Integrating sentiment analysis with graph neural networks for enhanced stock prediction: A comprehensive survey

There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly reviews the application of GNNs in conjunction with sentiment analysis for stock prediction. This study introduces the fundamental concepts of G...

Full description

Saved in:
Bibliographic Details
Published inDecision analytics journal Vol. 10; p. 100417
Main Authors Das, Nabanita, Sadhukhan, Bikash, Chatterjee, Rajdeep, Chakrabarti, Satyajit
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly reviews the application of GNNs in conjunction with sentiment analysis for stock prediction. This study introduces the fundamental concepts of GNNs and sentiment analysis, emphasizing their respective contributions to the stock prediction domain and underlining the limitations of conventional methods. The potential advantages of combining GNNs and sentiment analysis in this context are highlighted. A comprehensive review of the literature on this subject is subsequently undertaken, covering diverse approaches and techniques utilized for sentiment analysis and stock prediction through the application of GNNs. Various graph structures, such as stock and investor networks, are used to represent financial data, and methodologies employed to incorporate sentiment analysis within these networks are explored. Challenges related to data collection, preprocessing, and annotation are discussed, along with the sources of sentiment data, including news articles, social media feeds, and financial reports. Evaluation metrics and performance benchmarks utilized to assess the precision and efficacy of GNN-based stock prediction models are also examined. This article highlights the limitations and unanswered research questions in this field, paving the way for future investigations. This article provides a comprehensive roadmap for utilizing GNNs with sentiment analysis to enhance stock prediction accuracy. It is a valuable resource for researchers and practitioners interested in exploring and advancing this emerging interdisciplinary domain. •Explore the fusion of Graph Neural Networks (GNNs) and sentiment analysis for stock prediction.•Present the fundamental concepts of GNNs and sentiment analysis and show their contributions to stock prediction.•Explore diverse approaches and methodologies for sentiment analysis and stock prediction with GNNs.•Examine evaluation metrics and benchmarks for assessing GNN-based stock prediction models.•Highlight limitations and unanswered questions and propose future directions for researchers and practitioners.
AbstractList There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly reviews the application of GNNs in conjunction with sentiment analysis for stock prediction. This study introduces the fundamental concepts of GNNs and sentiment analysis, emphasizing their respective contributions to the stock prediction domain and underlining the limitations of conventional methods. The potential advantages of combining GNNs and sentiment analysis in this context are highlighted. A comprehensive review of the literature on this subject is subsequently undertaken, covering diverse approaches and techniques utilized for sentiment analysis and stock prediction through the application of GNNs. Various graph structures, such as stock and investor networks, are used to represent financial data, and methodologies employed to incorporate sentiment analysis within these networks are explored. Challenges related to data collection, preprocessing, and annotation are discussed, along with the sources of sentiment data, including news articles, social media feeds, and financial reports. Evaluation metrics and performance benchmarks utilized to assess the precision and efficacy of GNN-based stock prediction models are also examined. This article highlights the limitations and unanswered research questions in this field, paving the way for future investigations. This article provides a comprehensive roadmap for utilizing GNNs with sentiment analysis to enhance stock prediction accuracy. It is a valuable resource for researchers and practitioners interested in exploring and advancing this emerging interdisciplinary domain. •Explore the fusion of Graph Neural Networks (GNNs) and sentiment analysis for stock prediction.•Present the fundamental concepts of GNNs and sentiment analysis and show their contributions to stock prediction.•Explore diverse approaches and methodologies for sentiment analysis and stock prediction with GNNs.•Examine evaluation metrics and benchmarks for assessing GNN-based stock prediction models.•Highlight limitations and unanswered questions and propose future directions for researchers and practitioners.
ArticleNumber 100417
Author Das, Nabanita
Sadhukhan, Bikash
Chatterjee, Rajdeep
Chakrabarti, Satyajit
Author_xml – sequence: 1
  givenname: Nabanita
  surname: Das
  fullname: Das, Nabanita
  organization: Department of CSE, Techno International New Town, Kolkata-700156, India
– sequence: 2
  givenname: Bikash
  surname: Sadhukhan
  fullname: Sadhukhan, Bikash
  email: bikash.sadhukhan@tict.edu.in
  organization: Department of CSE, Techno International New Town, Kolkata-700156, India
– sequence: 3
  givenname: Rajdeep
  surname: Chatterjee
  fullname: Chatterjee, Rajdeep
  organization: Department of CSE, Techno International New Town, Kolkata-700156, India
– sequence: 4
  givenname: Satyajit
  surname: Chakrabarti
  fullname: Chakrabarti, Satyajit
  organization: Department of CSE, University of Engineering & Management, Kolkata-700160, India
BookMark eNqFkMtqwzAQRUVJoWmaP-hCP5BUkh-ysyiE0BcEumnXQpHHsRxHCpKSkL-vjLsoXbSbucPM3AtzbtHIWAMI3VMyp4TmD-28kq09ujkjLI0jklJ-hcaMczbLc8ZGP_obNPW-JYSwgtKEJGNk30yArZNBmy32YILex4Klkd3Fa4_POjQ47g8NNnB0sosSztbtPK6tw2AaaRRU2AerdvjgoNIqaGsWeImV3cdBA8brE2B_dCe43KHrWnYept86QZ_PTx-r19n6_eVttVzPFCsZn8lcZlWepTUBWZdKZhmXJKnTJIM82zC-2dSKFhXlUAKJF0XJ4y5htISigKpIJigdcpWz3juoxcHpvXQXQYnouYlWDNxEz00M3KJt8cumdJD9Q8FJ3f1nfhzMEB87aXDCKw09Hu1ABVFZ_XfAF4uLkGM
CitedBy_id crossref_primary_10_3390_su17031067
crossref_primary_10_1016_j_nlp_2025_100125
crossref_primary_10_1142_S0218126625500549
crossref_primary_10_3390_electronics13091629
crossref_primary_10_3390_electronics14010041
crossref_primary_10_1016_j_knosys_2025_113054
crossref_primary_10_1007_s42979_024_03617_3
Cites_doi 10.1109/IJCNN52387.2021.9533510
10.1145/3533271.3561663
10.1016/j.eswa.2015.07.052
10.1109/ICSE.2019.00085
10.1016/j.knosys.2021.106746
10.1109/TCSS.2022.3148866
10.1016/j.fmre.2021.08.017
10.1016/j.ins.2021.12.127
10.1016/j.knosys.2021.107643
10.1016/j.comcom.2021.12.015
10.1111/j.1540-6261.2007.01232.x
10.1002/cpe.7827
10.4236/jcc.2023.115014
10.1016/j.inffus.2022.10.025
10.1109/ACCESS.2021.3082932
10.1016/j.ins.2022.06.010
10.1002/spe.2915
10.1007/978-3-030-95070-5_7
10.1093/bib/bbab340
10.1109/ACCESS.2022.3149798
10.3390/math10183317
10.24963/ijcai.2020/626
10.1609/aaai.v36i8.20912
10.1145/3340531.3411893
10.2139/ssrn.153669
10.3390/app12031316
10.1016/j.jfineco.2011.11.002
10.1016/j.patcog.2021.108218
10.3390/app12125931
10.1109/TKDE.2020.2981333
10.1007/s13278-023-01190-w
10.1016/j.jocs.2010.12.007
10.1109/TNNLS.2020.2978386
10.1186/s40649-019-0069-y
10.35833/MPCE.2021.000058
10.1109/ICPR48806.2021.9412695
10.1609/icwsm.v4i1.14075
10.7717/peerj-cs.1158
10.1109/AEECA52519.2021.9574275
10.54097/hset.v39i.6649
10.3390/info11020092
10.1109/ACCESS.2022.3154107
10.1016/j.procs.2022.11.242
10.1029/2020GL088690
10.1016/j.engappai.2023.106849
10.1016/j.aiopen.2021.01.001
10.1007/s12559-022-10004-8
10.1007/s13278-022-00919-3
10.1109/ICASSP49357.2023.10095381
10.1016/j.patcog.2021.108119
10.1007/s12652-020-02693-6
10.1109/ISACC56298.2023.10084056
