An end-to-end pollution analysis and detection system using artificial intelligence and object detection algorithms

Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and environmental pollution for centuries, and many necessary steps have been taken. Modern solutions are being constantly developed to tackle these i...

Full description

Saved in:
Bibliographic Details
Published inDecision analytics journal Vol. 8; p. 100283
Main Authors Hossain, Md. Yearat, Nijhum, Ifran Rahman, Shad, Md. Tazin Morshed, Sadi, Abu Adnan, Peyal, Md. Mahmudul Kabir, Rahman, Rashedur M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and environmental pollution for centuries, and many necessary steps have been taken. Modern solutions are being constantly developed to tackle these issues efficiently. Visual pollution analysis and detection is a relatively less studied subject, even though it significantly impacts our daily lives. Building automatic pollution or pollutants detection systems has become increasingly popular due to the modern development of advanced artificial intelligence systems. Although some advances have been made, automated pollution detection is not well-researched or fully understood. This study demonstrates how various object detection models could identify such environmental pollutants and how end-to-end applications can analyze the findings. We trained our dataset on three popular object detection models, YOLOv5, Faster R-CNN (Region-based Convolutional Neural Network), and EfficientDet, and compared their performances. The best Mean Average Precision (mAP) score of 0.85 was achieved by the You Only Look Once (YOLOv5) model using its inbuilt augmentation techniques. Then we built a minimal Android application, using which volunteers or authorities could capture and send images along with their Global Positioning System (GPS) coordinates that might contain visual pollutants. These images and coordinates are stored in the cloud and later used by our local server. The local server utilizes the best-trained visual pollution detection model. It generates heat maps of particular locations, visualizing the condition of visual pollution based on the data stored in the cloud. Along with the heat map, our analysis system provides visual analytics like bar charts and pie charts to summarize a region’s condition. In addition, we used Active Learning and Incremental Learning methods to utilize the newly collected dataset by building a semi-autonomous annotation and model upgrading system. This also addresses the data scarcity problem associated with further research on visual pollution. •Visual pollution control does not utilize machine learning & intelligent systems.•Visual pollution analysis and detection is a relatively less studied subject.•We study visual pollution detection using 3 ML models & build an end-to-end system.•The system is used to analyze the condition of pollution in a geospatial manner.•Active & Incremental learning is used in developing a sustainable & scalable system.
AbstractList Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and environmental pollution for centuries, and many necessary steps have been taken. Modern solutions are being constantly developed to tackle these issues efficiently. Visual pollution analysis and detection is a relatively less studied subject, even though it significantly impacts our daily lives. Building automatic pollution or pollutants detection systems has become increasingly popular due to the modern development of advanced artificial intelligence systems. Although some advances have been made, automated pollution detection is not well-researched or fully understood. This study demonstrates how various object detection models could identify such environmental pollutants and how end-to-end applications can analyze the findings. We trained our dataset on three popular object detection models, YOLOv5, Faster R-CNN (Region-based Convolutional Neural Network), and EfficientDet, and compared their performances. The best Mean Average Precision (mAP) score of 0.85 was achieved by the You Only Look Once (YOLOv5) model using its inbuilt augmentation techniques. Then we built a minimal Android application, using which volunteers or authorities could capture and send images along with their Global Positioning System (GPS) coordinates that might contain visual pollutants. These images and coordinates are stored in the cloud and later used by our local server. The local server utilizes the best-trained visual pollution detection model. It generates heat maps of particular locations, visualizing the condition of visual pollution based on the data stored in the cloud. Along with the heat map, our analysis system provides visual analytics like bar charts and pie charts to summarize a region’s condition. In addition, we used Active Learning and Incremental Learning methods to utilize the newly collected dataset by building a semi-autonomous annotation and model upgrading system. This also addresses the data scarcity problem associated with further research on visual pollution. •Visual pollution control does not utilize machine learning & intelligent systems.•Visual pollution analysis and detection is a relatively less studied subject.•We study visual pollution detection using 3 ML models & build an end-to-end system.•The system is used to analyze the condition of pollution in a geospatial manner.•Active & Incremental learning is used in developing a sustainable & scalable system.
