An end-to-end pollution analysis and detection system using artificial intelligence and object detection algorithms
Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and environmental pollution for centuries, and many necessary steps have been taken. Modern solutions are being constantly developed to tackle these i...
Saved in:
Published in | Decision analytics journal Vol. 8; p. 100283 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and environmental pollution for centuries, and many necessary steps have been taken. Modern solutions are being constantly developed to tackle these issues efficiently. Visual pollution analysis and detection is a relatively less studied subject, even though it significantly impacts our daily lives. Building automatic pollution or pollutants detection systems has become increasingly popular due to the modern development of advanced artificial intelligence systems. Although some advances have been made, automated pollution detection is not well-researched or fully understood. This study demonstrates how various object detection models could identify such environmental pollutants and how end-to-end applications can analyze the findings. We trained our dataset on three popular object detection models, YOLOv5, Faster R-CNN (Region-based Convolutional Neural Network), and EfficientDet, and compared their performances. The best Mean Average Precision (mAP) score of 0.85 was achieved by the You Only Look Once (YOLOv5) model using its inbuilt augmentation techniques. Then we built a minimal Android application, using which volunteers or authorities could capture and send images along with their Global Positioning System (GPS) coordinates that might contain visual pollutants. These images and coordinates are stored in the cloud and later used by our local server. The local server utilizes the best-trained visual pollution detection model. It generates heat maps of particular locations, visualizing the condition of visual pollution based on the data stored in the cloud. Along with the heat map, our analysis system provides visual analytics like bar charts and pie charts to summarize a region’s condition. In addition, we used Active Learning and Incremental Learning methods to utilize the newly collected dataset by building a semi-autonomous annotation and model upgrading system. This also addresses the data scarcity problem associated with further research on visual pollution.
•Visual pollution control does not utilize machine learning & intelligent systems.•Visual pollution analysis and detection is a relatively less studied subject.•We study visual pollution detection using 3 ML models & build an end-to-end system.•The system is used to analyze the condition of pollution in a geospatial manner.•Active & Incremental learning is used in developing a sustainable & scalable system. |
---|---|
AbstractList | Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and environmental pollution for centuries, and many necessary steps have been taken. Modern solutions are being constantly developed to tackle these issues efficiently. Visual pollution analysis and detection is a relatively less studied subject, even though it significantly impacts our daily lives. Building automatic pollution or pollutants detection systems has become increasingly popular due to the modern development of advanced artificial intelligence systems. Although some advances have been made, automated pollution detection is not well-researched or fully understood. This study demonstrates how various object detection models could identify such environmental pollutants and how end-to-end applications can analyze the findings. We trained our dataset on three popular object detection models, YOLOv5, Faster R-CNN (Region-based Convolutional Neural Network), and EfficientDet, and compared their performances. The best Mean Average Precision (mAP) score of 0.85 was achieved by the You Only Look Once (YOLOv5) model using its inbuilt augmentation techniques. Then we built a minimal Android application, using which volunteers or authorities could capture and send images along with their Global Positioning System (GPS) coordinates that might contain visual pollutants. These images and coordinates are stored in the cloud and later used by our local server. The local server utilizes the best-trained visual pollution detection model. It generates heat maps of particular locations, visualizing the condition of visual pollution based on the data stored in the cloud. Along with the heat map, our analysis system provides visual analytics like bar charts and pie charts to summarize a region’s condition. In addition, we used Active Learning and Incremental Learning methods to utilize the newly collected dataset by building a semi-autonomous annotation and model upgrading system. This also addresses the data scarcity problem associated with further research on visual pollution.