10.1016/j.asoc.2023.110595
10.1016/j.compeleceng.2021.107096
10.1016/j.eswa.2022.119492
10.1007/s11042-022-13231-1
10.3390/s22197122
10.1109/72.572108
10.1109/JAS.2021.1003976
10.1155/2023/8342104
10.1016/j.ins.2020.12.068
10.1155/2019/9202457
10.1016/j.asoc.2023.110235
10.1016/j.knosys.2022.110150
10.1016/j.energy.2022.126590
10.1613/jair.4272
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.dajour.2024.100417
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2772-6622
ExternalDocumentID 10_1016_j_dajour_2024_100417
S2772662224000213
GroupedDBID 0R~
0SF
6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c2927-a6a5d654f0eaf9ca557a03f435e65b27bbfc18d17e9e0af98974353219e88ed83
ISSN 2772-6622
IngestDate Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 02:28:46 EDT 2025
Sat Jun 01 15:41:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sentiment analysis
Graph neural networks
Stock prediction
Market sentiment
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2927-a6a5d654f0eaf9ca557a03f435e65b27bbfc18d17e9e0af98974353219e88ed83
OpenAccessLink http://dx.doi.org/10.1016/j.dajour.2024.100417
ParticipantIDs crossref_primary_10_1016_j_dajour_2024_100417
crossref_citationtrail_10_1016_j_dajour_2024_100417
elsevier_sciencedirect_doi_10_1016_j_dajour_2024_100417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Decision analytics journal
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kong, Chen, Zhang (b52) 2022
D. Batabyal, D. Bandopadhyay, B. Sadhukhan, N. Das, S. Mukherjee, Exploring Stationarity and Fractality in Stock Market Time-series, in: 2023 International Conference on Intelligent Systems, Advanced Computing and Communication , (ISACC), 2023, pp. 1–6
Zhou (b47) 2020; 1
Zhu, Zhang, Wang, Ling, Zhang, Zha (b53) 2022; 36
Battaglia (b67) 2018
Zhang, Zhang (b96) 2019
Wang, Shen, Yang, Quan, Wang (b91) 2020
Saravanan, Paudel, Acharya, Paramasivam, Pillai (b7) 2023
J. Li, et al., Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 735–744
Zou (b129) 2023
Xu (b115) 2022; 2022
J. Ye, J. Zhao, K. Ye, C. Xu, Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction, in: 2020 25th International Conference on Pattern Recognition, (ICPR), 2021, pp. 6702–6709
Wang, Hu (b87) 2020; 11
Wu, Pan, Chen, Long, Zhang, Yu (b63) 2021; 32
Li, Wang, Tan, Ji, Jia (b8) 2022; 81
Das, Sadhukhan, Bhakta, Chakrabarti (b4) 2024; 14
Wu (b70) 2022
AlBadani, Shi, Dong, Al-Sabri, Moctard (b89) 2022; 12
Nguyen, Shirai, Velcin (b125) 2015; 42
(b39) 2022
W. Li, R. Bao, K. Harimoto, D. Chen, J. Xu, Q. Su, Modeling the stock relation with graph network for overnight stock movement prediction, in: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, Yokohama, Yokohama, Japan, 2021, pp. 4541–4547.
L. Niu, Q. Zheng, L. Zhang, Enhance gated graph neural network with syntactic for sentiment analysis, in: 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, AEECA, 2021, pp. 1055–1060
.
Wu, Sun, Zhang, Xie, Cui (b62) 2022; 55
Liao, Zeng, Liu, Wei, Cheng, Zhang (b88) 2021; 92
Matsunaga, Suzumura, Takahashi (b11) 2019
Yu, Qian, Zhang, Gao (b45) 2022; 22
Wu, Li, Srivastava, Tasi, Lin (b107) 2021; 51
Zhang, Tong, Xu, Maciejewski (b40) 2019; 6
Phan, Nguyen, Hwang (b90) 2022; 589
Wu, Pan, Chen, Long, Zhang, Yu (b32) 2021; 32
Tao, Gao, Mao, Huang (b110) 2022; 34
Wu, Wu, Qi, Ge, Huang, Xie (b85) 2019
Xu (b111) 2022; 607
Zhang, Cui, Zhu (b75) 2022; 34
(b58) 2023
Zhang, Liu, Chen, Cong, Li (b6) 2023
Wang, Zhang, Xiao, Song (b48) 2022
Chakraborty (b94) 2021
Yang, Xing, Li, Chang (b99) 2022; 4
Liu, Zeng, Ordieres Meré, Yang (b120) 2019; 2019
Mukherjee, Sadhukhan, Sarkar, Roy, De (b5) 2021
Rekha, Sabu (b23) 2022; 8
Maji, Mondal, Dey, Debnath, Sen (b29) 2021; 12
Wang, Liu, Zhu, Lu (b101) 2022
M. Fan, et al., Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning, in: 2019 IEEE/ACM 41st International Conference on Software Engineering , (ICSE), 2019, pp. 771–782
Chen, Jiang, Zhang, Chen (b109) 2021; 556
Wang, Guo, Shan, Zhang, Peng, Wu (b123) 2023; 145
Zhang, Liang, Liu, Tang (b36) 2021; 12
Bhatti, Tang, Wu, Marjan, Hussain (b60) 2023; 2023
Xhumari, Maxhelaku, Xhina (b69) 2022
Liang, Su, Gui, Cambria, Xu (b102) 2022; 235
Xu, Hu, Leskovec, Jegelka (b83) 2018
Das, Sadhukhan, Chatterjee, Chakrabarti (b3) 2022; 12
Pillay, Moodley (b12) 2022
Zhang, Wang, Liu (b22) 2018; 8
Cao (b112) 2021
Vaswani (b65) 2017
N.T., Maehara (b55) 2019
Bruna, Zaremba, Szlam, LeCun (b73) 2014
Pradhyumna, Shreya, Mohana (b77) 2021
Skarding, Gabrys, Musial (b44) 2021; 9
Min, Gao, Peng, Wang, Qin, Fang (b66) 2021; 214
Chen, Teng, Wang, Zhang (b103) 2022
Ren, Li, Xu, Yu (b127) 2023; 267
Q. Chen, C.-Y. Robert, Multivariate Realized Volatility Forecasting with Graph Neural Network, in: Proceedings of the Third ACM International Conference on AI in Finance, 2022, pp. 156–164
Fu, Zhang, Meng, King (b74) 2020
Kim, So, Jeong, Lee, Kim, Kang (b116) 2019
Cheng, Yang, Xiang, Liu (b124) 2022; 121
Chen, Wu, Zaki (b43) 2020
Chen, Zheng, Lu, Yuan, Zhu (b9) 2023
van den Ende, Ampuero (b56) 2020; 47
Luan, Hua, Lu, Zhu, Chang, Precup (b68) 2022
Zhang, Skiena (b2) 2010; 4
Kiritchenko, Zhu, Mohammad (b126) 2014; 50
Jin, Tao, Zhao, Hu (b98) 2022; 14
Feng, Xu, Zuo, Chen, Lin, XiaHou (b15) 2022; 121
X. Yin, D. Yan, A. Almudaifer, S. Yan, Y. Zhou, Forecasting Stock Prices Using Stock Correlation Graph: A Graph Convolutional Network Approach, in: 2021 International Joint Conference on Neural Networks , (IJCNN), 2021, pp. 1–8
Li, Li (b95) 2022; 10
Baker, Wurgler, Yuan (b21) 2012; 104
Zhang, Zhang, Yao, Li, Zhang, Liu (b122) 2023; 18
Dahiphale (b71) 2023
Lan, He, Yang (b81) 2022; 10
Ma, Wang, Aggarwal, Tang (b54) 2019
Sivri, Ustundag, Korkmaz (b27) 2022; Vol. 308
Sun, Zhang, Mensah, Mao, Liu (b92) 2019
An, Tian, Chen, Zheng (b100) 2023; 10
Liu, Paterlini (b117) 2023
Luo (b61) 2021
Tetlock (b25) 2007; 62
Gupta, Matta, Pant (b31) 2021; 46
Ying, Bourgeois, You, Zitnik, Leskovec (b34) 2019; 32
(b35) 2023
Yanardag, Vishwanathan (b76) 2015
Jiang (b59) 2022; 185
Phan, Nguyen, Hwang (b46) 2023; 139
Dey, Borah, Babo, Ashour (b80) 2018
Cheng (b128) 2021; 1
Ma, Mao, Lin, Wu, Cambria (b121) 2023; 91
Xu (b118) 2022
Shi (b86) 2023
Liu, Guan, Giunchiglia, Liang, Feng (b33) 2021
Ong, van der Heever, Satapathy, Mengaldo, Cambria (b26) 2023
Liao, Bak-Jensen, Radhakrishna Pillai, Wang, Wang (b42) 2022; 10
Mei, Zhou, Zhu, Wu, Li, Pan (b104) 2023; 260
(b38) 2021; vol. 907
Feng, Xu, Zuo, Chen, Lin, XiaHou (b119) 2022; 121
Hamilton, Ying, Leskovec (b50) 2017
Bollen, Mao, Zeng (b1) 2011; 2
Chen, Wei, Huang (b14) 2018
Chaudhuri, Mukherjee, Chowdhury, Sadhukhan, Goswami (b20) 2018
Sperduti, Starita (b72) 1997; 8
Samant, Bachute, Gite, Kotecha (b30) 2022; 10
Hu, Lin, Tang, Jiang (b51) 2022; 12
Wang, Wang, Lei (b106) 2023; 11
Veličković, Cucurull, Casanova, Romero, Liò, Bengio (b82) 2017
Hu, Wang, Wang, Tan (b93) 2023; 217
A.N. Arya, Y. Lei Xu, L. Stankovic, D.P. Mandic, Hierarchical Graph Learning for Stock Market Prediction Via a Domain-Aware Graph Pooling Operator, in: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2023, pp. 1–5
Huang, Sun, Li, Zhang, Wang (b105) 2020
Y. Wang, B. Zhang, J. Ma, Q. Jin, Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: A systematical review, Concurr. Comput.: Pract. Exper. e7827
Zhang, Wallace (b24) 2015
Suarez-Varela (b37) 2022
Pang, Wei, Li, Feng, Li (b114) 2023; 126
Chen, Huang, Zhou (b10) 2023; 39
Zhang, Chen, Miao, Liu (b49) 2022; 214
Luo (b78) 2020
R.M. Stulz, Globalization of Equity Markets and the Cost of Capital, Rochester, NY, 1999
Yi, You, Huang, Kwoh (b57) 2022; 23
Hou, Wang, Zhong, Wei (b108) 2021; 8
R. Dalmau, E. Allard, Air traffic control using message passing neural networks and multi-agent reinforcement learning, in: Proceedings of the 10th SESAR Innovation Days, Virtual Event, 2020, pp. 7–10.
10.1016/j.dajour.2024.100417_b28
Rekha (10.1016/j.dajour.2024.100417_b23) 2022; 8
Luo (10.1016/j.dajour.2024.100417_b61) 2021
Cheng (10.1016/j.dajour.2024.100417_b124) 2022; 121
Pang (10.1016/j.dajour.2024.100417_b114) 2023; 126
Zhang (10.1016/j.dajour.2024.100417_b2) 2010; 4
Chen (10.1016/j.dajour.2024.100417_b109) 2021; 556
Chen (10.1016/j.dajour.2024.100417_b14) 2018
Tao (10.1016/j.dajour.2024.100417_b110) 2022; 34
Lan (10.1016/j.dajour.2024.100417_b81) 2022; 10
Liao (10.1016/j.dajour.2024.100417_b88) 2021; 92
Wu (10.1016/j.dajour.2024.100417_b85) 2019
(10.1016/j.dajour.2024.100417_b39) 2022
Phan (10.1016/j.dajour.2024.100417_b90) 2022; 589
Hamilton (10.1016/j.dajour.2024.100417_b50) 2017
Chen (10.1016/j.dajour.2024.100417_b10) 2023; 39
Xu (10.1016/j.dajour.2024.100417_b83) 2018
Liang (10.1016/j.dajour.2024.100417_b102) 2022; 235
Matsunaga (10.1016/j.dajour.2024.100417_b11) 2019
10.1016/j.dajour.2024.100417_b16
10.1016/j.dajour.2024.100417_b17
10.1016/j.dajour.2024.100417_b18
10.1016/j.dajour.2024.100417_b19
Jiang (10.1016/j.dajour.2024.100417_b59) 2022; 185
Wu (10.1016/j.dajour.2024.100417_b32) 2021; 32
Zhu (10.1016/j.dajour.2024.100417_b53) 2022; 36
Mukherjee (10.1016/j.dajour.2024.100417_b5) 2021
Vaswani (10.1016/j.dajour.2024.100417_b65) 2017
Pradhyumna (10.1016/j.dajour.2024.100417_b77) 2021
Luan (10.1016/j.dajour.2024.100417_b68) 2022
10.1016/j.dajour.2024.100417_b97
Xu (10.1016/j.dajour.2024.100417_b111) 2022; 607
Kim (10.1016/j.dajour.2024.100417_b116) 2019
10.1016/j.dajour.2024.100417_b13
Ma (10.1016/j.dajour.2024.100417_b54) 2019
Zhang (10.1016/j.dajour.2024.100417_b36) 2021; 12
Wu (10.1016/j.dajour.2024.100417_b70) 2022
Wang (10.1016/j.dajour.2024.100417_b123) 2023; 145
Feng (10.1016/j.dajour.2024.100417_b15) 2022; 121
Kong (10.1016/j.dajour.2024.100417_b52) 2022
Pillay (10.1016/j.dajour.2024.100417_b12) 2022
Yu (10.1016/j.dajour.2024.100417_b45) 2022; 22
Cheng (10.1016/j.dajour.2024.100417_b128) 2021; 1
Ma (10.1016/j.dajour.2024.100417_b121) 2023; 91
Ren (10.1016/j.dajour.2024.100417_b127) 2023; 267
Suarez-Varela (10.1016/j.dajour.2024.100417_b37) 2022
Zou (10.1016/j.dajour.2024.100417_b129) 2023
Zhang (10.1016/j.dajour.2024.100417_b22) 2018; 8
10.1016/j.dajour.2024.100417_b41
10.1016/j.dajour.2024.100417_b113
Sivri (10.1016/j.dajour.2024.100417_b27) 2022; Vol. 308
Zhang (10.1016/j.dajour.2024.100417_b49) 2022; 214
Wang (10.1016/j.dajour.2024.100417_b106) 2023; 11
Phan (10.1016/j.dajour.2024.100417_b46) 2023; 139
Liu (10.1016/j.dajour.2024.100417_b117) 2023
van den Ende (10.1016/j.dajour.2024.100417_b56) 2020; 47
Ong (10.1016/j.dajour.2024.100417_b26) 2023
Yanardag (10.1016/j.dajour.2024.100417_b76) 2015
Chakraborty (10.1016/j.dajour.2024.100417_b94) 2021
Zhou (10.1016/j.dajour.2024.100417_b47) 2020; 1
Dey (10.1016/j.dajour.2024.100417_b80) 2018
Skarding (10.1016/j.dajour.2024.100417_b44) 2021; 9
Bruna (10.1016/j.dajour.2024.100417_b73) 2014
Wu (10.1016/j.dajour.2024.100417_b63) 2021; 32
Chen (10.1016/j.dajour.2024.100417_b103) 2022
Zhang (10.1016/j.dajour.2024.100417_b40) 2019; 6
Xhumari (10.1016/j.dajour.2024.100417_b69) 2022
Battaglia (10.1016/j.dajour.2024.100417_b67) 2018
Shi (10.1016/j.dajour.2024.100417_b86) 2023
(10.1016/j.dajour.2024.100417_b35) 2023
Gupta (10.1016/j.dajour.2024.100417_b31) 2021; 46
Zhang (10.1016/j.dajour.2024.100417_b75) 2022; 34
Veličković (10.1016/j.dajour.2024.100417_b82) 2017
Wang (10.1016/j.dajour.2024.100417_b87) 2020; 11
Zhang (10.1016/j.dajour.2024.100417_b6) 2023
Luo (10.1016/j.dajour.2024.100417_b78) 2020
Hou (10.1016/j.dajour.2024.100417_b108) 2021; 8
(10.1016/j.dajour.2024.100417_b38) 2021; vol. 907
10.1016/j.dajour.2024.100417_b64
Wu (10.1016/j.dajour.2024.100417_b107) 2021; 51
Baker (10.1016/j.dajour.2024.100417_b21) 2012; 104
Li (10.1016/j.dajour.2024.100417_b8) 2022; 81
Huang (10.1016/j.dajour.2024.100417_b105) 2020
Chaudhuri (10.1016/j.dajour.2024.100417_b20) 2018
Wu (10.1016/j.dajour.2024.100417_b62) 2022; 55
Liu (10.1016/j.dajour.2024.100417_b120) 2019; 2019
Samant (10.1016/j.dajour.2024.100417_b30) 2022; 10
Nguyen (10.1016/j.dajour.2024.100417_b125) 2015; 42
Fu (10.1016/j.dajour.2024.100417_b74) 2020
Xu (10.1016/j.dajour.2024.100417_b115) 2022; 2022
Zhang (10.1016/j.dajour.2024.100417_b96) 2019
Wang (10.1016/j.dajour.2024.100417_b101) 2022
Das (10.1016/j.dajour.2024.100417_b4) 2024; 14
Chen (10.1016/j.dajour.2024.100417_b43) 2020
Li (10.1016/j.dajour.2024.100417_b95) 2022; 10
Zhang (10.1016/j.dajour.2024.100417_b24) 2015
Liao (10.1016/j.dajour.2024.100417_b42) 2022; 10
Wang (10.1016/j.dajour.2024.100417_b91) 2020
Yang (10.1016/j.dajour.2024.100417_b99) 2022; 4
N.T. (10.1016/j.dajour.2024.100417_b55) 2019
Bhatti (10.1016/j.dajour.2024.100417_b60) 2023; 2023
Min (10.1016/j.dajour.2024.100417_b66) 2021; 214
Zhang (10.1016/j.dajour.2024.100417_b122) 2023; 18
Feng (10.1016/j.dajour.2024.100417_b119) 2022; 121
Liu (10.1016/j.dajour.2024.100417_b33) 2021
Wang (10.1016/j.dajour.2024.100417_b48) 2022
Cao (10.1016/j.dajour.2024.100417_b112) 2021
Kiritchenko (10.1016/j.dajour.2024.100417_b126) 2014; 50
AlBadani (10.1016/j.dajour.2024.100417_b89) 2022; 12
Dahiphale (10.1016/j.dajour.2024.100417_b71) 2023
Yi (10.1016/j.dajour.2024.100417_b57) 2022; 23
10.1016/j.dajour.2024.100417_b84
Hu (10.1016/j.dajour.2024.100417_b51) 2022; 12
Chen (10.1016/j.dajour.2024.100417_b9) 2023
Maji (10.1016/j.dajour.2024.100417_b29) 2021; 12
Hu (10.1016/j.dajour.2024.100417_b93) 2023; 217
Sun (10.1016/j.dajour.2024.100417_b92) 2019
Bollen (10.1016/j.dajour.2024.100417_b1) 2011; 2
Saravanan (10.1016/j.dajour.2024.100417_b7) 2023
Sperduti (10.1016/j.dajour.2024.100417_b72) 1997; 8
Mei (10.1016/j.dajour.2024.100417_b104) 2023; 260
An (10.1016/j.dajour.2024.100417_b100) 2023; 10
Jin (10.1016/j.dajour.2024.100417_b98) 2022; 14
Das (10.1016/j.dajour.2024.100417_b3) 2022; 12
Ying (10.1016/j.dajour.2024.100417_b34) 2019; 32
Xu (10.1016/j.dajour.2024.100417_b118) 2022
(10.1016/j.dajour.2024.100417_b58) 2023
10.1016/j.dajour.2024.100417_b79
Tetlock (10.1016/j.dajour.2024.100417_b25) 2007; 62
References_xml – reference: L. Niu, Q. Zheng, L. Zhang, Enhance gated graph neural network with syntactic for sentiment analysis, in: 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, AEECA, 2021, pp. 1055–1060,
– start-page: 1183
  year: 2021
  end-page: 1189
  ident: b77
  article-title: Graph neural network (GNN) in image and video understanding using deep learning for computer vision applications
  publication-title: 2021 Second International Conference on Electronics and Sustainable Communication Systems
– reference: Y. Wang, B. Zhang, J. Ma, Q. Jin, Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: A systematical review, Concurr. Comput.: Pract. Exper. e7827,
– volume: 62
  start-page: 1139
  year: 2007
  end-page: 1168
  ident: b25
  article-title: Giving content to investor sentiment: The role of media in the stock market
  publication-title: J. Finance
– year: 2023
  ident: b117
  article-title: Stock price prediction using temporal graph model with value chain data
– volume: 51
  start-page: 628
  year: 2021
  end-page: 644
  ident: b107
  article-title: A graph-based convolutional neural network stock price prediction with leading indicators
  publication-title: Softw. - Pract. Exp.
– reference: A.N. Arya, Y. Lei Xu, L. Stankovic, D.P. Mandic, Hierarchical Graph Learning for Stock Market Prediction Via a Domain-Aware Graph Pooling Operator, in: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2023, pp. 1–5,
– volume: 139
  year: 2023
  ident: b46
  article-title: Fake news detection: A survey of graph neural network methods
  publication-title: Appl. Soft Comput.
– volume: 185
  start-page: 40
  year: 2022
  end-page: 54
  ident: b59
  article-title: Graph-based deep learning for communication networks: A survey
  publication-title: Comput. Commun.
– year: 2015
  ident: b24
  article-title: A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification
– volume: 22
  year: 2022
  ident: b45
  article-title: A graph-neural-network-based social network recommendation algorithm using high-order neighbor information
  publication-title: Sensors
– volume: 104
  start-page: 272
  year: 2012
  end-page: 287
  ident: b21
  article-title: Global, local, and contagious investor sentiment
  publication-title: J. Financ. Econ.
– volume: 14
  start-page: 29
  year: 2024
  ident: b4
  article-title: Integrating EEMD and ensemble CNN with x (Twitter) sentiment for enhanced stock price predictions
  publication-title: Soc. Netw. Anal. Min.
– volume: 10
  start-page: 403
  year: 2023
  end-page: 412
  ident: b100
  article-title: Aspect-based sentiment analysis with heterogeneous graph neural network
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: b1
  article-title: Twitter mood predicts the stock market
  publication-title: J. Comput. Sci.
– volume: 267
  year: 2023
  ident: b127
  article-title: The data-based adaptive graph learning network for analysis and prediction of offshore wind speed
  publication-title: Energy
– reference: R. Dalmau, E. Allard, Air traffic control using message passing neural networks and multi-agent reinforcement learning, in: Proceedings of the 10th SESAR Innovation Days, Virtual Event, 2020, pp. 7–10.
– volume: 32
  start-page: 4
  year: 2021
  end-page: 24
  ident: b32
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 4884
  year: 2019
  end-page: 4893
  ident: b85
  article-title: Reviews meet graphs: Enhancing user and item representations for recommendation with hierarchical attentive graph neural network
  publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
– year: 2014
  ident: b73
  article-title: Spectral networks and locally connected networks on graphs
– reference: R.M. Stulz, Globalization of Equity Markets and the Cost of Capital, Rochester, NY, 1999,
– start-page: 2051
  year: 2022
  end-page: 2064
  ident: b103
  article-title: Discrete opinion tree induction for aspect-based sentiment analysis
  publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
– volume: 121
  year: 2022
  ident: b119
  article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation
  publication-title: Pattern Recognit.
– year: 2017
  ident: b65
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 607
  start-page: 783
  year: 2022
  end-page: 798
  ident: b111
  article-title: HGNN: Hierarchical graph neural network for predicting the classification of price-limit-hitting stocks
  publication-title: Inform. Sci.
– volume: 10
  start-page: 17078
  year: 2022
  end-page: 17097
  ident: b30
  article-title: Framework for deep learning-based language models using multi-task learning in natural language understanding: A systematic literature review and future directions
  publication-title: IEEE Access
– year: 2017
  ident: b82
  article-title: Graph attention networks
– year: 2017
  ident: b50
  article-title: Inductive representation learning on large graphs
– volume: 10
  start-page: 23497
  year: 2022
  end-page: 23510
  ident: b95
  article-title: Sentiment analysis of weibo comments based on graph neural network
  publication-title: IEEE Access
– start-page: 5679
  year: 2019
  end-page: 5688
  ident: b92
  article-title: Aspect-level sentiment analysis via convolution over dependency tree
  publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
– start-page: 8142
  year: 2021
  end-page: 8152
  ident: b33
  article-title: Deep attention diffusion graph neural networks for text classification
  publication-title: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
– start-page: 779
  year: 2021
  end-page: 787
  ident: b61
  article-title: Learning to drop: Robust graph neural network via topological denoising
  publication-title: Proceedings of the 14th ACM International Conference on Web Search and Data Mining
– volume: 126
  year: 2023
  ident: b114
  article-title: A representation-learning-based approach to predict stock price trend via dynamic spatiotemporal feature embedding
  publication-title: Eng. Appl. Artif. Intell.
– year: 2023
  ident: b129
  article-title: Machine Learning and Natural Language Processing in Stock Prediction
– start-page: 3229
  year: 2020
  end-page: 3238
  ident: b91
  article-title: Relational graph attention network for aspect-based sentiment analysis
  publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
– year: 2023
  ident: b58
  article-title: Computing graph neural networks: A survey from algorithms to accelerators
  publication-title: ACM Comput. Surv.
– volume: 1
  start-page: 595
  year: 2021
  end-page: 606
  ident: b128
  article-title: Combating emerging financial risks in the big data era: A perspective review
  publication-title: Fundam. Res.
– start-page: 1
  year: 2022
  end-page: 8
  ident: b37
  article-title: Graph neural networks for communication networks: Context, use cases and opportunities
  publication-title: IEEE Netw.
– volume: 32
  start-page: 9240
  year: 2019
  end-page: 9251
  ident: b34
  article-title: Gnnexplainer: Generating explanations for graph neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2022
  year: 2022
  ident: b115
  article-title: Using kernel method to include firm correlation for stock price prediction
  publication-title: Comput. Intell. Neurosci.
– volume: 34
  start-page: 249
  year: 2022
  end-page: 270
  ident: b75
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 235
  year: 2022
  ident: b102
  article-title: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks
  publication-title: Knowl.-Based Syst.
– volume: 214
  year: 2021
  ident: b66
  article-title: STGSN — A spatial–temporal graph neural network framework for time-evolving social networks
  publication-title: Knowl.-Based Syst.
– year: 2022
  ident: b118
  article-title: HIST: A graph-based framework for stock trend forecasting via mining concept-oriented shared information
– year: 2018
  ident: b67
  article-title: Relational inductive biases, deep learning, and graph networks
– year: 2023
  ident: b71
  article-title: MapReduce for graphs processing: New big data algorithm for 2-edge connected components and future ideas
– volume: Vol. 308
  start-page: 446
  year: 2022
  end-page: 454
  ident: b27
  article-title: Ensemble learning based stock market prediction enhanced with sentiment analysis
  publication-title: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation
– volume: 260
  year: 2023
  ident: b104
  article-title: A disentangled linguistic graph model for explainable aspect-based sentiment analysis
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 194
  year: 2023
  end-page: 204
  ident: b106
  article-title: Public sentiment analysis of social security emergencies based on feature fusion model of BERT and TextLevelGCN
  publication-title: JCC
– start-page: 95
  year: 2022
  end-page: 110
  ident: b12
  article-title: Exploring graph neural networks for stock market prediction on the JSE, artificial intelligence research
  publication-title: Communications in Computer and Information Science
– volume: 12
  year: 2022
  ident: b89
  article-title: Transformer-based graph convolutional network for sentiment analysis
  publication-title: Appl. Sci.
– volume: vol. 907
  year: 2021
  ident: b38
  article-title: Machine learning algorithms for industrial applications
  publication-title: Studies in Computational Intelligence
– reference: Q. Chen, C.-Y. Robert, Multivariate Realized Volatility Forecasting with Graph Neural Network, in: Proceedings of the Third ACM International Conference on AI in Finance, 2022, pp. 156–164,
– start-page: 2331
  year: 2020
  end-page: 2341
  ident: b74
  article-title: MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding
  publication-title: Proceedings of the Web Conference 2020
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  ident: b47
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
– volume: 47
  year: 2020
  ident: b56
  article-title: Automated seismic source characterization using deep graph neural networks
  publication-title: Geophys. Res. Lett.
– year: 2022
  ident: b70
  article-title: Teaching yourself: Graph self-distillation on neighborhood for node classification
– year: 2021
  ident: b112
  article-title: Spectral temporal graph neural network for multivariate time-series forecasting
– volume: 46
  start-page: 10927
  year: 2021
  end-page: 10932
  ident: b31
  article-title: Graph neural network: Current state of art, challenges and applications
  publication-title: Mater. Today: Proc.
– volume: 14
  start-page: 1039
  year: 2022
  end-page: 1054
  ident: b98
  article-title: Social media sentiment analysis based on dependency graph and co-occurrence graph
  publication-title: Cogn. Comput.
– volume: 4
  year: 2022
  ident: b99
  article-title: Implicit sentiment analysis based on graph attention neural network
  publication-title: Eng. Rep.
– reference: M. Fan, et al., Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning, in: 2019 IEEE/ACM 41st International Conference on Software Engineering , (ICSE), 2019, pp. 771–782,
– volume: 12
  start-page: 92
  year: 2022
  ident: b3
  article-title: Effect of public sentiment on stock market movement prediction during the COVID-19 outbreak
  publication-title: Soc. Netw. Anal. Min.
– year: 2019
  ident: b55
  article-title: Revisiting graph neural networks: All we have is low-pass filters
– start-page: 19620
  year: 2020
  end-page: 19631
  ident: b78
  article-title: Parameterized explainer for graph neural network
  publication-title: Proceedings of the 34th International Conference on Neural Information Processing Systems
– volume: 214
  start-page: 786
  year: 2022
  end-page: 792
  ident: b49
  article-title: Research on graph neural network in stock market
  publication-title: Procedia Comput. Sci.
– volume: 8
  start-page: 714
  year: 1997
  end-page: 735
  ident: b72
  article-title: Supervised neural networks for the classification of structures
  publication-title: IEEE Trans. Neural Netw.
– year: 2018
  ident: b80
  article-title: Social Network Analytics: Computational Research Methods and Techniques
– volume: 9
  start-page: 79143
  year: 2021
  end-page: 79168
  ident: b44
  article-title: Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey
  publication-title: IEEE Access
– year: 2023
  ident: b86
  article-title: Differential equation and probability inspired graph neural networks for latent variable learning
– year: 2019
  ident: b116
  article-title: HATS: A hierarchical graph attention network for stock movement prediction
– year: 2022
  ident: b48
  article-title: A review on graph neural network methods in financial applications
– volume: 121
  year: 2022
  ident: b124
  article-title: Financial time series forecasting with multi-modality graph neural network
  publication-title: Pattern Recognit.
– volume: 42
  start-page: 9603
  year: 2015
  end-page: 9611
  ident: b125
  article-title: Sentiment analysis on social media for stock movement prediction
  publication-title: Expert Syst. Appl.
– start-page: 1365
  year: 2015
  end-page: 1374
  ident: b76
  article-title: Deep graph kernels
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: D. Batabyal, D. Bandopadhyay, B. Sadhukhan, N. Das, S. Mukherjee, Exploring Stationarity and Fractality in Stock Market Time-series, in: 2023 International Conference on Intelligent Systems, Advanced Computing and Communication , (ISACC), 2023, pp. 1–6,
– year: 2023
  ident: b7
  article-title: An efficient LSTM-based deep learning model for stock prediction analytics and real-time visualization
– start-page: 2238
  year: 2022
  end-page: 2245
  ident: b101
  article-title: Aspect-based sentiment analysis with graph convolutional networks over dependency awareness
  publication-title: Presented At the 2022 26th International Conference on Pattern Recognition
– reference: X. Yin, D. Yan, A. Almudaifer, S. Yan, Y. Zhou, Forecasting Stock Prices Using Stock Correlation Graph: A Graph Convolutional Network Approach, in: 2021 International Joint Conference on Neural Networks , (IJCNN), 2021, pp. 1–8,
– reference: W. Li, R. Bao, K. Harimoto, D. Chen, J. Xu, Q. Su, Modeling the stock relation with graph network for overnight stock movement prediction, in: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, Yokohama, Yokohama, Japan, 2021, pp. 4541–4547.
– year: 2022
  ident: b69
  article-title: A review of knowledge graph and graph neural network application
  publication-title: Proceedings of the 16th Economics & Finance Conference, Prague
– start-page: 3518
  year: 2019
  end-page: 3527
  ident: b96
  article-title: Tree communication models for sentiment analysis
  publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
– volume: 2023
  year: 2023
  ident: b60
  article-title: Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence
  publication-title: Int. J. Intell. Syst.
– volume: 145
  year: 2023
  ident: b123
  article-title: A knowledge graph–GCN–community detection integrated model for large-scale stock price prediction
  publication-title: Appl. Soft Comput.
– volume: 50
  start-page: 723
  year: 2014
  end-page: 762
  ident: b126
  article-title: Sentiment analysis of short informal texts
  publication-title: Jair
– year: 2021
  ident: b5
  article-title: Stock market prediction using deep learning algorithms
  publication-title: CAAI Trans. Intell. Technol.
– volume: 4
  start-page: 375
  year: 2010
  end-page: 378
  ident: b2
  article-title: Trading strategies to exploit blog and news sentiment
  publication-title: ICWSM
– volume: 6
  start-page: 11
  year: 2019
  ident: b40
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput. Soc. Netw.
– volume: 121
  year: 2022
  ident: b15
  article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation
  publication-title: Pattern Recognit.
– year: 2023
  ident: b35
  article-title: Generalizing graph neural network across graphs and time
  publication-title: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining
– volume: 55
  start-page: 97:1
  year: 2022
  end-page: 97:37
  ident: b62
  article-title: Graph neural networks in recommender systems: A survey
  publication-title: ACM Comput. Surv.
– volume: 34
  start-page: 4322
  year: 2022
  end-page: 4334
  ident: b110
  article-title: Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– volume: 39
  start-page: 816
  year: 2023
  end-page: 822
  ident: b10
  article-title: Predicting stock trend using GNN
  publication-title: HSET
– start-page: 508
  year: 2021
  end-page: 518
  ident: b94
  article-title: Aspect based sentiment analysis using spectral temporal graph neural network
  publication-title: National Institute of Technology Silchar
– year: 2023
  ident: b26
  article-title: Finxabsa: Explainable finance through aspect-based sentiment analysis
– year: 2019
  ident: b11
  article-title: Exploring graph neural networks for stock market predictions with rolling window analysis
– reference: J. Ye, J. Zhao, K. Ye, C. Xu, Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction, in: 2020 25th International Conference on Pattern Recognition, (ICPR), 2021, pp. 6702–6709,
– year: 2022
  ident: b52
  article-title: Geodesic graph neural network for efficient graph representation learning
– year: 2022
  ident: b68
  article-title: When do we need GNN for node classification?
– start-page: 723
  year: 2019
  end-page: 731
  ident: b54
  article-title: Graph convolutional networks with EigenPooling
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– reference: J. Li, et al., Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 735–744,
– volume: 556
  start-page: 67
  year: 2021
  end-page: 94
  ident: b109
  article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction
  publication-title: Inform. Sci.
– year: 2023
  ident: b9
  article-title: ChatGPT informed graph neural network for stock movement prediction
  publication-title: SSRN J.
– start-page: 19314
  year: 2020
  end-page: 19326
  ident: b43
  article-title: Iterative deep graph learning for graph neural networks: Better and robust node embeddings
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  year: 2020
  ident: b87
  article-title: A novel method for Twitter sentiment analysis based on attentional-graph neural network
  publication-title: Information
– volume: 2019
  year: 2019
  ident: b120
  article-title: Anticipating stock market of the renowned companies: A knowledge graph approach
  publication-title: Complexity
– start-page: 1655
  year: 2018
  end-page: 1658
  ident: b14
  article-title: Incorporating corporation relationship via graph convolutional neural networks for stock price prediction
  publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management
– start-page: 395
  year: 2018
  end-page: 398
  ident: b20
  article-title: Fractality and stationarity analysis on stock market
  publication-title: 2018 International Conference on Advances in Computing, Communication Control and Networking
– volume: 8
  year: 2022
  ident: b23
  article-title: A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
  publication-title: PeerJ Comput. Sci.
– volume: 8
  start-page: 1015
  year: 2021
  end-page: 1024
  ident: b108
  article-title: ST-trader: A spatial-temporal deep neural network for modeling stock market movement
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 92
  year: 2021
  ident: b88
  article-title: Multi-level graph neural network for text sentiment analysis
  publication-title: Comput. Electr. Eng.
– volume: 12
  year: 2021
  ident: b36
  article-title: Graph neural networks and their current applications in bioinformatics
  publication-title: Front. Genet.
– volume: 589
  start-page: 416
  year: 2022
  end-page: 439
  ident: b90
  article-title: Convolutional attention neural network over graph structures for improving the performance of aspect-level sentiment analysis
  publication-title: Inform. Sci.
– volume: 8
  year: 2018
  ident: b22
  article-title: Deep learning for sentiment analysis: A survey
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 36
  start-page: 9251
  year: 2022
  end-page: 9259
  ident: b53
  article-title: Structural landmarking and interaction modelling: A ‘slim’ network for graph classification
  publication-title: AAAI
– volume: 10
  start-page: 3317
  year: 2022
  ident: b81
  article-title: Dual-channel interactive graph convolutional networks for aspect-level sentiment analysis
  publication-title: Mathematics
– volume: 12
  start-page: 5931
  year: 2022
  ident: b51
  article-title: MBHAN: Motif-based heterogeneous graph attention network
  publication-title: Appl. Sci.
– volume: 18
  start-page: 16:1
  year: 2023
  end-page: 16:29
  ident: b122
  article-title: A dynamic attributes-driven graph attention network modeling on behavioral finance for stock prediction
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 32
  start-page: 4
  year: 2021
  end-page: 24
  ident: b63
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: .
– volume: 12
  start-page: 9521
  year: 2021
  end-page: 9534
  ident: b29
  article-title: Stock prediction and mutual fund portfolio management using curve fitting techniques
  publication-title: J. Ambient Intell. Hum. Comput.
– year: 2022
  ident: b39
  article-title: Graph Neural Networks: Foundations, Frontiers, and Applications
– volume: 10
  start-page: 345
  year: 2022
  end-page: 360
  ident: b42
  article-title: A review of graph neural networks and their applications in power systems
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 217
  year: 2023
  ident: b93
  article-title: MSRL-net: A multi-level semantic relation-enhanced learning network for aspect-based sentiment analysis
  publication-title: Expert Syst. Appl.
– year: 2023
  ident: b6
  article-title: A knowledge enhanced graph convolutional network for aspect-based sentiment analysis
– volume: 81
  start-page: 43753
  year: 2022
  end-page: 43775
  ident: b8
  article-title: A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion
  publication-title: Multimed Tools Appl.
– volume: 91
  start-page: 515
  year: 2023
  end-page: 528
  ident: b121
  article-title: Multi-source aggregated classification for stock price movement prediction
  publication-title: Inf. Fusion
– volume: 23
  year: 2022
  ident: b57
  article-title: Graph representation learning in bioinformatics: trends, methods and applications
  publication-title: Brief. Bioinform.
– year: 2018
  ident: b83
  article-title: How powerful are graph neural networks?
– start-page: 799
  year: 2020
  end-page: 810
  ident: b105
  article-title: Syntax-aware graph attention network for aspect-level sentiment classification
  publication-title: Proceedings of the 28th International Conference on Computational Linguistics
– ident: 10.1016/j.dajour.2024.100417_b17
  doi: 10.1109/IJCNN52387.2021.9533510
– year: 2019
  ident: 10.1016/j.dajour.2024.100417_b55
– ident: 10.1016/j.dajour.2024.100417_b113
  doi: 10.1145/3533271.3561663
– volume: 42
  start-page: 9603
  issue: 24
  year: 2015
  ident: 10.1016/j.dajour.2024.100417_b125
  article-title: Sentiment analysis on social media for stock movement prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.052
– ident: 10.1016/j.dajour.2024.100417_b79
– year: 2022
  ident: 10.1016/j.dajour.2024.100417_b39
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b86
– start-page: 1655
  year: 2018
  ident: 10.1016/j.dajour.2024.100417_b14
  article-title: Incorporating corporation relationship via graph convolutional neural networks for stock price prediction
– ident: 10.1016/j.dajour.2024.100417_b41
  doi: 10.1109/ICSE.2019.00085
– volume: 214
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b66
  article-title: STGSN — A spatial–temporal graph neural network framework for time-evolving social networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106746
– volume: 10
  start-page: 403
  issue: 1
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b100
  article-title: Aspect-based sentiment analysis with heterogeneous graph neural network
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3148866
– volume: 1
  start-page: 595
  issue: 5
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b128
  article-title: Combating emerging financial risks in the big data era: A perspective review
  publication-title: Fundam. Res.
  doi: 10.1016/j.fmre.2021.08.017
– start-page: 4884
  year: 2019
  ident: 10.1016/j.dajour.2024.100417_b85
  article-title: Reviews meet graphs: Enhancing user and item representations for recommendation with hierarchical attentive graph neural network
– volume: 589
  start-page: 416
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b90
  article-title: Convolutional attention neural network over graph structures for improving the performance of aspect-level sentiment analysis
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.12.127
– volume: 235
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b102
  article-title: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107643
– year: 2018
  ident: 10.1016/j.dajour.2024.100417_b80
– year: 2021
  ident: 10.1016/j.dajour.2024.100417_b112
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b26
– volume: 12
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b36
  article-title: Graph neural networks and their current applications in bioinformatics
  publication-title: Front. Genet.
– volume: Vol. 308
  start-page: 446
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b27
  article-title: Ensemble learning based stock market prediction enhanced with sentiment analysis
– volume: 185
  start-page: 40
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b59
  article-title: Graph-based deep learning for communication networks: A survey
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.12.015
– start-page: 1183
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b77
  article-title: Graph neural network (GNN) in image and video understanding using deep learning for computer vision applications
– year: 2017
  ident: 10.1016/j.dajour.2024.100417_b82
– year: 2018
  ident: 10.1016/j.dajour.2024.100417_b83
– volume: 62
  start-page: 1139
  issue: 3
  year: 2007
  ident: 10.1016/j.dajour.2024.100417_b25
  article-title: Giving content to investor sentiment: The role of media in the stock market
  publication-title: J. Finance
  doi: 10.1111/j.1540-6261.2007.01232.x
– volume: 2022
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b115
  article-title: Using kernel method to include firm correlation for stock price prediction
  publication-title: Comput. Intell. Neurosci.
– ident: 10.1016/j.dajour.2024.100417_b64
  doi: 10.1002/cpe.7827
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b6
– volume: 11
  start-page: 194
  issue: 05
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b106
  article-title: Public sentiment analysis of social security emergencies based on feature fusion model of BERT and TextLevelGCN
  publication-title: JCC
  doi: 10.4236/jcc.2023.115014
– volume: 91
  start-page: 515
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b121
  article-title: Multi-source aggregated classification for stock price movement prediction
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.10.025
– start-page: 508
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b94
  article-title: Aspect based sentiment analysis using spectral temporal graph neural network
– volume: 9
  start-page: 79143
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b44
  article-title: Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3082932
– volume: 607
  start-page: 783
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b111
  article-title: HGNN: Hierarchical graph neural network for predicting the classification of price-limit-hitting stocks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.06.010
– year: 2018
  ident: 10.1016/j.dajour.2024.100417_b67
– volume: 51
  start-page: 628
  issue: 3
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b107
  article-title: A graph-based convolutional neural network stock price prediction with leading indicators
  publication-title: Softw. - Pract. Exp.
  doi: 10.1002/spe.2915
– year: 2019
  ident: 10.1016/j.dajour.2024.100417_b116
– start-page: 95
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b12
  article-title: Exploring graph neural networks for stock market prediction on the JSE, artificial intelligence research
  doi: 10.1007/978-3-030-95070-5_7
– year: 2015
  ident: 10.1016/j.dajour.2024.100417_b24
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b117
– volume: 23
  issue: 1
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b57
  article-title: Graph representation learning in bioinformatics: trends, methods and applications
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab340
– start-page: 5679
  year: 2019
  ident: 10.1016/j.dajour.2024.100417_b92
  article-title: Aspect-level sentiment analysis via convolution over dependency tree
– year: 2017
  ident: 10.1016/j.dajour.2024.100417_b65
  article-title: Attention is all you need
– year: 2017
  ident: 10.1016/j.dajour.2024.100417_b50
– volume: 10
  start-page: 17078
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b30
  article-title: Framework for deep learning-based language models using multi-task learning in natural language understanding: A systematic literature review and future directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149798
– volume: 10
  start-page: 3317
  issue: 18
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b81
  article-title: Dual-channel interactive graph convolutional networks for aspect-level sentiment analysis
  publication-title: Mathematics
  doi: 10.3390/math10183317
– ident: 10.1016/j.dajour.2024.100417_b18
  doi: 10.24963/ijcai.2020/626
– volume: 36
  start-page: 9251
  issue: 8
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b53
  article-title: Structural landmarking and interaction modelling: A ‘slim’ network for graph classification
  publication-title: AAAI
  doi: 10.1609/aaai.v36i8.20912
– year: 2021
  ident: 10.1016/j.dajour.2024.100417_b5
  article-title: Stock market prediction using deep learning algorithms
  publication-title: CAAI Trans. Intell. Technol.
– volume: 18
  start-page: 16:1
  issue: 1
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b122
  article-title: A dynamic attributes-driven graph attention network modeling on behavioral finance for stock prediction
  publication-title: ACM Trans. Knowl. Discov. Data
– ident: 10.1016/j.dajour.2024.100417_b84
  doi: 10.1145/3340531.3411893
– ident: 10.1016/j.dajour.2024.100417_b28
  doi: 10.2139/ssrn.153669
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b129
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b9
  article-title: ChatGPT informed graph neural network for stock movement prediction
  publication-title: SSRN J.
– year: 2022
  ident: 10.1016/j.dajour.2024.100417_b52
– volume: 12
  issue: 3
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b89
  article-title: Transformer-based graph convolutional network for sentiment analysis
  publication-title: Appl. Sci.
  doi: 10.3390/app12031316
– year: 2014
  ident: 10.1016/j.dajour.2024.100417_b73
– volume: 104
  start-page: 272
  issue: 2
  year: 2012
  ident: 10.1016/j.dajour.2024.100417_b21
  article-title: Global, local, and contagious investor sentiment
  publication-title: J. Financ. Econ.
  doi: 10.1016/j.jfineco.2011.11.002
– volume: 121
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b124
  article-title: Financial time series forecasting with multi-modality graph neural network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108218
– volume: 12
  start-page: 5931
  issue: 12
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b51
  article-title: MBHAN: Motif-based heterogeneous graph attention network
  publication-title: Appl. Sci.
  doi: 10.3390/app12125931
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b71
– volume: vol. 907
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b38
  article-title: Machine learning algorithms for industrial applications
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b58
  article-title: Computing graph neural networks: A survey from algorithms to accelerators
  publication-title: ACM Comput. Surv.
– start-page: 2331
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b74
  article-title: MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding
– volume: 34
  start-page: 249
  issue: 1
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b75
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2981333
– start-page: 779
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b61
  article-title: Learning to drop: Robust graph neural network via topological denoising
– volume: 46
  start-page: 10927
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b31
  article-title: Graph neural network: Current state of art, challenges and applications
  publication-title: Mater. Today: Proc.
– start-page: 395
  year: 2018
  ident: 10.1016/j.dajour.2024.100417_b20
  article-title: Fractality and stationarity analysis on stock market
– volume: 14
  start-page: 29
  issue: 1
  year: 2024
  ident: 10.1016/j.dajour.2024.100417_b4
  article-title: Integrating EEMD and ensemble CNN with x (Twitter) sentiment for enhanced stock price predictions
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-023-01190-w
– start-page: 8142
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b33
  article-title: Deep attention diffusion graph neural networks for text classification
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.dajour.2024.100417_b1
  article-title: Twitter mood predicts the stock market
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2010.12.007
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b32
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– year: 2022
  ident: 10.1016/j.dajour.2024.100417_b70
– start-page: 723
  year: 2019
  ident: 10.1016/j.dajour.2024.100417_b54
  article-title: Graph convolutional networks with EigenPooling
– volume: 6
  start-page: 11
  issue: 1
  year: 2019
  ident: 10.1016/j.dajour.2024.100417_b40
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput. Soc. Netw.
  doi: 10.1186/s40649-019-0069-y
– volume: 10
  start-page: 345
  issue: 2
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b42
  article-title: A review of graph neural networks and their applications in power systems
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2021.000058
– ident: 10.1016/j.dajour.2024.100417_b16
  doi: 10.1109/ICPR48806.2021.9412695
– start-page: 799
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b105
  article-title: Syntax-aware graph attention network for aspect-level sentiment classification
– year: 2022
  ident: 10.1016/j.dajour.2024.100417_b68
– volume: 4
  start-page: 375
  issue: 1
  year: 2010
  ident: 10.1016/j.dajour.2024.100417_b2
  article-title: Trading strategies to exploit blog and news sentiment
  publication-title: ICWSM
  doi: 10.1609/icwsm.v4i1.14075
– year: 2019
  ident: 10.1016/j.dajour.2024.100417_b11
– year: 2022
  ident: 10.1016/j.dajour.2024.100417_b118
– volume: 8
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b23
  article-title: A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1158
– ident: 10.1016/j.dajour.2024.100417_b97
  doi: 10.1109/AEECA52519.2021.9574275
– volume: 39
  start-page: 816
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b10
  article-title: Predicting stock trend using GNN
  publication-title: HSET
  doi: 10.54097/hset.v39i.6649
– volume: 11
  issue: 2
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b87
  article-title: A novel method for Twitter sentiment analysis based on attentional-graph neural network
  publication-title: Information
  doi: 10.3390/info11020092
– volume: 10
  start-page: 23497
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b95
  article-title: Sentiment analysis of weibo comments based on graph neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3154107
– start-page: 2051
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b103
  article-title: Discrete opinion tree induction for aspect-based sentiment analysis
– start-page: 19314
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b43
  article-title: Iterative deep graph learning for graph neural networks: Better and robust node embeddings
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b7
– volume: 55
  start-page: 97:1
  issue: 5
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b62
  article-title: Graph neural networks in recommender systems: A survey
  publication-title: ACM Comput. Surv.
– volume: 214
  start-page: 786
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b49
  article-title: Research on graph neural network in stock market
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.11.242
– volume: 47
  issue: 17
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b56
  article-title: Automated seismic source characterization using deep graph neural networks
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL088690
– volume: 126
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b114
  article-title: A representation-learning-based approach to predict stock price trend via dynamic spatiotemporal feature embedding
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106849
– volume: 1
  start-page: 57
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b47
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 32
  start-page: 9240
  year: 2019
  ident: 10.1016/j.dajour.2024.100417_b34
  article-title: Gnnexplainer: Generating explanations for graph neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 1039
  issue: 3
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b98
  article-title: Social media sentiment analysis based on dependency graph and co-occurrence graph
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-022-10004-8
– volume: 12
  start-page: 92
  issue: 1
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b3
  article-title: Effect of public sentiment on stock market movement prediction during the COVID-19 outbreak
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-022-00919-3
– ident: 10.1016/j.dajour.2024.100417_b13
  doi: 10.1109/ICASSP49357.2023.10095381
– volume: 121
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b15
  article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108119
– volume: 4
  issue: 1
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b99
  article-title: Implicit sentiment analysis based on graph attention neural network
  publication-title: Eng. Rep.
– year: 2022
  ident: 10.1016/j.dajour.2024.100417_b69
  article-title: A review of knowledge graph and graph neural network application
– volume: 8
  issue: 4
  year: 2018
  ident: 10.1016/j.dajour.2024.100417_b22
  article-title: Deep learning for sentiment analysis: A survey
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 121
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b119
  article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108119
– volume: 12
  start-page: 9521
  issue: 10
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b29
  article-title: Stock prediction and mutual fund portfolio management using curve fitting techniques
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-020-02693-6
– start-page: 19620
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b78
  article-title: Parameterized explainer for graph neural network
– ident: 10.1016/j.dajour.2024.100417_b19
  doi: 10.1109/ISACC56298.2023.10084056
– year: 2022
  ident: 10.1016/j.dajour.2024.100417_b48
– volume: 145
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b123
  article-title: A knowledge graph–GCN–community detection integrated model for large-scale stock price prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110595
– start-page: 1365
  year: 2015
  ident: 10.1016/j.dajour.2024.100417_b76
  article-title: Deep graph kernels
– volume: 92
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b88
  article-title: Multi-level graph neural network for text sentiment analysis
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107096
– start-page: 3518
  year: 2019
  ident: 10.1016/j.dajour.2024.100417_b96
  article-title: Tree communication models for sentiment analysis
– start-page: 3229
  year: 2020
  ident: 10.1016/j.dajour.2024.100417_b91
  article-title: Relational graph attention network for aspect-based sentiment analysis
– volume: 217
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b93
  article-title: MSRL-net: A multi-level semantic relation-enhanced learning network for aspect-based sentiment analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119492
– volume: 81
  start-page: 43753
  issue: 30
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b8
  article-title: A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-022-13231-1
– volume: 22
  issue: 19
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b45
  article-title: A graph-neural-network-based social network recommendation algorithm using high-order neighbor information
  publication-title: Sensors
  doi: 10.3390/s22197122
– volume: 8
  start-page: 714
  issue: 3
  year: 1997
  ident: 10.1016/j.dajour.2024.100417_b72
  article-title: Supervised neural networks for the classification of structures
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.572108
– volume: 8
  start-page: 1015
  issue: 5
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b108
  article-title: ST-trader: A spatial-temporal deep neural network for modeling stock market movement
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1003976
– volume: 34
  start-page: 4322
  issue: 7
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b110
  article-title: Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– volume: 2023
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b60
  article-title: Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence
  publication-title: Int. J. Intell. Syst.
  doi: 10.1155/2023/8342104
– volume: 556
  start-page: 67
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b109
  article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.12.068
– start-page: 1
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b37
  article-title: Graph neural networks for communication networks: Context, use cases and opportunities
  publication-title: IEEE Netw.
– year: 2023
  ident: 10.1016/j.dajour.2024.100417_b35
  article-title: Generalizing graph neural network across graphs and time
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.dajour.2024.100417_b63
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– volume: 2019
  year: 2019
  ident: 10.1016/j.dajour.2024.100417_b120
  article-title: Anticipating stock market of the renowned companies: A knowledge graph approach
  publication-title: Complexity
  doi: 10.1155/2019/9202457
– volume: 139
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b46
  article-title: Fake news detection: A survey of graph neural network methods
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110235
– start-page: 2238
  year: 2022
  ident: 10.1016/j.dajour.2024.100417_b101
  article-title: Aspect-based sentiment analysis with graph convolutional networks over dependency awareness
– volume: 260
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b104
  article-title: A disentangled linguistic graph model for explainable aspect-based sentiment analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110150
– volume: 267
  year: 2023
  ident: 10.1016/j.dajour.2024.100417_b127
  article-title: The data-based adaptive graph learning network for analysis and prediction of offshore wind speed
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126590
– volume: 50
  start-page: 723
  year: 2014
  ident: 10.1016/j.dajour.2024.100417_b126
  article-title: Sentiment analysis of short informal texts
  publication-title: Jair
  doi: 10.1613/jair.4272
SSID ssj0002811303
Score 2.3801463
SecondaryResourceType review_article
Snippet There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100417
SubjectTerms Graph neural networks
Market sentiment
Sentiment analysis
Stock prediction
Title Integrating sentiment analysis with graph neural networks for enhanced stock prediction: A comprehensive survey
URI https://dx.doi.org/10.1016/j.dajour.2024.100417
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKcIEDYhXDMvKBG0qVzY7DrQygAakc6Iw0t8h2HKXpKDNqUiQ4cON_87ylKZRtLlZlxXbq98V-efneZ4Re0FJQEeY8IEzkQVqpKOCERUEmKWxYVcgjw3aff6QnZ-mHc3I-mXwfsZY2vZjKr3vzSq5jVagDu-os2f-w7NApVMBvsC-UYGEo_8nG753Wg4kJaNqPY4w7nRETYzWK1C-1bCUYo7Wk784Kfbe1_fwP_p9cabWAcik912NmyOZrVTuCe7dZf979BPzGnc5jxzNqz-ObNtHvzi7gQmtsDOv_gpf1ZlXbyOvr5Yp3Q0j6uDZyn41lB33iTanU1W8YCAvef-HNsh_HLeJ0S9yywTSfULPD94zB2Q8otanKU7Wnzi_a4d7134YiGhhV_-OpHlfzQFKbH_qTsvZC96w71jxa8HWSG-imrtIHYcy_bUN1MYv0Tq-PKfS34pMwDVPw18H2Ozkjx-X0Lrrj3jjwzMLnHpqo9j66PR_kersH6HIEJDwACXsgYQ0kbICELZCwBxIGIGEPJGyAhLdAeoVneAdG2MLoITp79_b0-CRwJ3EEMs7jLOCUk5ISeHYVr3LJCcl4mFTgaitKRJwJUcmIlVGmchXCFQzeUhOSwG6oGFMlSx6hg_ayVY8RFoomGVGS8VSkFatYWGVUJlBUcVbm_BAlfuoK6WTq9WkpF4XnIzaFnfBCT3hhJ_wQBUOrKyvT8pfrM2-Vwrma1oUsAEl_bPnk2i2folvb5-AZOujXG_UcPNpeHJlI0JFB3Q-Slamq
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+sentiment+analysis+with+graph+neural+networks+for+enhanced+stock+prediction%3A+A+comprehensive+survey&rft.jtitle=Decision+analytics+journal&rft.au=Das%2C+Nabanita&rft.au=Sadhukhan%2C+Bikash&rft.au=Chatterjee%2C+Rajdeep&rft.au=Chakrabarti%2C+Satyajit&rft.date=2024-03-01&rft.pub=Elsevier+Inc&rft.issn=2772-6622&rft.eissn=2772-6622&rft.volume=10&rft_id=info:doi/10.1016%2Fj.dajour.2024.100417&rft.externalDocID=S2772662224000213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-6622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-6622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-6622&client=summon