ArticleNumber 100283
Author Hossain, Md. Yearat
Shad, Md. Tazin Morshed
Rahman, Rashedur M.
Sadi, Abu Adnan
Peyal, Md. Mahmudul Kabir
Nijhum, Ifran Rahman
Author_xml – sequence: 1
  givenname: Md. Yearat
  surname: Hossain
  fullname: Hossain, Md. Yearat
  organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh
– sequence: 2
  givenname: Ifran Rahman
  surname: Nijhum
  fullname: Nijhum, Ifran Rahman
  organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh
– sequence: 3
  givenname: Md. Tazin Morshed
  surname: Shad
  fullname: Shad, Md. Tazin Morshed
  organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh
– sequence: 4
  givenname: Abu Adnan
  orcidid: 0000-0002-6077-2438
  surname: Sadi
  fullname: Sadi, Abu Adnan
  organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh
– sequence: 5
  givenname: Md. Mahmudul Kabir
  surname: Peyal
  fullname: Peyal, Md. Mahmudul Kabir
  organization: Department of Electrical and Electronic Engineering, Brac University, Dhaka, Bangladesh
– sequence: 6
  givenname: Rashedur M.
  orcidid: 0000-0002-4514-6279
  surname: Rahman
  fullname: Rahman, Rashedur M.
  email: rashedur.rahman@northsouth.edu
  organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh
BookMark eNqFkE1LAzEQhoNUsNb-Aw_7B7bmo83uehBK8QsKXvQc0mS2ZkmTkqRC_73ZrofiQWFghpd5Bua5RiPnHSB0S_CMYMLvupmWnT-EGcWU5QjTml2gMa0qWnJO6ehsvkLTGDvc7xDCMBujuHQFOF0mX-ZW7L21h2S8K6ST9hhNzIMuNCRQpzgeY4JdcYjGbQsZkmmNMtIWxiWw1mzBKTghftNl5IyUduuDSZ-7eIMuW2kjTH_6BH08Pb6vXsr12_PrarkuFW0oK_VCgySqYZhyhjcNA97kYtDwms8p0VJBS5uqbeUC14piJRcUal0pyTVrazZB8-GuCj7GAK3YB7OT4SgIFr070YnBnejdicFdxu5_Ycok2f-QgjT2P_hhgCE_9mUgiKhML0WbkEUI7c3fB74Bc2aRnQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3513696
crossref_primary_10_1002_wer_11092
Cites_doi 10.1016/j.jenvman.2019.07.024
10.1126/sciadv.1400253
10.5539/ass.v7n5p98
10.1201/9781003005629-11
10.1093/biosci/biz088
10.1016/j.heliyon.2019.e02145
10.1016/j.scs.2021.102720
10.14415/konferencijaGFS2018.049
10.1109/CVPR42600.2020.01079
10.1016/j.watres.2019.04.054
10.3389/fenvs.2022.887446
10.3390/electronics10010014
10.1038/d41586-019-00669-x
10.1016/j.jenvp.2013.12.005
10.1073/pnas.1704949114
10.3390/su11082211
10.1016/j.aej.2022.07.039
10.1371/journal.pone.0227370
10.1109/5326.983933
10.1145/3472291
10.1016/j.cscee.2020.100026
10.1016/j.apr.2020.05.015
10.1016/j.scitotenv.2019.134279
10.1109/CVPR.2016.91
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.dajour.2023.100283
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2772-6622
ExternalDocumentID 10_1016_j_dajour_2023_100283
S2772662223001236
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c2923-d5dea1c9302630b93e69e693e9686421dacef297ffa508c20ca52e8d7ca6d3f83
ISSN 2772-6622
IngestDate Tue Jul 01 02:28:46 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Sat Sep 30 17:10:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Visual pollution
Pollution detection system
Data mining
Artificial intelligence
Environmental management
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2923-d5dea1c9302630b93e69e693e9686421dacef297ffa508c20ca52e8d7ca6d3f83
ORCID 0000-0002-6077-2438
0000-0002-4514-6279
OpenAccessLink http://dx.doi.org/10.1016/j.dajour.2023.100283
ParticipantIDs crossref_primary_10_1016_j_dajour_2023_100283
crossref_citationtrail_10_1016_j_dajour_2023_100283
elsevier_sciencedirect_doi_10_1016_j_dajour_2023_100283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Decision analytics journal
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tyrväinen, Ojala, Korpela, Lanki, Tsunetsugu, Kagawa (b10) 2014; 38
Deng, Dong, Socher, Li, Li, Fei-Fei (b34) 2009
Wibble, Södergård, Träisk, Pansell (b9) 2020; 15
ultralytics (b37) 2022
Settles (b41) 2009
Nawaz, Wakil (b4) 2022
Tian, Yu, Li, Ke, Liu, Luo, Tang (b16) 2022; 10
Nazerdeylami, Majidi, Movaghar (b25) 2019
Wu, Chen, Wang, Ye, Liu, Guo, Fu (b44) 2019
Ceballos, Ehrlich, Barnosky, García, Pringle, Palmer (b1) 2015; 1
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b40) 2014
Kundu, Maulik (b27) 2020
Gupta, Saxena, Dattaprakash, Sheriff, Chaudhari, Ullanat, Chayapathy (b15) 2021
Girshick, Donahue, Darrell, Malik (b31) 2014
Jeremy (b11) 2017; 390
Ye, Yang, Zhong, Tu, Jia, Wang (b22) 2020; 699
M. Cvetković, A. Momčilović-Petronijević, Visual pollution of the historical city core–a case study, the city of Niš, in: Proceedings of the 6th International Conference Contemporary Achievements in Civil Engineering, Subotica, Serbia, Vol. 20, 2018, pp. 495–504.
Polikar, Upda, Upda, Honavar (b43) 2001; 31
Ren, He, Girshick, Sun (b33) 2015; 28
Portella (b6) 2016
Nagle (b5) 2009; 23
Tasnim, Afrin, Biswas, Anye, Khan (b30) 2023; 62
Bindal, Singh (b17) 2019; 159
Panwar, Gupta, Siddiqui, Morales-Menendez, Bhardwaj, Sharma, Sarker (b24) 2020; 2
Girshick (b32) 2015
Chang, Chiao, Abimannan, Huang, Tsai, Lin (b18) 2020; 11
Wakil, Naeem, Anjum, Waheed, Thaheem, Hussnain, Nawaz (b7) 2019; 11
Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b42) 2021; 54
Hoang, Ky, Thuong, Nhan, Ngan (b21) 2022
Bakar, al Sharaa, Maulan, Munther (b28) 2019
Ripple, Wolf, Newsome, Barnard, Moomaw, Grandcolas (b3) 2019
Hou, Ok (b13) 2019; 566
Turner, Andersen, Baccarelli, Diver, Gapstur, Pope, Prada, Samet, Thurston, Cohen (b12) 2020; 70
Hasan, Shahriar, Jim (b14) 2019; 5
Tan, Le (b39) 2019; vol. 97
He, Zhang, Ren, Sun (b35) 2016
Ceballos, Ehrlich, Dirzo (b2) 2017; 114
Janarthanan, Partheeban, Somasundaram, Elamparithi (b26) 2021; 67
Ahmed, Islam, Tuba, Mahdy, Sujauddin (b19) 2019; 248
Yilmaz, Sagsöz (b8) 2011; 7
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
Hossain, Nijhum, Sadi, Shad, Rahman (b20) 2021
Kumar, Yadav, Gupta, Verma, Ansari, Ahn (b23) 2020; 10
M. Tan, R. Pang, Q.V. Le, Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10781–10790.
Ye (10.1016/j.dajour.2023.100283_b22) 2020; 699
Ren (10.1016/j.dajour.2023.100283_b33) 2015; 28
Portella (10.1016/j.dajour.2023.100283_b6) 2016
ultralytics (10.1016/j.dajour.2023.100283_b37) 2022
Nagle (10.1016/j.dajour.2023.100283_b5) 2009; 23
Kumar (10.1016/j.dajour.2023.100283_b23) 2020; 10
Bakar (10.1016/j.dajour.2023.100283_b28) 2019
Ceballos (10.1016/j.dajour.2023.100283_b1) 2015; 1
Ceballos (10.1016/j.dajour.2023.100283_b2) 2017; 114
Jeremy (10.1016/j.dajour.2023.100283_b11) 2017; 390
Nawaz (10.1016/j.dajour.2023.100283_b4) 2022
10.1016/j.dajour.2023.100283_b29
Nazerdeylami (10.1016/j.dajour.2023.100283_b25) 2019
Gupta (10.1016/j.dajour.2023.100283_b15) 2021
Polikar (10.1016/j.dajour.2023.100283_b43) 2001; 31
Hossain (10.1016/j.dajour.2023.100283_b20) 2021
Turner (10.1016/j.dajour.2023.100283_b12) 2020; 70
Deng (10.1016/j.dajour.2023.100283_b34) 2009
Ren (10.1016/j.dajour.2023.100283_b42) 2021; 54
Bindal (10.1016/j.dajour.2023.100283_b17) 2019; 159
Lin (10.1016/j.dajour.2023.100283_b40) 2014
Settles (10.1016/j.dajour.2023.100283_b41) 2009
Ahmed (10.1016/j.dajour.2023.100283_b19) 2019; 248
Girshick (10.1016/j.dajour.2023.100283_b32) 2015
Panwar (10.1016/j.dajour.2023.100283_b24) 2020; 2
Tyrväinen (10.1016/j.dajour.2023.100283_b10) 2014; 38
Hoang (10.1016/j.dajour.2023.100283_b21) 2022
Wu (10.1016/j.dajour.2023.100283_b44) 2019
Janarthanan (10.1016/j.dajour.2023.100283_b26) 2021; 67
Kundu (10.1016/j.dajour.2023.100283_b27) 2020
10.1016/j.dajour.2023.100283_b36
Wibble (10.1016/j.dajour.2023.100283_b9) 2020; 15
Hasan (10.1016/j.dajour.2023.100283_b14) 2019; 5
Tan (10.1016/j.dajour.2023.100283_b39) 2019; vol. 97
Chang (10.1016/j.dajour.2023.100283_b18) 2020; 11
10.1016/j.dajour.2023.100283_b38
Yilmaz (10.1016/j.dajour.2023.100283_b8) 2011; 7
Tian (10.1016/j.dajour.2023.100283_b16) 2022; 10
Ripple (10.1016/j.dajour.2023.100283_b3) 2019
Hou (10.1016/j.dajour.2023.100283_b13) 2019; 566
Tasnim (10.1016/j.dajour.2023.100283_b30) 2023; 62
Girshick (10.1016/j.dajour.2023.100283_b31) 2014
He (10.1016/j.dajour.2023.100283_b35) 2016
Wakil (10.1016/j.dajour.2023.100283_b7) 2019; 11
References_xml – volume: 54
  start-page: 1
  year: 2021
  end-page: 40
  ident: b42
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
– start-page: 374
  year: 2019
  end-page: 382
  ident: b44
  article-title: Large scale incremental learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 15
  year: 2020
  ident: b9
  article-title: Intensified visual clutter induces increased sympathetic signalling, poorer postural control, and faster torsional eye movements during visual rotation
  publication-title: PLoS One
– volume: 566
  start-page: 455
  year: 2019
  end-page: 456
  ident: b13
  article-title: Soil pollution — speed up global mapping
  publication-title: Nature
– volume: 67
  year: 2021
  ident: b26
  article-title: A deep learning approach for prediction of air quality index in a metropolitan city
  publication-title: Sustainable Cities Soc.
– volume: vol. 97
  start-page: 6105
  year: 2019
  end-page: 6114
  ident: b39
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– start-page: 1
  year: 2020
  end-page: 5
  ident: b27
  article-title: Vehicle pollution detection from images using deep learning
  publication-title: Intell. Enabled Res.: DoSIER 2019
– volume: 11
  start-page: 2211
  year: 2019
  ident: b7
  article-title: A hybrid tool for visual pollution assessment in urban environments
  publication-title: Sustainability
– volume: 70
  start-page: 460
  year: 2020
  end-page: 479
  ident: b12
  article-title: Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations
  publication-title: CA: Cancer J. Clin.
– volume: 31
  start-page: 497
  year: 2001
  end-page: 508
  ident: b43
  article-title: Learn++: An incremental learning algorithm for supervised neural networks
  publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.)
– volume: 7
  start-page: 98
  year: 2011
  ident: b8
  article-title: In the context of visual pollution: effects to trabzon city center silhoutte
  publication-title: Asian Soc. Sci.
– volume: 390
  start-page: 1345
  year: 2017
  end-page: 1422
  ident: b11
  article-title: Air pollution and brain health: an emerging issue
  publication-title: Lancet
– year: 2019
  ident: b28
  article-title: Measuring visual pollution threshold along kuala lumpur historic shopping district streets using cumulative area analysis
– year: 2016
  ident: b6
  article-title: Visual Pollution
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: b32
  article-title: Fast R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2009
  ident: b41
  article-title: Active Learning Literature Survey
– start-page: 248
  year: 2009
  end-page: 255
  ident: b34
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 114
  start-page: E6089
  year: 2017
  end-page: E6096
  ident: b2
  article-title: Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines
  publication-title: Proc. Natl. Acad. Sci.
– year: 2019
  ident: b3
  article-title: World scientists’ warning of a climate emergency
  publication-title: BioScience
– volume: 23
  start-page: 537
  year: 2009
  ident: b5
  article-title: Cell phone towers as visual pollution
  publication-title: Notre Dame JL Ethics Pub. Pol’Y
– volume: 10
  start-page: 810
  year: 2022
  ident: b16
  article-title: Prediction of river pollution under the rainfall-runoff impact by artificial neural network: A case study of shiyan river, shenzhen, China
  publication-title: Front. Environ. Sci.
– volume: 11
  start-page: 1451
  year: 2020
  end-page: 1463
  ident: b18
  article-title: An LSTM-based aggregated model for air pollution forecasting
  publication-title: Atmosp. Pollut. Res.
– start-page: 0433
  year: 2021
  end-page: 0440
  ident: b20
  article-title: Visual pollution detection using google street view and YOLO
  publication-title: 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
– volume: 5
  year: 2019
  ident: b14
  article-title: Water pollution in Bangladesh and its impact on public health
  publication-title: Heliyon
– start-page: 23
  year: 2022
  end-page: 43
  ident: b21
  article-title: Artificial intelligence in pollution control and management: Status and future prospects
  publication-title: Artif. Intell. Environ. Sustain.: Chall. Solut. Era Ind. 4.0
– volume: 38
  start-page: 1
  year: 2014
  end-page: 9
  ident: b10
  article-title: The influence of urban green environments on stress relief measures: A field experiment
  publication-title: J. Environ. Psychol.
– volume: 2
  year: 2020
  ident: b24
  article-title: AquaVision: Automating the detection of waste in water bodies using deep transfer learning
  publication-title: Case Stud. Chem. Environ. Eng.
– reference: M. Tan, R. Pang, Q.V. Le, Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10781–10790.
– volume: 159
  start-page: 65
  year: 2019
  end-page: 76
  ident: b17
  article-title: Predicting groundwater arsenic contamination: Regions at risk in highest populated state of India
  publication-title: Water Res.
– reference: M. Cvetković, A. Momčilović-Petronijević, Visual pollution of the historical city core–a case study, the city of Niš, in: Proceedings of the 6th International Conference Contemporary Achievements in Civil Engineering, Subotica, Serbia, Vol. 20, 2018, pp. 495–504.
– start-page: 580
  year: 2014
  end-page: 587
  ident: b31
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2022
  ident: b37
  article-title: Github.com/ultralytics/yolov5
– volume: 62
  start-page: 391
  year: 2023
  end-page: 402
  ident: b30
  article-title: Automatic classification of textile visual pollutants using deep learning networks
  publication-title: Alex. Eng. J.
– volume: 699
  year: 2020
  ident: b22
  article-title: Tackling environmental challenges in pollution controls using artificial intelligence: A review
  publication-title: Sci. Total Environ.
– volume: 28
  year: 2015
  ident: b33
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b35
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 1
  year: 2015
  ident: b1
  article-title: Accelerated modern human–induced species losses: Entering the sixth mass extinction
  publication-title: Sci. Adv.
– start-page: 740
  year: 2014
  end-page: 755
  ident: b40
  article-title: Microsoft COCO: Common objects in context
  publication-title: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13
– volume: 248
  year: 2019
  ident: b19
  article-title: Solving visual pollution with deep learning: A new nexus in environmental management
  publication-title: J. Environ. Manag.
– volume: 10
  start-page: 14
  year: 2020
  ident: b23
  article-title: A novel YOLOv3 algorithm-based deep learning approach for waste segregation: Towards smart waste management
  publication-title: Electronics
– reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788.
– start-page: 225
  year: 2021
  end-page: 240
  ident: b15
  article-title: Applications of artificial intelligence in environmental science
  publication-title: Artif. Intell. (AI)
– year: 2022
  ident: b4
  article-title: Visual Pollution: Concepts, Practices and Management Framework
– start-page: 332
  year: 2019
  end-page: 337
  ident: b25
  article-title: Smart Coastline environment management using deep detection of manmade pollution and hazards
  publication-title: 2019 5th Conference on Knowledge Based Engineering and Innovation
– start-page: 580
  year: 2014
  ident: 10.1016/j.dajour.2023.100283_b31
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– start-page: 374
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b44
  article-title: Large scale incremental learning
– volume: vol. 97
  start-page: 6105
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b39
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– volume: 248
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b19
  article-title: Solving visual pollution with deep learning: A new nexus in environmental management
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.07.024
– volume: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.dajour.2023.100283_b1
  article-title: Accelerated modern human–induced species losses: Entering the sixth mass extinction
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1400253
– volume: 7
  start-page: 98
  issue: 5
  year: 2011
  ident: 10.1016/j.dajour.2023.100283_b8
  article-title: In the context of visual pollution: effects to trabzon city center silhoutte
  publication-title: Asian Soc. Sci.
  doi: 10.5539/ass.v7n5p98
– volume: 28
  year: 2015
  ident: 10.1016/j.dajour.2023.100283_b33
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 225
  year: 2021
  ident: 10.1016/j.dajour.2023.100283_b15
  article-title: Applications of artificial intelligence in environmental science
  publication-title: Artif. Intell. (AI)
  doi: 10.1201/9781003005629-11
– year: 2019
  ident: 10.1016/j.dajour.2023.100283_b3
  article-title: World scientists’ warning of a climate emergency
  publication-title: BioScience
  doi: 10.1093/biosci/biz088
– year: 2022
  ident: 10.1016/j.dajour.2023.100283_b4
– year: 2009
  ident: 10.1016/j.dajour.2023.100283_b41
– volume: 390
  start-page: 1345
  year: 2017
  ident: 10.1016/j.dajour.2023.100283_b11
  article-title: Air pollution and brain health: an emerging issue
  publication-title: Lancet
– start-page: 740
  year: 2014
  ident: 10.1016/j.dajour.2023.100283_b40
  article-title: Microsoft COCO: Common objects in context
– volume: 5
  issue: 8
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b14
  article-title: Water pollution in Bangladesh and its impact on public health
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02145
– volume: 67
  year: 2021
  ident: 10.1016/j.dajour.2023.100283_b26
  article-title: A deep learning approach for prediction of air quality index in a metropolitan city
  publication-title: Sustainable Cities Soc.
  doi: 10.1016/j.scs.2021.102720
– ident: 10.1016/j.dajour.2023.100283_b29
  doi: 10.14415/konferencijaGFS2018.049
– ident: 10.1016/j.dajour.2023.100283_b38
  doi: 10.1109/CVPR42600.2020.01079
– volume: 159
  start-page: 65
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b17
  article-title: Predicting groundwater arsenic contamination: Regions at risk in highest populated state of India
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.04.054
– volume: 23
  start-page: 537
  year: 2009
  ident: 10.1016/j.dajour.2023.100283_b5
  article-title: Cell phone towers as visual pollution
  publication-title: Notre Dame JL Ethics Pub. Pol’Y
– volume: 10
  start-page: 810
  year: 2022
  ident: 10.1016/j.dajour.2023.100283_b16
  article-title: Prediction of river pollution under the rainfall-runoff impact by artificial neural network: A case study of shiyan river, shenzhen, China
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2022.887446
– volume: 10
  start-page: 14
  year: 2020
  ident: 10.1016/j.dajour.2023.100283_b23
  article-title: A novel YOLOv3 algorithm-based deep learning approach for waste segregation: Towards smart waste management
  publication-title: Electronics
  doi: 10.3390/electronics10010014
– start-page: 1
  year: 2020
  ident: 10.1016/j.dajour.2023.100283_b27
  article-title: Vehicle pollution detection from images using deep learning
  publication-title: Intell. Enabled Res.: DoSIER 2019
– volume: 566
  start-page: 455
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b13
  article-title: Soil pollution — speed up global mapping
  publication-title: Nature
  doi: 10.1038/d41586-019-00669-x
– volume: 38
  start-page: 1
  year: 2014
  ident: 10.1016/j.dajour.2023.100283_b10
  article-title: The influence of urban green environments on stress relief measures: A field experiment
  publication-title: J. Environ. Psychol.
  doi: 10.1016/j.jenvp.2013.12.005
– start-page: 248
  year: 2009
  ident: 10.1016/j.dajour.2023.100283_b34
  article-title: Imagenet: A large-scale hierarchical image database
– start-page: 770
  year: 2016
  ident: 10.1016/j.dajour.2023.100283_b35
  article-title: Deep residual learning for image recognition
– volume: 114
  start-page: E6089
  issue: 30
  year: 2017
  ident: 10.1016/j.dajour.2023.100283_b2
  article-title: Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1704949114
– start-page: 23
  year: 2022
  ident: 10.1016/j.dajour.2023.100283_b21
  article-title: Artificial intelligence in pollution control and management: Status and future prospects
  publication-title: Artif. Intell. Environ. Sustain.: Chall. Solut. Era Ind. 4.0
– volume: 11
  start-page: 2211
  issue: 8
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b7
  article-title: A hybrid tool for visual pollution assessment in urban environments
  publication-title: Sustainability
  doi: 10.3390/su11082211
– year: 2019
  ident: 10.1016/j.dajour.2023.100283_b28
– volume: 62
  start-page: 391
  year: 2023
  ident: 10.1016/j.dajour.2023.100283_b30
  article-title: Automatic classification of textile visual pollutants using deep learning networks
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.07.039
– volume: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.dajour.2023.100283_b9
  article-title: Intensified visual clutter induces increased sympathetic signalling, poorer postural control, and faster torsional eye movements during visual rotation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0227370
– volume: 70
  start-page: 460
  year: 2020
  ident: 10.1016/j.dajour.2023.100283_b12
  article-title: Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations
  publication-title: CA: Cancer J. Clin.
– start-page: 1440
  year: 2015
  ident: 10.1016/j.dajour.2023.100283_b32
  article-title: Fast R-CNN
– volume: 31
  start-page: 497
  issue: 4
  year: 2001
  ident: 10.1016/j.dajour.2023.100283_b43
  article-title: Learn++: An incremental learning algorithm for supervised neural networks
  publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.)
  doi: 10.1109/5326.983933
– year: 2016
  ident: 10.1016/j.dajour.2023.100283_b6
– volume: 54
  start-page: 1
  issue: 9
  year: 2021
  ident: 10.1016/j.dajour.2023.100283_b42
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3472291
– volume: 2
  year: 2020
  ident: 10.1016/j.dajour.2023.100283_b24
  article-title: AquaVision: Automating the detection of waste in water bodies using deep transfer learning
  publication-title: Case Stud. Chem. Environ. Eng.
  doi: 10.1016/j.cscee.2020.100026
– volume: 11
  start-page: 1451
  year: 2020
  ident: 10.1016/j.dajour.2023.100283_b18
  article-title: An LSTM-based aggregated model for air pollution forecasting
  publication-title: Atmosp. Pollut. Res.
  doi: 10.1016/j.apr.2020.05.015
– start-page: 0433
  year: 2021
  ident: 10.1016/j.dajour.2023.100283_b20
  article-title: Visual pollution detection using google street view and YOLO
– year: 2022
  ident: 10.1016/j.dajour.2023.100283_b37
– volume: 699
  year: 2020
  ident: 10.1016/j.dajour.2023.100283_b22
  article-title: Tackling environmental challenges in pollution controls using artificial intelligence: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134279
– ident: 10.1016/j.dajour.2023.100283_b36
  doi: 10.1109/CVPR.2016.91
– start-page: 332
  year: 2019
  ident: 10.1016/j.dajour.2023.100283_b25
  article-title: Smart Coastline environment management using deep detection of manmade pollution and hazards
SSID ssj0002811303
Score 2.2583878
Snippet Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100283
SubjectTerms Artificial intelligence
Data mining
Environmental management
Machine learning
Pollution detection system
Visual pollution
Title An end-to-end pollution analysis and detection system using artificial intelligence and object detection algorithms
URI https://dx.doi.org/10.1016/j.dajour.2023.100283
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9NIeiq5ougQ89GbQiKnF0lHogrSAe4kDpCeBIkdVjEQuLPnSQ_4g_9wZklraGl0CGIJAaEiJ8ywORzNvGHsTLiKQsS6FWmglQhWAUFriGa71uiw1hJa-ePk5PjkLP51H55PJzShqadcWM_19b17JbbSKbahXypL9D832nWIDnqN-8YgaxuM_6Tirp1Ab0W4EULo_VS12hb87phHyihtowdUDd6zN0511D1B3nj3iYkzLSSKbgrwzI0l1-XWzvWgrT23ujdl3vj6PG8_yPY9v2wblNo1yLAVLM5t-ASIaHz6FrCtXZfljuaUvCaq6GrB6WjnwkdyKOLDx9bNtKp-LRRcoYyMRsmI3zUztJb0DQwZ9hJb3qnWZNT8Ffkq0-kUcu5zlGexp82_vZO864FwSaxyUnntGw1qyWVc05xeG7VPqmPrF7ZiltLvD7lITFcRYXg8uO5nMacWncoXdnXTJmDZi8PfB9hs7IwNm9ZA98DsPnjkYPWITqB-z-8uetrd5wpqs5gOgeA8o3gEKTwzvYcEdoLgFFB8AxceAsiIOUCPJAVBP2dmH96u3J8JX5RBa4m5AmMiAmus0wN17cFykAcQp_gJI44Sypo3SUMp0UZYKjX8tj7WKJCQG3wWxCcokeMYO6k0NzxnXYZjEZSRTJSFUYZTOwaSKCIiSUMVKHbKgm75ce8p6qpxymXexievcTXpOk567ST9kopf65ihb_nL9otNM7s1OZ07miKY_Sr64teRLdm_4K7xiB-12B6_Rum2LI-sVOrLI-wGvlKyZ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+end-to-end+pollution+analysis+and+detection+system+using+artificial+intelligence+and+object+detection+algorithms&rft.jtitle=Decision+analytics+journal&rft.au=Hossain%2C+Md.+Yearat&rft.au=Nijhum%2C+Ifran+Rahman&rft.au=Shad%2C+Md.+Tazin+Morshed&rft.au=Sadi%2C+Abu+Adnan&rft.date=2023-09-01&rft.pub=Elsevier+Inc&rft.issn=2772-6622&rft.eissn=2772-6622&rft.volume=8&rft_id=info:doi/10.1016%2Fj.dajour.2023.100283&rft.externalDocID=S2772662223001236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-6622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-6622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-6622&client=summon