2020.2971348 10.1016/j.procs.2020.07.042 10.1109/TIM.2020.3034987 10.26599/TST.2021.9010045 10.1098/rspa.2017.0457 10.1016/j.scs.2019.101471 10.3390/s21041064 10.1109/ACCESS.2019.2941732 10.1109/ACCESS.2019.2897028 10.3390/ijerph18031333 10.1016/j.scitotenv.2019.01.333 10.1109/JIOT.2022.3150363 10.1016/j.iot.2021.100428 10.1109/ACCESS.2022.3183634 10.1109/TII.2021.3088057 10.1007/s11432-019-2705-2 10.3390/su12062570 10.1109/TPDS.2021.3098467 10.1016/j.jclepro.2020.125341 10.1109/TNNLS.2022.3160699 10.1109/ACCESS.2019.2921578 10.1016/j.atmosenv.2017.01.020 10.1038/s41467-019-10196-y 10.1016/j.envpol.2017.08.114 10.1109/COMST.2021.3058573 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2023.3341116 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIM_2023_3341116 10352366 |
Genre | orig-research |
GrantInformation_xml | – fundername: Indonesia Endowment Fund for Education (LPDP), Ministry of Finance, the Republic of Indonesia grantid: S-1027/LPDP.4/2019 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c292t-111da60a5283b17022cb0b9a998ea4a8bd03a42ec90d58bc2859a7acf2cdf8ca3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 08:32:27 EDT 2025 Tue Jul 01 03:07:35 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Aug 27 02:37:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-111da60a5283b17022cb0b9a998ea4a8bd03a42ec90d58bc2859a7acf2cdf8ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0568-5048 0000-0002-4706-0049 0000-0003-2486-253X |
PQID | 2906571450 |
PQPubID | 85462 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2906571450 crossref_primary_10_1109_TIM_2023_3341116 crossref_citationtrail_10_1109_TIM_2023_3341116 ieee_primary_10352366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 Zhang (ref29) 2020 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 McMahan (ref36) ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Abadi (ref46) 2016 ref40 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Song (ref35); 31 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Tavenard (ref45) 2020; 21 |
References_xml | – ident: ref23 doi: 10.1038/s41597-021-00891-1 – ident: ref11 doi: 10.1016/j.scitotenv.2017.06.266 – ident: ref6 doi: 10.1016/j.chemosphere.2020.129035 – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref36 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref41 doi: 10.1109/JSEN.2021.3076767 – year: 2016 ident: ref46 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems publication-title: arXiv:1603.04467 – ident: ref32 doi: 10.1038/s41598-020-79148-7 – ident: ref4 doi: 10.1016/j.eneco.2018.01.014 – ident: ref27 doi: 10.1016/j.aej.2020.12.009 – ident: ref48 doi: 10.1016/j.comcom.2020.01.044 – ident: ref47 doi: 10.1016/j.aei.2020.101092 – ident: ref9 doi: 10.1109/TIM.2021.3091511 – ident: ref5 doi: 10.1016/j.scitotenv.2020.143734 – ident: ref15 doi: 10.1016/j.iot.2020.100346 – volume: 21 start-page: 1 issue: 118 year: 2020 ident: ref45 article-title: Tslearn, a machine learning toolkit for time series data publication-title: J. Mach. Learn. Res. – ident: ref1 doi: 10.1109/ACCESS.2019.2925082 – ident: ref17 doi: 10.1109/MNET.2018.1700202 – ident: ref21 doi: 10.1109/JIOT.2018.2882588 – ident: ref13 doi: 10.1016/j.atmosenv.2022.119204 – ident: ref24 doi: 10.1016/j.ecoinf.2019.101019 – ident: ref7 doi: 10.1016/j.envres.2015.11.004 – ident: ref49 doi: 10.1109/ACCESS.2019.2951425 – ident: ref2 doi: 10.1007/s00521-022-07224-2 – ident: ref34 doi: 10.1109/TCC.2020.2978846 – year: 2020 ident: ref29 article-title: Deep-AIR: A hybrid CNN-LSTM framework for fine-grained air pollution forecast publication-title: arXiv:2001.11957 – ident: ref31 doi: 10.1109/ACCESS.2020.2971348 – ident: ref51 doi: 10.1016/j.procs.2020.07.042 – ident: ref10 doi: 10.1109/TIM.2020.3034987 – ident: ref33 doi: 10.26599/TST.2021.9010045 – ident: ref43 doi: 10.1098/rspa.2017.0457 – ident: ref22 doi: 10.1016/j.scs.2019.101471 – ident: ref44 doi: 10.3390/s21041064 – ident: ref19 doi: 10.1109/ACCESS.2019.2941732 – ident: ref30 doi: 10.1109/ACCESS.2019.2897028 – ident: ref8 doi: 10.3390/ijerph18031333 – ident: ref28 doi: 10.1016/j.scitotenv.2019.01.333 – ident: ref40 doi: 10.1109/JIOT.2022.3150363 – ident: ref16 doi: 10.1016/j.iot.2021.100428 – ident: ref14 doi: 10.1109/ACCESS.2022.3183634 – ident: ref42 doi: 10.1109/TII.2021.3088057 – ident: ref39 doi: 10.1007/s11432-019-2705-2 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref35 article-title: Collaborative learning for deep neural networks – ident: ref26 doi: 10.3390/su12062570 – ident: ref37 doi: 10.1109/TPDS.2021.3098467 – ident: ref18 doi: 10.1016/j.jclepro.2020.125341 – ident: ref38 doi: 10.1109/TNNLS.2022.3160699 – ident: ref50 doi: 10.1109/ACCESS.2019.2921578 – ident: ref20 doi: 10.1016/j.atmosenv.2017.01.020 – ident: ref3 doi: 10.1038/s41467-019-10196-y – ident: ref25 doi: 10.1016/j.envpol.2017.08.114 – ident: ref12 doi: 10.1109/COMST.2021.3058573 |
SSID | ssj0007647 |
Score | 2.4167273 |
Snippet | The rapid growth of connected sensing devices has resulted in enormous amounts of data being collected and processed. Air quality data collected from different... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Air pollution Air quality Atmospheric modeling Collaborative learning Data exchange Data models Deep learning edge devices Federated learning Model accuracy Monitoring Outdoor air quality Sensors spatiotemporal Spatiotemporal data Spatiotemporal phenomena Training |
Title | Collaborative Learning at the Edge for Air Pollution Prediction |
URI | https://ieeexplore.ieee.org/document/10352366 https://www.proquest.com/docview/2906571450 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4IiYkefCBGFM0evHho2bbblp4MIRA0kXCAhFuzL4jRgIHiwV_v7LZFotF4a9LdZjszu_PN7uw3ALcKQbEM_NhBAwkcJkPmiERSB72DQIeDJiVstsUwGkzY4zScFpfV7V0YrbVNPtOuebRn-WopN2arDGc4woUgiipQQTvLL2ttl904YjlBpoczGGFBeSZJk9b44ck1ZcLdANdsz5Q23_FBtqjKj5XYupf-MQzLgeVZJS_uJhOu_PjG2fjvkZ_AUQE0SSe3jFPY04saHO7QD9Zg36Z_yvUZ3He_zOFdk4J0dU54RhAgkp6aa4LolnSeV2RkiiMbdZLRypzymMc6TPq9cXfgFKUVHOknfuagFBSPKDfULsKL0ZFLQUXCMfjSnPG2UDTgzNcyoSpsC2lo7njM5cyXataWPDiH6mK50BdA9AxjLO7NIvxBJvEd5xj3Kg91IGmsgwa0SmGnsuAdN-UvXlMbf9AkRfWkRj1poZ4G3G17vOWcG3-0rRtp77TLBd2AZqnQtJiV69RQ24exx0J6-Uu3KzjAr7N8j6UJ1Wy10deIOjJxY63tE7K50Dk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5RjFEP_kCMKGoPXjxsdlu3sZMhBAIKhAMk3Ja2K8RowMDw4F_vazeQaDTelqzNuvde-77Xvn4P4DZBUCw9N7TQQDyLSZ9ZIpLUQu8g0OGgSQmTbdELWkP2OPJH-WV1cxdGKWWSz5StH81ZfjKTS71VhjMc4YIXBNuwg46f-dl1rfXCGwYso8h0cA4jMFidStLoftDu2rpQuO3hqu3o4uYbXsiUVfmxFhsH0zyC3mpoWV7Ji71MhS0_vrE2_nvsx3CYQ01Sy2zjBLbUtAgHGwSERdg1CaBycQoP9S-DeFckp12dEJ4ShIikkUwUQXxLas9z0tflkbVCSX-uz3n0YwmGzcag3rLy4gqWdCM3tVAKCQ8o1-QuwgnRlUtBRcQx_FKc8apIqMeZq2REE78qpCa64yGXY1cm46rk3hkUprOpOgeixhhlcWcc4A8yie84x8g3cVAHkobKK8P9StixzJnHdQGM19hEIDSKUT2xVk-cq6cMd-sebxnrxh9tS1raG-0yQZehslJonM_LRazJ7f3QYT69-KXbDey1Bt1O3Gn3ni5hH7_Esh2XChTS-VJdIQZJxbWxvE_Go9OG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning+at+the+Edge+for+Air+Pollution+Prediction&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wardana%2C+I+Nyoman+Kusuma&rft.au=Gardner%2C+Julian+W.&rft.au=Fahmy%2C+Suhaib+A.&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2023.3341116&rft.externalDocID=10352366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |