Integrating sentiment analysis with graph neural networks for enhanced stock prediction: A comprehensive survey
There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly reviews the application of GNNs in conjunction with sentiment analysis for stock prediction. This study introduces the fundamental concepts of G...
Saved in:
Published in | Decision analytics journal Vol. 10; p. 100417 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly reviews the application of GNNs in conjunction with sentiment analysis for stock prediction. This study introduces the fundamental concepts of GNNs and sentiment analysis, emphasizing their respective contributions to the stock prediction domain and underlining the limitations of conventional methods. The potential advantages of combining GNNs and sentiment analysis in this context are highlighted. A comprehensive review of the literature on this subject is subsequently undertaken, covering diverse approaches and techniques utilized for sentiment analysis and stock prediction through the application of GNNs. Various graph structures, such as stock and investor networks, are used to represent financial data, and methodologies employed to incorporate sentiment analysis within these networks are explored. Challenges related to data collection, preprocessing, and annotation are discussed, along with the sources of sentiment data, including news articles, social media feeds, and financial reports. Evaluation metrics and performance benchmarks utilized to assess the precision and efficacy of GNN-based stock prediction models are also examined. This article highlights the limitations and unanswered research questions in this field, paving the way for future investigations. This article provides a comprehensive roadmap for utilizing GNNs with sentiment analysis to enhance stock prediction accuracy. It is a valuable resource for researchers and practitioners interested in exploring and advancing this emerging interdisciplinary domain.
•Explore the fusion of Graph Neural Networks (GNNs) and sentiment analysis for stock prediction.•Present the fundamental concepts of GNNs and sentiment analysis and show their contributions to stock prediction.•Explore diverse approaches and methodologies for sentiment analysis and stock prediction with GNNs.•Examine evaluation metrics and benchmarks for assessing GNN-based stock prediction models.•Highlight limitations and unanswered questions and propose future directions for researchers and practitioners. |
---|---|
AbstractList | There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly reviews the application of GNNs in conjunction with sentiment analysis for stock prediction. This study introduces the fundamental concepts of GNNs and sentiment analysis, emphasizing their respective contributions to the stock prediction domain and underlining the limitations of conventional methods. The potential advantages of combining GNNs and sentiment analysis in this context are highlighted. A comprehensive review of the literature on this subject is subsequently undertaken, covering diverse approaches and techniques utilized for sentiment analysis and stock prediction through the application of GNNs. Various graph structures, such as stock and investor networks, are used to represent financial data, and methodologies employed to incorporate sentiment analysis within these networks are explored. Challenges related to data collection, preprocessing, and annotation are discussed, along with the sources of sentiment data, including news articles, social media feeds, and financial reports. Evaluation metrics and performance benchmarks utilized to assess the precision and efficacy of GNN-based stock prediction models are also examined. This article highlights the limitations and unanswered research questions in this field, paving the way for future investigations. This article provides a comprehensive roadmap for utilizing GNNs with sentiment analysis to enhance stock prediction accuracy. It is a valuable resource for researchers and practitioners interested in exploring and advancing this emerging interdisciplinary domain.
•Explore the fusion of Graph Neural Networks (GNNs) and sentiment analysis for stock prediction.•Present the fundamental concepts of GNNs and sentiment analysis and show their contributions to stock prediction.•Explore diverse approaches and methodologies for sentiment analysis and stock prediction with GNNs.•Examine evaluation metrics and benchmarks for assessing GNN-based stock prediction models.•Highlight limitations and unanswered questions and propose future directions for researchers and practitioners. |
ArticleNumber | 100417 |
Author | Das, Nabanita Sadhukhan, Bikash Chatterjee, Rajdeep Chakrabarti, Satyajit |
Author_xml | – sequence: 1 givenname: Nabanita surname: Das fullname: Das, Nabanita organization: Department of CSE, Techno International New Town, Kolkata-700156, India – sequence: 2 givenname: Bikash surname: Sadhukhan fullname: Sadhukhan, Bikash email: bikash.sadhukhan@tict.edu.in organization: Department of CSE, Techno International New Town, Kolkata-700156, India – sequence: 3 givenname: Rajdeep surname: Chatterjee fullname: Chatterjee, Rajdeep organization: Department of CSE, Techno International New Town, Kolkata-700156, India – sequence: 4 givenname: Satyajit surname: Chakrabarti fullname: Chakrabarti, Satyajit organization: Department of CSE, University of Engineering & Management, Kolkata-700160, India |
BookMark | eNqFkMtqwzAQRUVJoWmaP-hCP5BUkh-ysyiE0BcEumnXQpHHsRxHCpKSkL-vjLsoXbSbucPM3AtzbtHIWAMI3VMyp4TmD-28kq09ujkjLI0jklJ-hcaMczbLc8ZGP_obNPW-JYSwgtKEJGNk30yArZNBmy32YILex4Klkd3Fa4_POjQ47g8NNnB0sosSztbtPK6tw2AaaRRU2AerdvjgoNIqaGsWeImV3cdBA8brE2B_dCe43KHrWnYept86QZ_PTx-r19n6_eVttVzPFCsZn8lcZlWepTUBWZdKZhmXJKnTJIM82zC-2dSKFhXlUAKJF0XJ4y5htISigKpIJigdcpWz3juoxcHpvXQXQYnouYlWDNxEz00M3KJt8cumdJD9Q8FJ3f1nfhzMEB87aXDCKw09Hu1ABVFZ_XfAF4uLkGM |
CitedBy_id | crossref_primary_10_3390_su17031067 crossref_primary_10_1016_j_nlp_2025_100125 crossref_primary_10_1142_S0218126625500549 crossref_primary_10_3390_electronics13091629 crossref_primary_10_3390_electronics14010041 crossref_primary_10_1016_j_knosys_2025_113054 crossref_primary_10_1007_s42979_024_03617_3 |
Cites_doi | 10.1109/IJCNN52387.2021.9533510 10.1145/3533271.3561663 10.1016/j.eswa.2015.07.052 10.1109/ICSE.2019.00085 10.1016/j.knosys.2021.106746 10.1109/TCSS.2022.3148866 10.1016/j.fmre.2021.08.017 10.1016/j.ins.2021.12.127 10.1016/j.knosys.2021.107643 10.1016/j.comcom.2021.12.015 10.1111/j.1540-6261.2007.01232.x 10.1002/cpe.7827 10.4236/jcc.2023.115014 10.1016/j.inffus.2022.10.025 10.1109/ACCESS.2021.3082932 10.1016/j.ins.2022.06.010 10.1002/spe.2915 10.1007/978-3-030-95070-5_7 10.1093/bib/bbab340 10.1109/ACCESS.2022.3149798 10.3390/math10183317 10.24963/ijcai.2020/626 10.1609/aaai.v36i8.20912 10.1145/3340531.3411893 10.2139/ssrn.153669 10.3390/app12031316 10.1016/j.jfineco.2011.11.002 10.1016/j.patcog.2021.108218 10.3390/app12125931 10.1109/TKDE.2020.2981333 10.1007/s13278-023-01190-w 10.1016/j.jocs.2010.12.007 10.1109/TNNLS.2020.2978386 10.1186/s40649-019-0069-y 10.35833/MPCE.2021.000058 10.1109/ICPR48806.2021.9412695 10.1609/icwsm.v4i1.14075 10.7717/peerj-cs.1158 10.1109/AEECA52519.2021.9574275 10.54097/hset.v39i.6649 10.3390/info11020092 10.1109/ACCESS.2022.3154107 10.1016/j.procs.2022.11.242 10.1029/2020GL088690 10.1016/j.engappai.2023.106849 10.1016/j.aiopen.2021.01.001 10.1007/s12559-022-10004-8 10.1007/s13278-022-00919-3 10.1109/ICASSP49357.2023.10095381 10.1016/j.patcog.2021.108119 10.1007/s12652-020-02693-6 10.1109/ISACC56298.2023.10084056 10.1016/j.asoc.2023.110595 10.1016/j.compeleceng.2021.107096 10.1016/j.eswa.2022.119492 10.1007/s11042-022-13231-1 10.3390/s22197122 10.1109/72.572108 10.1109/JAS.2021.1003976 10.1155/2023/8342104 10.1016/j.ins.2020.12.068 10.1155/2019/9202457 10.1016/j.asoc.2023.110235 10.1016/j.knosys.2022.110150 10.1016/j.energy.2022.126590 10.1613/jair.4272 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.dajour.2024.100417 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2772-6622 |
ExternalDocumentID | 10_1016_j_dajour_2024_100417 S2772662224000213 |
GroupedDBID | 0R~ 0SF 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c2927-a6a5d654f0eaf9ca557a03f435e65b27bbfc18d17e9e0af98974353219e88ed83 |
ISSN | 2772-6622 |
IngestDate | Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 02:28:46 EDT 2025 Sat Jun 01 15:41:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sentiment analysis Graph neural networks Stock prediction Market sentiment |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2927-a6a5d654f0eaf9ca557a03f435e65b27bbfc18d17e9e0af98974353219e88ed83 |
OpenAccessLink | http://dx.doi.org/10.1016/j.dajour.2024.100417 |
ParticipantIDs | crossref_primary_10_1016_j_dajour_2024_100417 crossref_citationtrail_10_1016_j_dajour_2024_100417 elsevier_sciencedirect_doi_10_1016_j_dajour_2024_100417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Decision analytics journal |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kong, Chen, Zhang (b52) 2022 D. Batabyal, D. Bandopadhyay, B. Sadhukhan, N. Das, S. Mukherjee, Exploring Stationarity and Fractality in Stock Market Time-series, in: 2023 International Conference on Intelligent Systems, Advanced Computing and Communication , (ISACC), 2023, pp. 1–6 Zhou (b47) 2020; 1 Zhu, Zhang, Wang, Ling, Zhang, Zha (b53) 2022; 36 Battaglia (b67) 2018 Zhang, Zhang (b96) 2019 Wang, Shen, Yang, Quan, Wang (b91) 2020 Saravanan, Paudel, Acharya, Paramasivam, Pillai (b7) 2023 J. Li, et al., Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 735–744 Zou (b129) 2023 Xu (b115) 2022; 2022 J. Ye, J. Zhao, K. Ye, C. Xu, Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction, in: 2020 25th International Conference on Pattern Recognition, (ICPR), 2021, pp. 6702–6709 Wang, Hu (b87) 2020; 11 Wu, Pan, Chen, Long, Zhang, Yu (b63) 2021; 32 Li, Wang, Tan, Ji, Jia (b8) 2022; 81 Das, Sadhukhan, Bhakta, Chakrabarti (b4) 2024; 14 Wu (b70) 2022 AlBadani, Shi, Dong, Al-Sabri, Moctard (b89) 2022; 12 Nguyen, Shirai, Velcin (b125) 2015; 42 (b39) 2022 W. Li, R. Bao, K. Harimoto, D. Chen, J. Xu, Q. Su, Modeling the stock relation with graph network for overnight stock movement prediction, in: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, Yokohama, Yokohama, Japan, 2021, pp. 4541–4547. L. Niu, Q. Zheng, L. Zhang, Enhance gated graph neural network with syntactic for sentiment analysis, in: 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, AEECA, 2021, pp. 1055–1060 . Wu, Sun, Zhang, Xie, Cui (b62) 2022; 55 Liao, Zeng, Liu, Wei, Cheng, Zhang (b88) 2021; 92 Matsunaga, Suzumura, Takahashi (b11) 2019 Yu, Qian, Zhang, Gao (b45) 2022; 22 Wu, Li, Srivastava, Tasi, Lin (b107) 2021; 51 Zhang, Tong, Xu, Maciejewski (b40) 2019; 6 Phan, Nguyen, Hwang (b90) 2022; 589 Wu, Pan, Chen, Long, Zhang, Yu (b32) 2021; 32 Tao, Gao, Mao, Huang (b110) 2022; 34 Wu, Wu, Qi, Ge, Huang, Xie (b85) 2019 Xu (b111) 2022; 607 Zhang, Cui, Zhu (b75) 2022; 34 (b58) 2023 Zhang, Liu, Chen, Cong, Li (b6) 2023 Wang, Zhang, Xiao, Song (b48) 2022 Chakraborty (b94) 2021 Yang, Xing, Li, Chang (b99) 2022; 4 Liu, Zeng, Ordieres Meré, Yang (b120) 2019; 2019 Mukherjee, Sadhukhan, Sarkar, Roy, De (b5) 2021 Rekha, Sabu (b23) 2022; 8 Maji, Mondal, Dey, Debnath, Sen (b29) 2021; 12 Wang, Liu, Zhu, Lu (b101) 2022 M. Fan, et al., Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning, in: 2019 IEEE/ACM 41st International Conference on Software Engineering , (ICSE), 2019, pp. 771–782 Chen, Jiang, Zhang, Chen (b109) 2021; 556 Wang, Guo, Shan, Zhang, Peng, Wu (b123) 2023; 145 Zhang, Liang, Liu, Tang (b36) 2021; 12 Bhatti, Tang, Wu, Marjan, Hussain (b60) 2023; 2023 Xhumari, Maxhelaku, Xhina (b69) 2022 Liang, Su, Gui, Cambria, Xu (b102) 2022; 235 Xu, Hu, Leskovec, Jegelka (b83) 2018 Das, Sadhukhan, Chatterjee, Chakrabarti (b3) 2022; 12 Pillay, Moodley (b12) 2022 Zhang, Wang, Liu (b22) 2018; 8 Cao (b112) 2021 Vaswani (b65) 2017 N.T., Maehara (b55) 2019 Bruna, Zaremba, Szlam, LeCun (b73) 2014 Pradhyumna, Shreya, Mohana (b77) 2021 Skarding, Gabrys, Musial (b44) 2021; 9 Min, Gao, Peng, Wang, Qin, Fang (b66) 2021; 214 Chen, Teng, Wang, Zhang (b103) 2022 Ren, Li, Xu, Yu (b127) 2023; 267 Q. Chen, C.-Y. Robert, Multivariate Realized Volatility Forecasting with Graph Neural Network, in: Proceedings of the Third ACM International Conference on AI in Finance, 2022, pp. 156–164 Fu, Zhang, Meng, King (b74) 2020 Kim, So, Jeong, Lee, Kim, Kang (b116) 2019 Cheng, Yang, Xiang, Liu (b124) 2022; 121 Chen, Wu, Zaki (b43) 2020 Chen, Zheng, Lu, Yuan, Zhu (b9) 2023 van den Ende, Ampuero (b56) 2020; 47 Luan, Hua, Lu, Zhu, Chang, Precup (b68) 2022 Zhang, Skiena (b2) 2010; 4 Kiritchenko, Zhu, Mohammad (b126) 2014; 50 Jin, Tao, Zhao, Hu (b98) 2022; 14 Feng, Xu, Zuo, Chen, Lin, XiaHou (b15) 2022; 121 X. Yin, D. Yan, A. Almudaifer, S. Yan, Y. Zhou, Forecasting Stock Prices Using Stock Correlation Graph: A Graph Convolutional Network Approach, in: 2021 International Joint Conference on Neural Networks , (IJCNN), 2021, pp. 1–8 Li, Li (b95) 2022; 10 Baker, Wurgler, Yuan (b21) 2012; 104 Zhang, Zhang, Yao, Li, Zhang, Liu (b122) 2023; 18 Dahiphale (b71) 2023 Lan, He, Yang (b81) 2022; 10 Ma, Wang, Aggarwal, Tang (b54) 2019 Sivri, Ustundag, Korkmaz (b27) 2022; Vol. 308 Sun, Zhang, Mensah, Mao, Liu (b92) 2019 An, Tian, Chen, Zheng (b100) 2023; 10 Liu, Paterlini (b117) 2023 Luo (b61) 2021 Tetlock (b25) 2007; 62 Gupta, Matta, Pant (b31) 2021; 46 Ying, Bourgeois, You, Zitnik, Leskovec (b34) 2019; 32 (b35) 2023 Yanardag, Vishwanathan (b76) 2015 Jiang (b59) 2022; 185 Phan, Nguyen, Hwang (b46) 2023; 139 Dey, Borah, Babo, Ashour (b80) 2018 Cheng (b128) 2021; 1 Ma, Mao, Lin, Wu, Cambria (b121) 2023; 91 Xu (b118) 2022 Shi (b86) 2023 Liu, Guan, Giunchiglia, Liang, Feng (b33) 2021 Ong, van der Heever, Satapathy, Mengaldo, Cambria (b26) 2023 Liao, Bak-Jensen, Radhakrishna Pillai, Wang, Wang (b42) 2022; 10 Mei, Zhou, Zhu, Wu, Li, Pan (b104) 2023; 260 (b38) 2021; vol. 907 Feng, Xu, Zuo, Chen, Lin, XiaHou (b119) 2022; 121 Hamilton, Ying, Leskovec (b50) 2017 Bollen, Mao, Zeng (b1) 2011; 2 Chen, Wei, Huang (b14) 2018 Chaudhuri, Mukherjee, Chowdhury, Sadhukhan, Goswami (b20) 2018 Sperduti, Starita (b72) 1997; 8 Samant, Bachute, Gite, Kotecha (b30) 2022; 10 Hu, Lin, Tang, Jiang (b51) 2022; 12 Wang, Wang, Lei (b106) 2023; 11 Veličković, Cucurull, Casanova, Romero, Liò, Bengio (b82) 2017 Hu, Wang, Wang, Tan (b93) 2023; 217 A.N. Arya, Y. Lei Xu, L. Stankovic, D.P. Mandic, Hierarchical Graph Learning for Stock Market Prediction Via a Domain-Aware Graph Pooling Operator, in: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2023, pp. 1–5 Huang, Sun, Li, Zhang, Wang (b105) 2020 Y. Wang, B. Zhang, J. Ma, Q. Jin, Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: A systematical review, Concurr. Comput.: Pract. Exper. e7827 Zhang, Wallace (b24) 2015 Suarez-Varela (b37) 2022 Pang, Wei, Li, Feng, Li (b114) 2023; 126 Chen, Huang, Zhou (b10) 2023; 39 Zhang, Chen, Miao, Liu (b49) 2022; 214 Luo (b78) 2020 R.M. Stulz, Globalization of Equity Markets and the Cost of Capital, Rochester, NY, 1999 Yi, You, Huang, Kwoh (b57) 2022; 23 Hou, Wang, Zhong, Wei (b108) 2021; 8 R. Dalmau, E. Allard, Air traffic control using message passing neural networks and multi-agent reinforcement learning, in: Proceedings of the 10th SESAR Innovation Days, Virtual Event, 2020, pp. 7–10. 10.1016/j.dajour.2024.100417_b28 Rekha (10.1016/j.dajour.2024.100417_b23) 2022; 8 Luo (10.1016/j.dajour.2024.100417_b61) 2021 Cheng (10.1016/j.dajour.2024.100417_b124) 2022; 121 Pang (10.1016/j.dajour.2024.100417_b114) 2023; 126 Zhang (10.1016/j.dajour.2024.100417_b2) 2010; 4 Chen (10.1016/j.dajour.2024.100417_b109) 2021; 556 Chen (10.1016/j.dajour.2024.100417_b14) 2018 Tao (10.1016/j.dajour.2024.100417_b110) 2022; 34 Lan (10.1016/j.dajour.2024.100417_b81) 2022; 10 Liao (10.1016/j.dajour.2024.100417_b88) 2021; 92 Wu (10.1016/j.dajour.2024.100417_b85) 2019 (10.1016/j.dajour.2024.100417_b39) 2022 Phan (10.1016/j.dajour.2024.100417_b90) 2022; 589 Hamilton (10.1016/j.dajour.2024.100417_b50) 2017 Chen (10.1016/j.dajour.2024.100417_b10) 2023; 39 Xu (10.1016/j.dajour.2024.100417_b83) 2018 Liang (10.1016/j.dajour.2024.100417_b102) 2022; 235 Matsunaga (10.1016/j.dajour.2024.100417_b11) 2019 10.1016/j.dajour.2024.100417_b16 10.1016/j.dajour.2024.100417_b17 10.1016/j.dajour.2024.100417_b18 10.1016/j.dajour.2024.100417_b19 Jiang (10.1016/j.dajour.2024.100417_b59) 2022; 185 Wu (10.1016/j.dajour.2024.100417_b32) 2021; 32 Zhu (10.1016/j.dajour.2024.100417_b53) 2022; 36 Mukherjee (10.1016/j.dajour.2024.100417_b5) 2021 Vaswani (10.1016/j.dajour.2024.100417_b65) 2017 Pradhyumna (10.1016/j.dajour.2024.100417_b77) 2021 Luan (10.1016/j.dajour.2024.100417_b68) 2022 10.1016/j.dajour.2024.100417_b97 Xu (10.1016/j.dajour.2024.100417_b111) 2022; 607 Kim (10.1016/j.dajour.2024.100417_b116) 2019 10.1016/j.dajour.2024.100417_b13 Ma (10.1016/j.dajour.2024.100417_b54) 2019 Zhang (10.1016/j.dajour.2024.100417_b36) 2021; 12 Wu (10.1016/j.dajour.2024.100417_b70) 2022 Wang (10.1016/j.dajour.2024.100417_b123) 2023; 145 Feng (10.1016/j.dajour.2024.100417_b15) 2022; 121 Kong (10.1016/j.dajour.2024.100417_b52) 2022 Pillay (10.1016/j.dajour.2024.100417_b12) 2022 Yu (10.1016/j.dajour.2024.100417_b45) 2022; 22 Cheng (10.1016/j.dajour.2024.100417_b128) 2021; 1 Ma (10.1016/j.dajour.2024.100417_b121) 2023; 91 Ren (10.1016/j.dajour.2024.100417_b127) 2023; 267 Suarez-Varela (10.1016/j.dajour.2024.100417_b37) 2022 Zou (10.1016/j.dajour.2024.100417_b129) 2023 Zhang (10.1016/j.dajour.2024.100417_b22) 2018; 8 10.1016/j.dajour.2024.100417_b41 10.1016/j.dajour.2024.100417_b113 Sivri (10.1016/j.dajour.2024.100417_b27) 2022; Vol. 308 Zhang (10.1016/j.dajour.2024.100417_b49) 2022; 214 Wang (10.1016/j.dajour.2024.100417_b106) 2023; 11 Phan (10.1016/j.dajour.2024.100417_b46) 2023; 139 Liu (10.1016/j.dajour.2024.100417_b117) 2023 van den Ende (10.1016/j.dajour.2024.100417_b56) 2020; 47 Ong (10.1016/j.dajour.2024.100417_b26) 2023 Yanardag (10.1016/j.dajour.2024.100417_b76) 2015 Chakraborty (10.1016/j.dajour.2024.100417_b94) 2021 Zhou (10.1016/j.dajour.2024.100417_b47) 2020; 1 Dey (10.1016/j.dajour.2024.100417_b80) 2018 Skarding (10.1016/j.dajour.2024.100417_b44) 2021; 9 Bruna (10.1016/j.dajour.2024.100417_b73) 2014 Wu (10.1016/j.dajour.2024.100417_b63) 2021; 32 Chen (10.1016/j.dajour.2024.100417_b103) 2022 Zhang (10.1016/j.dajour.2024.100417_b40) 2019; 6 Xhumari (10.1016/j.dajour.2024.100417_b69) 2022 Battaglia (10.1016/j.dajour.2024.100417_b67) 2018 Shi (10.1016/j.dajour.2024.100417_b86) 2023 (10.1016/j.dajour.2024.100417_b35) 2023 Gupta (10.1016/j.dajour.2024.100417_b31) 2021; 46 Zhang (10.1016/j.dajour.2024.100417_b75) 2022; 34 Veličković (10.1016/j.dajour.2024.100417_b82) 2017 Wang (10.1016/j.dajour.2024.100417_b87) 2020; 11 Zhang (10.1016/j.dajour.2024.100417_b6) 2023 Luo (10.1016/j.dajour.2024.100417_b78) 2020 Hou (10.1016/j.dajour.2024.100417_b108) 2021; 8 (10.1016/j.dajour.2024.100417_b38) 2021; vol. 907 10.1016/j.dajour.2024.100417_b64 Wu (10.1016/j.dajour.2024.100417_b107) 2021; 51 Baker (10.1016/j.dajour.2024.100417_b21) 2012; 104 Li (10.1016/j.dajour.2024.100417_b8) 2022; 81 Huang (10.1016/j.dajour.2024.100417_b105) 2020 Chaudhuri (10.1016/j.dajour.2024.100417_b20) 2018 Wu (10.1016/j.dajour.2024.100417_b62) 2022; 55 Liu (10.1016/j.dajour.2024.100417_b120) 2019; 2019 Samant (10.1016/j.dajour.2024.100417_b30) 2022; 10 Nguyen (10.1016/j.dajour.2024.100417_b125) 2015; 42 Fu (10.1016/j.dajour.2024.100417_b74) 2020 Xu (10.1016/j.dajour.2024.100417_b115) 2022; 2022 Zhang (10.1016/j.dajour.2024.100417_b96) 2019 Wang (10.1016/j.dajour.2024.100417_b101) 2022 Das (10.1016/j.dajour.2024.100417_b4) 2024; 14 Chen (10.1016/j.dajour.2024.100417_b43) 2020 Li (10.1016/j.dajour.2024.100417_b95) 2022; 10 Zhang (10.1016/j.dajour.2024.100417_b24) 2015 Liao (10.1016/j.dajour.2024.100417_b42) 2022; 10 Wang (10.1016/j.dajour.2024.100417_b91) 2020 Yang (10.1016/j.dajour.2024.100417_b99) 2022; 4 N.T. (10.1016/j.dajour.2024.100417_b55) 2019 Bhatti (10.1016/j.dajour.2024.100417_b60) 2023; 2023 Min (10.1016/j.dajour.2024.100417_b66) 2021; 214 Zhang (10.1016/j.dajour.2024.100417_b122) 2023; 18 Feng (10.1016/j.dajour.2024.100417_b119) 2022; 121 Liu (10.1016/j.dajour.2024.100417_b33) 2021 Wang (10.1016/j.dajour.2024.100417_b48) 2022 Cao (10.1016/j.dajour.2024.100417_b112) 2021 Kiritchenko (10.1016/j.dajour.2024.100417_b126) 2014; 50 AlBadani (10.1016/j.dajour.2024.100417_b89) 2022; 12 Dahiphale (10.1016/j.dajour.2024.100417_b71) 2023 Yi (10.1016/j.dajour.2024.100417_b57) 2022; 23 10.1016/j.dajour.2024.100417_b84 Hu (10.1016/j.dajour.2024.100417_b51) 2022; 12 Chen (10.1016/j.dajour.2024.100417_b9) 2023 Maji (10.1016/j.dajour.2024.100417_b29) 2021; 12 Hu (10.1016/j.dajour.2024.100417_b93) 2023; 217 Sun (10.1016/j.dajour.2024.100417_b92) 2019 Bollen (10.1016/j.dajour.2024.100417_b1) 2011; 2 Saravanan (10.1016/j.dajour.2024.100417_b7) 2023 Sperduti (10.1016/j.dajour.2024.100417_b72) 1997; 8 Mei (10.1016/j.dajour.2024.100417_b104) 2023; 260 An (10.1016/j.dajour.2024.100417_b100) 2023; 10 Jin (10.1016/j.dajour.2024.100417_b98) 2022; 14 Das (10.1016/j.dajour.2024.100417_b3) 2022; 12 Ying (10.1016/j.dajour.2024.100417_b34) 2019; 32 Xu (10.1016/j.dajour.2024.100417_b118) 2022 (10.1016/j.dajour.2024.100417_b58) 2023 10.1016/j.dajour.2024.100417_b79 Tetlock (10.1016/j.dajour.2024.100417_b25) 2007; 62 |
References_xml | – reference: L. Niu, Q. Zheng, L. Zhang, Enhance gated graph neural network with syntactic for sentiment analysis, in: 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, AEECA, 2021, pp. 1055–1060, – start-page: 1183 year: 2021 end-page: 1189 ident: b77 article-title: Graph neural network (GNN) in image and video understanding using deep learning for computer vision applications publication-title: 2021 Second International Conference on Electronics and Sustainable Communication Systems – reference: Y. Wang, B. Zhang, J. Ma, Q. Jin, Artificial intelligence of things (AIoT) data acquisition based on graph neural networks: A systematical review, Concurr. Comput.: Pract. Exper. e7827, – volume: 62 start-page: 1139 year: 2007 end-page: 1168 ident: b25 article-title: Giving content to investor sentiment: The role of media in the stock market publication-title: J. Finance – year: 2023 ident: b117 article-title: Stock price prediction using temporal graph model with value chain data – volume: 51 start-page: 628 year: 2021 end-page: 644 ident: b107 article-title: A graph-based convolutional neural network stock price prediction with leading indicators publication-title: Softw. - Pract. Exp. – reference: A.N. Arya, Y. Lei Xu, L. Stankovic, D.P. Mandic, Hierarchical Graph Learning for Stock Market Prediction Via a Domain-Aware Graph Pooling Operator, in: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2023, pp. 1–5, – volume: 139 year: 2023 ident: b46 article-title: Fake news detection: A survey of graph neural network methods publication-title: Appl. Soft Comput. – volume: 185 start-page: 40 year: 2022 end-page: 54 ident: b59 article-title: Graph-based deep learning for communication networks: A survey publication-title: Comput. Commun. – year: 2015 ident: b24 article-title: A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification – volume: 22 year: 2022 ident: b45 article-title: A graph-neural-network-based social network recommendation algorithm using high-order neighbor information publication-title: Sensors – volume: 104 start-page: 272 year: 2012 end-page: 287 ident: b21 article-title: Global, local, and contagious investor sentiment publication-title: J. Financ. Econ. – volume: 14 start-page: 29 year: 2024 ident: b4 article-title: Integrating EEMD and ensemble CNN with x (Twitter) sentiment for enhanced stock price predictions publication-title: Soc. Netw. Anal. Min. – volume: 10 start-page: 403 year: 2023 end-page: 412 ident: b100 article-title: Aspect-based sentiment analysis with heterogeneous graph neural network publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 2 start-page: 1 year: 2011 end-page: 8 ident: b1 article-title: Twitter mood predicts the stock market publication-title: J. Comput. Sci. – volume: 267 year: 2023 ident: b127 article-title: The data-based adaptive graph learning network for analysis and prediction of offshore wind speed publication-title: Energy – reference: R. Dalmau, E. Allard, Air traffic control using message passing neural networks and multi-agent reinforcement learning, in: Proceedings of the 10th SESAR Innovation Days, Virtual Event, 2020, pp. 7–10. – volume: 32 start-page: 4 year: 2021 end-page: 24 ident: b32 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 4884 year: 2019 end-page: 4893 ident: b85 article-title: Reviews meet graphs: Enhancing user and item representations for recommendation with hierarchical attentive graph neural network publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing – year: 2014 ident: b73 article-title: Spectral networks and locally connected networks on graphs – reference: R.M. Stulz, Globalization of Equity Markets and the Cost of Capital, Rochester, NY, 1999, – start-page: 2051 year: 2022 end-page: 2064 ident: b103 article-title: Discrete opinion tree induction for aspect-based sentiment analysis publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) – volume: 121 year: 2022 ident: b119 article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation publication-title: Pattern Recognit. – year: 2017 ident: b65 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – volume: 607 start-page: 783 year: 2022 end-page: 798 ident: b111 article-title: HGNN: Hierarchical graph neural network for predicting the classification of price-limit-hitting stocks publication-title: Inform. Sci. – volume: 10 start-page: 17078 year: 2022 end-page: 17097 ident: b30 article-title: Framework for deep learning-based language models using multi-task learning in natural language understanding: A systematic literature review and future directions publication-title: IEEE Access – year: 2017 ident: b82 article-title: Graph attention networks – year: 2017 ident: b50 article-title: Inductive representation learning on large graphs – volume: 10 start-page: 23497 year: 2022 end-page: 23510 ident: b95 article-title: Sentiment analysis of weibo comments based on graph neural network publication-title: IEEE Access – start-page: 5679 year: 2019 end-page: 5688 ident: b92 article-title: Aspect-level sentiment analysis via convolution over dependency tree publication-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing – start-page: 8142 year: 2021 end-page: 8152 ident: b33 article-title: Deep attention diffusion graph neural networks for text classification publication-title: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing – start-page: 779 year: 2021 end-page: 787 ident: b61 article-title: Learning to drop: Robust graph neural network via topological denoising publication-title: Proceedings of the 14th ACM International Conference on Web Search and Data Mining – volume: 126 year: 2023 ident: b114 article-title: A representation-learning-based approach to predict stock price trend via dynamic spatiotemporal feature embedding publication-title: Eng. Appl. Artif. Intell. – year: 2023 ident: b129 article-title: Machine Learning and Natural Language Processing in Stock Prediction – start-page: 3229 year: 2020 end-page: 3238 ident: b91 article-title: Relational graph attention network for aspect-based sentiment analysis publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics – year: 2023 ident: b58 article-title: Computing graph neural networks: A survey from algorithms to accelerators publication-title: ACM Comput. Surv. – volume: 1 start-page: 595 year: 2021 end-page: 606 ident: b128 article-title: Combating emerging financial risks in the big data era: A perspective review publication-title: Fundam. Res. – start-page: 1 year: 2022 end-page: 8 ident: b37 article-title: Graph neural networks for communication networks: Context, use cases and opportunities publication-title: IEEE Netw. – volume: 32 start-page: 9240 year: 2019 end-page: 9251 ident: b34 article-title: Gnnexplainer: Generating explanations for graph neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 2022 year: 2022 ident: b115 article-title: Using kernel method to include firm correlation for stock price prediction publication-title: Comput. Intell. Neurosci. – volume: 34 start-page: 249 year: 2022 end-page: 270 ident: b75 article-title: Deep learning on graphs: A survey publication-title: IEEE Trans. Knowl. Data Eng. – volume: 235 year: 2022 ident: b102 article-title: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks publication-title: Knowl.-Based Syst. – volume: 214 year: 2021 ident: b66 article-title: STGSN — A spatial–temporal graph neural network framework for time-evolving social networks publication-title: Knowl.-Based Syst. – year: 2022 ident: b118 article-title: HIST: A graph-based framework for stock trend forecasting via mining concept-oriented shared information – year: 2018 ident: b67 article-title: Relational inductive biases, deep learning, and graph networks – year: 2023 ident: b71 article-title: MapReduce for graphs processing: New big data algorithm for 2-edge connected components and future ideas – volume: Vol. 308 start-page: 446 year: 2022 end-page: 454 ident: b27 article-title: Ensemble learning based stock market prediction enhanced with sentiment analysis publication-title: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation – volume: 260 year: 2023 ident: b104 article-title: A disentangled linguistic graph model for explainable aspect-based sentiment analysis publication-title: Knowl.-Based Syst. – volume: 11 start-page: 194 year: 2023 end-page: 204 ident: b106 article-title: Public sentiment analysis of social security emergencies based on feature fusion model of BERT and TextLevelGCN publication-title: JCC – start-page: 95 year: 2022 end-page: 110 ident: b12 article-title: Exploring graph neural networks for stock market prediction on the JSE, artificial intelligence research publication-title: Communications in Computer and Information Science – volume: 12 year: 2022 ident: b89 article-title: Transformer-based graph convolutional network for sentiment analysis publication-title: Appl. Sci. – volume: vol. 907 year: 2021 ident: b38 article-title: Machine learning algorithms for industrial applications publication-title: Studies in Computational Intelligence – reference: Q. Chen, C.-Y. Robert, Multivariate Realized Volatility Forecasting with Graph Neural Network, in: Proceedings of the Third ACM International Conference on AI in Finance, 2022, pp. 156–164, – start-page: 2331 year: 2020 end-page: 2341 ident: b74 article-title: MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding publication-title: Proceedings of the Web Conference 2020 – volume: 1 start-page: 57 year: 2020 end-page: 81 ident: b47 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open – volume: 47 year: 2020 ident: b56 article-title: Automated seismic source characterization using deep graph neural networks publication-title: Geophys. Res. Lett. – year: 2022 ident: b70 article-title: Teaching yourself: Graph self-distillation on neighborhood for node classification – year: 2021 ident: b112 article-title: Spectral temporal graph neural network for multivariate time-series forecasting – volume: 46 start-page: 10927 year: 2021 end-page: 10932 ident: b31 article-title: Graph neural network: Current state of art, challenges and applications publication-title: Mater. Today: Proc. – volume: 14 start-page: 1039 year: 2022 end-page: 1054 ident: b98 article-title: Social media sentiment analysis based on dependency graph and co-occurrence graph publication-title: Cogn. Comput. – volume: 4 year: 2022 ident: b99 article-title: Implicit sentiment analysis based on graph attention neural network publication-title: Eng. Rep. – reference: M. Fan, et al., Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning, in: 2019 IEEE/ACM 41st International Conference on Software Engineering , (ICSE), 2019, pp. 771–782, – volume: 12 start-page: 92 year: 2022 ident: b3 article-title: Effect of public sentiment on stock market movement prediction during the COVID-19 outbreak publication-title: Soc. Netw. Anal. Min. – year: 2019 ident: b55 article-title: Revisiting graph neural networks: All we have is low-pass filters – start-page: 19620 year: 2020 end-page: 19631 ident: b78 article-title: Parameterized explainer for graph neural network publication-title: Proceedings of the 34th International Conference on Neural Information Processing Systems – volume: 214 start-page: 786 year: 2022 end-page: 792 ident: b49 article-title: Research on graph neural network in stock market publication-title: Procedia Comput. Sci. – volume: 8 start-page: 714 year: 1997 end-page: 735 ident: b72 article-title: Supervised neural networks for the classification of structures publication-title: IEEE Trans. Neural Netw. – year: 2018 ident: b80 article-title: Social Network Analytics: Computational Research Methods and Techniques – volume: 9 start-page: 79143 year: 2021 end-page: 79168 ident: b44 article-title: Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey publication-title: IEEE Access – year: 2023 ident: b86 article-title: Differential equation and probability inspired graph neural networks for latent variable learning – year: 2019 ident: b116 article-title: HATS: A hierarchical graph attention network for stock movement prediction – year: 2022 ident: b48 article-title: A review on graph neural network methods in financial applications – volume: 121 year: 2022 ident: b124 article-title: Financial time series forecasting with multi-modality graph neural network publication-title: Pattern Recognit. – volume: 42 start-page: 9603 year: 2015 end-page: 9611 ident: b125 article-title: Sentiment analysis on social media for stock movement prediction publication-title: Expert Syst. Appl. – start-page: 1365 year: 2015 end-page: 1374 ident: b76 article-title: Deep graph kernels publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – reference: D. Batabyal, D. Bandopadhyay, B. Sadhukhan, N. Das, S. Mukherjee, Exploring Stationarity and Fractality in Stock Market Time-series, in: 2023 International Conference on Intelligent Systems, Advanced Computing and Communication , (ISACC), 2023, pp. 1–6, – year: 2023 ident: b7 article-title: An efficient LSTM-based deep learning model for stock prediction analytics and real-time visualization – start-page: 2238 year: 2022 end-page: 2245 ident: b101 article-title: Aspect-based sentiment analysis with graph convolutional networks over dependency awareness publication-title: Presented At the 2022 26th International Conference on Pattern Recognition – reference: X. Yin, D. Yan, A. Almudaifer, S. Yan, Y. Zhou, Forecasting Stock Prices Using Stock Correlation Graph: A Graph Convolutional Network Approach, in: 2021 International Joint Conference on Neural Networks , (IJCNN), 2021, pp. 1–8, – reference: W. Li, R. Bao, K. Harimoto, D. Chen, J. Xu, Q. Su, Modeling the stock relation with graph network for overnight stock movement prediction, in: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, Yokohama, Yokohama, Japan, 2021, pp. 4541–4547. – year: 2022 ident: b69 article-title: A review of knowledge graph and graph neural network application publication-title: Proceedings of the 16th Economics & Finance Conference, Prague – start-page: 3518 year: 2019 end-page: 3527 ident: b96 article-title: Tree communication models for sentiment analysis publication-title: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics – volume: 2023 year: 2023 ident: b60 article-title: Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence publication-title: Int. J. Intell. Syst. – volume: 145 year: 2023 ident: b123 article-title: A knowledge graph–GCN–community detection integrated model for large-scale stock price prediction publication-title: Appl. Soft Comput. – volume: 50 start-page: 723 year: 2014 end-page: 762 ident: b126 article-title: Sentiment analysis of short informal texts publication-title: Jair – year: 2021 ident: b5 article-title: Stock market prediction using deep learning algorithms publication-title: CAAI Trans. Intell. Technol. – volume: 4 start-page: 375 year: 2010 end-page: 378 ident: b2 article-title: Trading strategies to exploit blog and news sentiment publication-title: ICWSM – volume: 6 start-page: 11 year: 2019 ident: b40 article-title: Graph convolutional networks: a comprehensive review publication-title: Comput. Soc. Netw. – volume: 121 year: 2022 ident: b15 article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation publication-title: Pattern Recognit. – year: 2023 ident: b35 article-title: Generalizing graph neural network across graphs and time publication-title: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining – volume: 55 start-page: 97:1 year: 2022 end-page: 97:37 ident: b62 article-title: Graph neural networks in recommender systems: A survey publication-title: ACM Comput. Surv. – volume: 34 start-page: 4322 year: 2022 end-page: 4334 ident: b110 article-title: Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points publication-title: J. King Saud Univ. - Comput. Inf. Sci. – volume: 39 start-page: 816 year: 2023 end-page: 822 ident: b10 article-title: Predicting stock trend using GNN publication-title: HSET – start-page: 508 year: 2021 end-page: 518 ident: b94 article-title: Aspect based sentiment analysis using spectral temporal graph neural network publication-title: National Institute of Technology Silchar – year: 2023 ident: b26 article-title: Finxabsa: Explainable finance through aspect-based sentiment analysis – year: 2019 ident: b11 article-title: Exploring graph neural networks for stock market predictions with rolling window analysis – reference: J. Ye, J. Zhao, K. Ye, C. Xu, Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction, in: 2020 25th International Conference on Pattern Recognition, (ICPR), 2021, pp. 6702–6709, – year: 2022 ident: b52 article-title: Geodesic graph neural network for efficient graph representation learning – year: 2022 ident: b68 article-title: When do we need GNN for node classification? – start-page: 723 year: 2019 end-page: 731 ident: b54 article-title: Graph convolutional networks with EigenPooling publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – reference: J. Li, et al., Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 735–744, – volume: 556 start-page: 67 year: 2021 end-page: 94 ident: b109 article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction publication-title: Inform. Sci. – year: 2023 ident: b9 article-title: ChatGPT informed graph neural network for stock movement prediction publication-title: SSRN J. – start-page: 19314 year: 2020 end-page: 19326 ident: b43 article-title: Iterative deep graph learning for graph neural networks: Better and robust node embeddings publication-title: Advances in Neural Information Processing Systems – volume: 11 year: 2020 ident: b87 article-title: A novel method for Twitter sentiment analysis based on attentional-graph neural network publication-title: Information – volume: 2019 year: 2019 ident: b120 article-title: Anticipating stock market of the renowned companies: A knowledge graph approach publication-title: Complexity – start-page: 1655 year: 2018 end-page: 1658 ident: b14 article-title: Incorporating corporation relationship via graph convolutional neural networks for stock price prediction publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management – start-page: 395 year: 2018 end-page: 398 ident: b20 article-title: Fractality and stationarity analysis on stock market publication-title: 2018 International Conference on Advances in Computing, Communication Control and Networking – volume: 8 year: 2022 ident: b23 article-title: A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis publication-title: PeerJ Comput. Sci. – volume: 8 start-page: 1015 year: 2021 end-page: 1024 ident: b108 article-title: ST-trader: A spatial-temporal deep neural network for modeling stock market movement publication-title: IEEE/CAA J. Autom. Sin. – volume: 92 year: 2021 ident: b88 article-title: Multi-level graph neural network for text sentiment analysis publication-title: Comput. Electr. Eng. – volume: 12 year: 2021 ident: b36 article-title: Graph neural networks and their current applications in bioinformatics publication-title: Front. Genet. – volume: 589 start-page: 416 year: 2022 end-page: 439 ident: b90 article-title: Convolutional attention neural network over graph structures for improving the performance of aspect-level sentiment analysis publication-title: Inform. Sci. – volume: 8 year: 2018 ident: b22 article-title: Deep learning for sentiment analysis: A survey publication-title: WIREs Data Min. Knowl. Discov. – volume: 36 start-page: 9251 year: 2022 end-page: 9259 ident: b53 article-title: Structural landmarking and interaction modelling: A ‘slim’ network for graph classification publication-title: AAAI – volume: 10 start-page: 3317 year: 2022 ident: b81 article-title: Dual-channel interactive graph convolutional networks for aspect-level sentiment analysis publication-title: Mathematics – volume: 12 start-page: 5931 year: 2022 ident: b51 article-title: MBHAN: Motif-based heterogeneous graph attention network publication-title: Appl. Sci. – volume: 18 start-page: 16:1 year: 2023 end-page: 16:29 ident: b122 article-title: A dynamic attributes-driven graph attention network modeling on behavioral finance for stock prediction publication-title: ACM Trans. Knowl. Discov. Data – volume: 32 start-page: 4 year: 2021 end-page: 24 ident: b63 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: . – volume: 12 start-page: 9521 year: 2021 end-page: 9534 ident: b29 article-title: Stock prediction and mutual fund portfolio management using curve fitting techniques publication-title: J. Ambient Intell. Hum. Comput. – year: 2022 ident: b39 article-title: Graph Neural Networks: Foundations, Frontiers, and Applications – volume: 10 start-page: 345 year: 2022 end-page: 360 ident: b42 article-title: A review of graph neural networks and their applications in power systems publication-title: J. Mod. Power Syst. Clean Energy – volume: 217 year: 2023 ident: b93 article-title: MSRL-net: A multi-level semantic relation-enhanced learning network for aspect-based sentiment analysis publication-title: Expert Syst. Appl. – year: 2023 ident: b6 article-title: A knowledge enhanced graph convolutional network for aspect-based sentiment analysis – volume: 81 start-page: 43753 year: 2022 end-page: 43775 ident: b8 article-title: A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion publication-title: Multimed Tools Appl. – volume: 91 start-page: 515 year: 2023 end-page: 528 ident: b121 article-title: Multi-source aggregated classification for stock price movement prediction publication-title: Inf. Fusion – volume: 23 year: 2022 ident: b57 article-title: Graph representation learning in bioinformatics: trends, methods and applications publication-title: Brief. Bioinform. – year: 2018 ident: b83 article-title: How powerful are graph neural networks? – start-page: 799 year: 2020 end-page: 810 ident: b105 article-title: Syntax-aware graph attention network for aspect-level sentiment classification publication-title: Proceedings of the 28th International Conference on Computational Linguistics – ident: 10.1016/j.dajour.2024.100417_b17 doi: 10.1109/IJCNN52387.2021.9533510 – year: 2019 ident: 10.1016/j.dajour.2024.100417_b55 – ident: 10.1016/j.dajour.2024.100417_b113 doi: 10.1145/3533271.3561663 – volume: 42 start-page: 9603 issue: 24 year: 2015 ident: 10.1016/j.dajour.2024.100417_b125 article-title: Sentiment analysis on social media for stock movement prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.07.052 – ident: 10.1016/j.dajour.2024.100417_b79 – year: 2022 ident: 10.1016/j.dajour.2024.100417_b39 – year: 2023 ident: 10.1016/j.dajour.2024.100417_b86 – start-page: 1655 year: 2018 ident: 10.1016/j.dajour.2024.100417_b14 article-title: Incorporating corporation relationship via graph convolutional neural networks for stock price prediction – ident: 10.1016/j.dajour.2024.100417_b41 doi: 10.1109/ICSE.2019.00085 – volume: 214 year: 2021 ident: 10.1016/j.dajour.2024.100417_b66 article-title: STGSN — A spatial–temporal graph neural network framework for time-evolving social networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106746 – volume: 10 start-page: 403 issue: 1 year: 2023 ident: 10.1016/j.dajour.2024.100417_b100 article-title: Aspect-based sentiment analysis with heterogeneous graph neural network publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2022.3148866 – volume: 1 start-page: 595 issue: 5 year: 2021 ident: 10.1016/j.dajour.2024.100417_b128 article-title: Combating emerging financial risks in the big data era: A perspective review publication-title: Fundam. Res. doi: 10.1016/j.fmre.2021.08.017 – start-page: 4884 year: 2019 ident: 10.1016/j.dajour.2024.100417_b85 article-title: Reviews meet graphs: Enhancing user and item representations for recommendation with hierarchical attentive graph neural network – volume: 589 start-page: 416 year: 2022 ident: 10.1016/j.dajour.2024.100417_b90 article-title: Convolutional attention neural network over graph structures for improving the performance of aspect-level sentiment analysis publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.12.127 – volume: 235 year: 2022 ident: 10.1016/j.dajour.2024.100417_b102 article-title: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107643 – year: 2018 ident: 10.1016/j.dajour.2024.100417_b80 – year: 2021 ident: 10.1016/j.dajour.2024.100417_b112 – year: 2023 ident: 10.1016/j.dajour.2024.100417_b26 – volume: 12 year: 2021 ident: 10.1016/j.dajour.2024.100417_b36 article-title: Graph neural networks and their current applications in bioinformatics publication-title: Front. Genet. – volume: Vol. 308 start-page: 446 year: 2022 ident: 10.1016/j.dajour.2024.100417_b27 article-title: Ensemble learning based stock market prediction enhanced with sentiment analysis – volume: 185 start-page: 40 year: 2022 ident: 10.1016/j.dajour.2024.100417_b59 article-title: Graph-based deep learning for communication networks: A survey publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.12.015 – start-page: 1183 year: 2021 ident: 10.1016/j.dajour.2024.100417_b77 article-title: Graph neural network (GNN) in image and video understanding using deep learning for computer vision applications – year: 2017 ident: 10.1016/j.dajour.2024.100417_b82 – year: 2018 ident: 10.1016/j.dajour.2024.100417_b83 – volume: 62 start-page: 1139 issue: 3 year: 2007 ident: 10.1016/j.dajour.2024.100417_b25 article-title: Giving content to investor sentiment: The role of media in the stock market publication-title: J. Finance doi: 10.1111/j.1540-6261.2007.01232.x – volume: 2022 year: 2022 ident: 10.1016/j.dajour.2024.100417_b115 article-title: Using kernel method to include firm correlation for stock price prediction publication-title: Comput. Intell. Neurosci. – ident: 10.1016/j.dajour.2024.100417_b64 doi: 10.1002/cpe.7827 – year: 2023 ident: 10.1016/j.dajour.2024.100417_b6 – volume: 11 start-page: 194 issue: 05 year: 2023 ident: 10.1016/j.dajour.2024.100417_b106 article-title: Public sentiment analysis of social security emergencies based on feature fusion model of BERT and TextLevelGCN publication-title: JCC doi: 10.4236/jcc.2023.115014 – volume: 91 start-page: 515 year: 2023 ident: 10.1016/j.dajour.2024.100417_b121 article-title: Multi-source aggregated classification for stock price movement prediction publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.10.025 – start-page: 508 year: 2021 ident: 10.1016/j.dajour.2024.100417_b94 article-title: Aspect based sentiment analysis using spectral temporal graph neural network – volume: 9 start-page: 79143 year: 2021 ident: 10.1016/j.dajour.2024.100417_b44 article-title: Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3082932 – volume: 607 start-page: 783 year: 2022 ident: 10.1016/j.dajour.2024.100417_b111 article-title: HGNN: Hierarchical graph neural network for predicting the classification of price-limit-hitting stocks publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.06.010 – year: 2018 ident: 10.1016/j.dajour.2024.100417_b67 – volume: 51 start-page: 628 issue: 3 year: 2021 ident: 10.1016/j.dajour.2024.100417_b107 article-title: A graph-based convolutional neural network stock price prediction with leading indicators publication-title: Softw. - Pract. Exp. doi: 10.1002/spe.2915 – year: 2019 ident: 10.1016/j.dajour.2024.100417_b116 – start-page: 95 year: 2022 ident: 10.1016/j.dajour.2024.100417_b12 article-title: Exploring graph neural networks for stock market prediction on the JSE, artificial intelligence research doi: 10.1007/978-3-030-95070-5_7 – year: 2015 ident: 10.1016/j.dajour.2024.100417_b24 – year: 2023 ident: 10.1016/j.dajour.2024.100417_b117 – volume: 23 issue: 1 year: 2022 ident: 10.1016/j.dajour.2024.100417_b57 article-title: Graph representation learning in bioinformatics: trends, methods and applications publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab340 – start-page: 5679 year: 2019 ident: 10.1016/j.dajour.2024.100417_b92 article-title: Aspect-level sentiment analysis via convolution over dependency tree – year: 2017 ident: 10.1016/j.dajour.2024.100417_b65 article-title: Attention is all you need – year: 2017 ident: 10.1016/j.dajour.2024.100417_b50 – volume: 10 start-page: 17078 year: 2022 ident: 10.1016/j.dajour.2024.100417_b30 article-title: Framework for deep learning-based language models using multi-task learning in natural language understanding: A systematic literature review and future directions publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149798 – volume: 10 start-page: 3317 issue: 18 year: 2022 ident: 10.1016/j.dajour.2024.100417_b81 article-title: Dual-channel interactive graph convolutional networks for aspect-level sentiment analysis publication-title: Mathematics doi: 10.3390/math10183317 – ident: 10.1016/j.dajour.2024.100417_b18 doi: 10.24963/ijcai.2020/626 – volume: 36 start-page: 9251 issue: 8 year: 2022 ident: 10.1016/j.dajour.2024.100417_b53 article-title: Structural landmarking and interaction modelling: A ‘slim’ network for graph classification publication-title: AAAI doi: 10.1609/aaai.v36i8.20912 – year: 2021 ident: 10.1016/j.dajour.2024.100417_b5 article-title: Stock market prediction using deep learning algorithms publication-title: CAAI Trans. Intell. Technol. – volume: 18 start-page: 16:1 issue: 1 year: 2023 ident: 10.1016/j.dajour.2024.100417_b122 article-title: A dynamic attributes-driven graph attention network modeling on behavioral finance for stock prediction publication-title: ACM Trans. Knowl. Discov. Data – ident: 10.1016/j.dajour.2024.100417_b84 doi: 10.1145/3340531.3411893 – ident: 10.1016/j.dajour.2024.100417_b28 doi: 10.2139/ssrn.153669 – year: 2023 ident: 10.1016/j.dajour.2024.100417_b129 – year: 2023 ident: 10.1016/j.dajour.2024.100417_b9 article-title: ChatGPT informed graph neural network for stock movement prediction publication-title: SSRN J. – year: 2022 ident: 10.1016/j.dajour.2024.100417_b52 – volume: 12 issue: 3 year: 2022 ident: 10.1016/j.dajour.2024.100417_b89 article-title: Transformer-based graph convolutional network for sentiment analysis publication-title: Appl. Sci. doi: 10.3390/app12031316 – year: 2014 ident: 10.1016/j.dajour.2024.100417_b73 – volume: 104 start-page: 272 issue: 2 year: 2012 ident: 10.1016/j.dajour.2024.100417_b21 article-title: Global, local, and contagious investor sentiment publication-title: J. Financ. Econ. doi: 10.1016/j.jfineco.2011.11.002 – volume: 121 year: 2022 ident: 10.1016/j.dajour.2024.100417_b124 article-title: Financial time series forecasting with multi-modality graph neural network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108218 – volume: 12 start-page: 5931 issue: 12 year: 2022 ident: 10.1016/j.dajour.2024.100417_b51 article-title: MBHAN: Motif-based heterogeneous graph attention network publication-title: Appl. Sci. doi: 10.3390/app12125931 – year: 2023 ident: 10.1016/j.dajour.2024.100417_b71 – volume: vol. 907 year: 2021 ident: 10.1016/j.dajour.2024.100417_b38 article-title: Machine learning algorithms for industrial applications – year: 2023 ident: 10.1016/j.dajour.2024.100417_b58 article-title: Computing graph neural networks: A survey from algorithms to accelerators publication-title: ACM Comput. Surv. – start-page: 2331 year: 2020 ident: 10.1016/j.dajour.2024.100417_b74 article-title: MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding – volume: 34 start-page: 249 issue: 1 year: 2022 ident: 10.1016/j.dajour.2024.100417_b75 article-title: Deep learning on graphs: A survey publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2981333 – start-page: 779 year: 2021 ident: 10.1016/j.dajour.2024.100417_b61 article-title: Learning to drop: Robust graph neural network via topological denoising – volume: 46 start-page: 10927 year: 2021 ident: 10.1016/j.dajour.2024.100417_b31 article-title: Graph neural network: Current state of art, challenges and applications publication-title: Mater. Today: Proc. – start-page: 395 year: 2018 ident: 10.1016/j.dajour.2024.100417_b20 article-title: Fractality and stationarity analysis on stock market – volume: 14 start-page: 29 issue: 1 year: 2024 ident: 10.1016/j.dajour.2024.100417_b4 article-title: Integrating EEMD and ensemble CNN with x (Twitter) sentiment for enhanced stock price predictions publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-023-01190-w – start-page: 8142 year: 2021 ident: 10.1016/j.dajour.2024.100417_b33 article-title: Deep attention diffusion graph neural networks for text classification – volume: 2 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.dajour.2024.100417_b1 article-title: Twitter mood predicts the stock market publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2010.12.007 – volume: 32 start-page: 4 issue: 1 year: 2021 ident: 10.1016/j.dajour.2024.100417_b32 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – year: 2022 ident: 10.1016/j.dajour.2024.100417_b70 – start-page: 723 year: 2019 ident: 10.1016/j.dajour.2024.100417_b54 article-title: Graph convolutional networks with EigenPooling – volume: 6 start-page: 11 issue: 1 year: 2019 ident: 10.1016/j.dajour.2024.100417_b40 article-title: Graph convolutional networks: a comprehensive review publication-title: Comput. Soc. Netw. doi: 10.1186/s40649-019-0069-y – volume: 10 start-page: 345 issue: 2 year: 2022 ident: 10.1016/j.dajour.2024.100417_b42 article-title: A review of graph neural networks and their applications in power systems publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2021.000058 – ident: 10.1016/j.dajour.2024.100417_b16 doi: 10.1109/ICPR48806.2021.9412695 – start-page: 799 year: 2020 ident: 10.1016/j.dajour.2024.100417_b105 article-title: Syntax-aware graph attention network for aspect-level sentiment classification – year: 2022 ident: 10.1016/j.dajour.2024.100417_b68 – volume: 4 start-page: 375 issue: 1 year: 2010 ident: 10.1016/j.dajour.2024.100417_b2 article-title: Trading strategies to exploit blog and news sentiment publication-title: ICWSM doi: 10.1609/icwsm.v4i1.14075 – year: 2019 ident: 10.1016/j.dajour.2024.100417_b11 – year: 2022 ident: 10.1016/j.dajour.2024.100417_b118 – volume: 8 year: 2022 ident: 10.1016/j.dajour.2024.100417_b23 article-title: A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1158 – ident: 10.1016/j.dajour.2024.100417_b97 doi: 10.1109/AEECA52519.2021.9574275 – volume: 39 start-page: 816 year: 2023 ident: 10.1016/j.dajour.2024.100417_b10 article-title: Predicting stock trend using GNN publication-title: HSET doi: 10.54097/hset.v39i.6649 – volume: 11 issue: 2 year: 2020 ident: 10.1016/j.dajour.2024.100417_b87 article-title: A novel method for Twitter sentiment analysis based on attentional-graph neural network publication-title: Information doi: 10.3390/info11020092 – volume: 10 start-page: 23497 year: 2022 ident: 10.1016/j.dajour.2024.100417_b95 article-title: Sentiment analysis of weibo comments based on graph neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3154107 – start-page: 2051 year: 2022 ident: 10.1016/j.dajour.2024.100417_b103 article-title: Discrete opinion tree induction for aspect-based sentiment analysis – start-page: 19314 year: 2020 ident: 10.1016/j.dajour.2024.100417_b43 article-title: Iterative deep graph learning for graph neural networks: Better and robust node embeddings – year: 2023 ident: 10.1016/j.dajour.2024.100417_b7 – volume: 55 start-page: 97:1 issue: 5 year: 2022 ident: 10.1016/j.dajour.2024.100417_b62 article-title: Graph neural networks in recommender systems: A survey publication-title: ACM Comput. Surv. – volume: 214 start-page: 786 year: 2022 ident: 10.1016/j.dajour.2024.100417_b49 article-title: Research on graph neural network in stock market publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.11.242 – volume: 47 issue: 17 year: 2020 ident: 10.1016/j.dajour.2024.100417_b56 article-title: Automated seismic source characterization using deep graph neural networks publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL088690 – volume: 126 year: 2023 ident: 10.1016/j.dajour.2024.100417_b114 article-title: A representation-learning-based approach to predict stock price trend via dynamic spatiotemporal feature embedding publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106849 – volume: 1 start-page: 57 year: 2020 ident: 10.1016/j.dajour.2024.100417_b47 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – volume: 32 start-page: 9240 year: 2019 ident: 10.1016/j.dajour.2024.100417_b34 article-title: Gnnexplainer: Generating explanations for graph neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 1039 issue: 3 year: 2022 ident: 10.1016/j.dajour.2024.100417_b98 article-title: Social media sentiment analysis based on dependency graph and co-occurrence graph publication-title: Cogn. Comput. doi: 10.1007/s12559-022-10004-8 – volume: 12 start-page: 92 issue: 1 year: 2022 ident: 10.1016/j.dajour.2024.100417_b3 article-title: Effect of public sentiment on stock market movement prediction during the COVID-19 outbreak publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-022-00919-3 – ident: 10.1016/j.dajour.2024.100417_b13 doi: 10.1109/ICASSP49357.2023.10095381 – volume: 121 year: 2022 ident: 10.1016/j.dajour.2024.100417_b15 article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108119 – volume: 4 issue: 1 year: 2022 ident: 10.1016/j.dajour.2024.100417_b99 article-title: Implicit sentiment analysis based on graph attention neural network publication-title: Eng. Rep. – year: 2022 ident: 10.1016/j.dajour.2024.100417_b69 article-title: A review of knowledge graph and graph neural network application – volume: 8 issue: 4 year: 2018 ident: 10.1016/j.dajour.2024.100417_b22 article-title: Deep learning for sentiment analysis: A survey publication-title: WIREs Data Min. Knowl. Discov. – volume: 121 year: 2022 ident: 10.1016/j.dajour.2024.100417_b119 article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108119 – volume: 12 start-page: 9521 issue: 10 year: 2021 ident: 10.1016/j.dajour.2024.100417_b29 article-title: Stock prediction and mutual fund portfolio management using curve fitting techniques publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-020-02693-6 – start-page: 19620 year: 2020 ident: 10.1016/j.dajour.2024.100417_b78 article-title: Parameterized explainer for graph neural network – ident: 10.1016/j.dajour.2024.100417_b19 doi: 10.1109/ISACC56298.2023.10084056 – year: 2022 ident: 10.1016/j.dajour.2024.100417_b48 – volume: 145 year: 2023 ident: 10.1016/j.dajour.2024.100417_b123 article-title: A knowledge graph–GCN–community detection integrated model for large-scale stock price prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110595 – start-page: 1365 year: 2015 ident: 10.1016/j.dajour.2024.100417_b76 article-title: Deep graph kernels – volume: 92 year: 2021 ident: 10.1016/j.dajour.2024.100417_b88 article-title: Multi-level graph neural network for text sentiment analysis publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107096 – start-page: 3518 year: 2019 ident: 10.1016/j.dajour.2024.100417_b96 article-title: Tree communication models for sentiment analysis – start-page: 3229 year: 2020 ident: 10.1016/j.dajour.2024.100417_b91 article-title: Relational graph attention network for aspect-based sentiment analysis – volume: 217 year: 2023 ident: 10.1016/j.dajour.2024.100417_b93 article-title: MSRL-net: A multi-level semantic relation-enhanced learning network for aspect-based sentiment analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119492 – volume: 81 start-page: 43753 issue: 30 year: 2022 ident: 10.1016/j.dajour.2024.100417_b8 article-title: A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion publication-title: Multimed Tools Appl. doi: 10.1007/s11042-022-13231-1 – volume: 22 issue: 19 year: 2022 ident: 10.1016/j.dajour.2024.100417_b45 article-title: A graph-neural-network-based social network recommendation algorithm using high-order neighbor information publication-title: Sensors doi: 10.3390/s22197122 – volume: 8 start-page: 714 issue: 3 year: 1997 ident: 10.1016/j.dajour.2024.100417_b72 article-title: Supervised neural networks for the classification of structures publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.572108 – volume: 8 start-page: 1015 issue: 5 year: 2021 ident: 10.1016/j.dajour.2024.100417_b108 article-title: ST-trader: A spatial-temporal deep neural network for modeling stock market movement publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1003976 – volume: 34 start-page: 4322 issue: 7 year: 2022 ident: 10.1016/j.dajour.2024.100417_b110 article-title: Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points publication-title: J. King Saud Univ. - Comput. Inf. Sci. – volume: 2023 year: 2023 ident: 10.1016/j.dajour.2024.100417_b60 article-title: Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence publication-title: Int. J. Intell. Syst. doi: 10.1155/2023/8342104 – volume: 556 start-page: 67 year: 2021 ident: 10.1016/j.dajour.2024.100417_b109 article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.12.068 – start-page: 1 year: 2022 ident: 10.1016/j.dajour.2024.100417_b37 article-title: Graph neural networks for communication networks: Context, use cases and opportunities publication-title: IEEE Netw. – year: 2023 ident: 10.1016/j.dajour.2024.100417_b35 article-title: Generalizing graph neural network across graphs and time – volume: 32 start-page: 4 issue: 1 year: 2021 ident: 10.1016/j.dajour.2024.100417_b63 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – volume: 2019 year: 2019 ident: 10.1016/j.dajour.2024.100417_b120 article-title: Anticipating stock market of the renowned companies: A knowledge graph approach publication-title: Complexity doi: 10.1155/2019/9202457 – volume: 139 year: 2023 ident: 10.1016/j.dajour.2024.100417_b46 article-title: Fake news detection: A survey of graph neural network methods publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110235 – start-page: 2238 year: 2022 ident: 10.1016/j.dajour.2024.100417_b101 article-title: Aspect-based sentiment analysis with graph convolutional networks over dependency awareness – volume: 260 year: 2023 ident: 10.1016/j.dajour.2024.100417_b104 article-title: A disentangled linguistic graph model for explainable aspect-based sentiment analysis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110150 – volume: 267 year: 2023 ident: 10.1016/j.dajour.2024.100417_b127 article-title: The data-based adaptive graph learning network for analysis and prediction of offshore wind speed publication-title: Energy doi: 10.1016/j.energy.2022.126590 – volume: 50 start-page: 723 year: 2014 ident: 10.1016/j.dajour.2024.100417_b126 article-title: Sentiment analysis of short informal texts publication-title: Jair doi: 10.1613/jair.4272 |
SSID | ssj0002811303 |
Score | 2.3801463 |
SecondaryResourceType | review_article |
Snippet | There has been significant interest in integrating sentiment analysis with graph neural networks (GNNs) for stock prediction tasks. This article thoroughly... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100417 |
SubjectTerms | Graph neural networks Market sentiment Sentiment analysis Stock prediction |
Title | Integrating sentiment analysis with graph neural networks for enhanced stock prediction: A comprehensive survey |
URI | https://dx.doi.org/10.1016/j.dajour.2024.100417 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKcIEDYhXDMvKBG0qVzY7DrQygAakc6Iw0t8h2HKXpKDNqUiQ4cON_87ylKZRtLlZlxXbq98V-efneZ4Re0FJQEeY8IEzkQVqpKOCERUEmKWxYVcgjw3aff6QnZ-mHc3I-mXwfsZY2vZjKr3vzSq5jVagDu-os2f-w7NApVMBvsC-UYGEo_8nG753Wg4kJaNqPY4w7nRETYzWK1C-1bCUYo7Wk784Kfbe1_fwP_p9cabWAcik912NmyOZrVTuCe7dZf979BPzGnc5jxzNqz-ObNtHvzi7gQmtsDOv_gpf1ZlXbyOvr5Yp3Q0j6uDZyn41lB33iTanU1W8YCAvef-HNsh_HLeJ0S9yywTSfULPD94zB2Q8otanKU7Wnzi_a4d7134YiGhhV_-OpHlfzQFKbH_qTsvZC96w71jxa8HWSG-imrtIHYcy_bUN1MYv0Tq-PKfS34pMwDVPw18H2Ozkjx-X0Lrrj3jjwzMLnHpqo9j66PR_kersH6HIEJDwACXsgYQ0kbICELZCwBxIGIGEPJGyAhLdAeoVneAdG2MLoITp79_b0-CRwJ3EEMs7jLOCUk5ISeHYVr3LJCcl4mFTgaitKRJwJUcmIlVGmchXCFQzeUhOSwG6oGFMlSx6hg_ayVY8RFoomGVGS8VSkFatYWGVUJlBUcVbm_BAlfuoK6WTq9WkpF4XnIzaFnfBCT3hhJ_wQBUOrKyvT8pfrM2-Vwrma1oUsAEl_bPnk2i2folvb5-AZOujXG_UcPNpeHJlI0JFB3Q-Slamq |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+sentiment+analysis+with+graph+neural+networks+for+enhanced+stock+prediction%3A+A+comprehensive+survey&rft.jtitle=Decision+analytics+journal&rft.au=Das%2C+Nabanita&rft.au=Sadhukhan%2C+Bikash&rft.au=Chatterjee%2C+Rajdeep&rft.au=Chakrabarti%2C+Satyajit&rft.date=2024-03-01&rft.pub=Elsevier+Inc&rft.issn=2772-6622&rft.eissn=2772-6622&rft.volume=10&rft_id=info:doi/10.1016%2Fj.dajour.2024.100417&rft.externalDocID=S2772662224000213 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-6622&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-6622&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-6622&client=summon |