•Visual pollution control does not utilize machine learning & intelligent systems.•Visual pollution analysis and detection is a relatively less studied subject.•We study visual pollution detection using 3 ML models & build an end-to-end system.•The system is used to analyze the condition of pollution in a geospatial manner.•Active & Incremental learning is used in developing a sustainable & scalable system. |
ArticleNumber | 100283 |
Author | Hossain, Md. Yearat Shad, Md. Tazin Morshed Rahman, Rashedur M. Sadi, Abu Adnan Peyal, Md. Mahmudul Kabir Nijhum, Ifran Rahman |
Author_xml | – sequence: 1 givenname: Md. Yearat surname: Hossain fullname: Hossain, Md. Yearat organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh – sequence: 2 givenname: Ifran Rahman surname: Nijhum fullname: Nijhum, Ifran Rahman organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh – sequence: 3 givenname: Md. Tazin Morshed surname: Shad fullname: Shad, Md. Tazin Morshed organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh – sequence: 4 givenname: Abu Adnan orcidid: 0000-0002-6077-2438 surname: Sadi fullname: Sadi, Abu Adnan organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh – sequence: 5 givenname: Md. Mahmudul Kabir surname: Peyal fullname: Peyal, Md. Mahmudul Kabir organization: Department of Electrical and Electronic Engineering, Brac University, Dhaka, Bangladesh – sequence: 6 givenname: Rashedur M. orcidid: 0000-0002-4514-6279 surname: Rahman fullname: Rahman, Rashedur M. email: rashedur.rahman@northsouth.edu organization: Department of Electrical and Computer Engineering, North South University, Dhaka, Bangladesh |
BookMark | eNqFkE1LAzEQhoNUsNb-Aw_7B7bmo83uehBK8QsKXvQc0mS2ZkmTkqRC_73ZrofiQWFghpd5Bua5RiPnHSB0S_CMYMLvupmWnT-EGcWU5QjTml2gMa0qWnJO6ehsvkLTGDvc7xDCMBujuHQFOF0mX-ZW7L21h2S8K6ST9hhNzIMuNCRQpzgeY4JdcYjGbQsZkmmNMtIWxiWw1mzBKTghftNl5IyUduuDSZ-7eIMuW2kjTH_6BH08Pb6vXsr12_PrarkuFW0oK_VCgySqYZhyhjcNA97kYtDwms8p0VJBS5uqbeUC14piJRcUal0pyTVrazZB8-GuCj7GAK3YB7OT4SgIFr070YnBnejdicFdxu5_Ycok2f-QgjT2P_hhgCE_9mUgiKhML0WbkEUI7c3fB74Bc2aRnQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3513696 crossref_primary_10_1002_wer_11092 |
Cites_doi | 10.1016/j.jenvman.2019.07.024 10.1126/sciadv.1400253 10.5539/ass.v7n5p98 10.1201/9781003005629-11 10.1093/biosci/biz088 10.1016/j.heliyon.2019.e02145 10.1016/j.scs.2021.102720 10.14415/konferencijaGFS2018.049 10.1109/CVPR42600.2020.01079 10.1016/j.watres.2019.04.054 10.3389/fenvs.2022.887446 10.3390/electronics10010014 10.1038/d41586-019-00669-x 10.1016/j.jenvp.2013.12.005 10.1073/pnas.1704949114 10.3390/su11082211 10.1016/j.aej.2022.07.039 10.1371/journal.pone.0227370 10.1109/5326.983933 10.1145/3472291 10.1016/j.cscee.2020.100026 10.1016/j.apr.2020.05.015 10.1016/j.scitotenv.2019.134279 10.1109/CVPR.2016.91 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.dajour.2023.100283 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2772-6622 |
ExternalDocumentID | 10_1016_j_dajour_2023_100283 S2772662223001236 |
GroupedDBID | 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c2923-d5dea1c9302630b93e69e693e9686421dacef297ffa508c20ca52e8d7ca6d3f83 |
ISSN | 2772-6622 |
IngestDate | Tue Jul 01 02:28:46 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Sat Sep 30 17:10:36 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Visual pollution Pollution detection system Data mining Artificial intelligence Environmental management Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2923-d5dea1c9302630b93e69e693e9686421dacef297ffa508c20ca52e8d7ca6d3f83 |
ORCID | 0000-0002-6077-2438 0000-0002-4514-6279 |
OpenAccessLink | http://dx.doi.org/10.1016/j.dajour.2023.100283 |
ParticipantIDs | crossref_primary_10_1016_j_dajour_2023_100283 crossref_citationtrail_10_1016_j_dajour_2023_100283 elsevier_sciencedirect_doi_10_1016_j_dajour_2023_100283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Decision analytics journal |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tyrväinen, Ojala, Korpela, Lanki, Tsunetsugu, Kagawa (b10) 2014; 38 Deng, Dong, Socher, Li, Li, Fei-Fei (b34) 2009 Wibble, Södergård, Träisk, Pansell (b9) 2020; 15 ultralytics (b37) 2022 Settles (b41) 2009 Nawaz, Wakil (b4) 2022 Tian, Yu, Li, Ke, Liu, Luo, Tang (b16) 2022; 10 Nazerdeylami, Majidi, Movaghar (b25) 2019 Wu, Chen, Wang, Ye, Liu, Guo, Fu (b44) 2019 Ceballos, Ehrlich, Barnosky, García, Pringle, Palmer (b1) 2015; 1 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b40) 2014 Kundu, Maulik (b27) 2020 Gupta, Saxena, Dattaprakash, Sheriff, Chaudhari, Ullanat, Chayapathy (b15) 2021 Girshick, Donahue, Darrell, Malik (b31) 2014 Jeremy (b11) 2017; 390 Ye, Yang, Zhong, Tu, Jia, Wang (b22) 2020; 699 M. Cvetković, A. Momčilović-Petronijević, Visual pollution of the historical city core–a case study, the city of Niš, in: Proceedings of the 6th International Conference Contemporary Achievements in Civil Engineering, Subotica, Serbia, Vol. 20, 2018, pp. 495–504. Polikar, Upda, Upda, Honavar (b43) 2001; 31 Ren, He, Girshick, Sun (b33) 2015; 28 Portella (b6) 2016 Nagle (b5) 2009; 23 Tasnim, Afrin, Biswas, Anye, Khan (b30) 2023; 62 Bindal, Singh (b17) 2019; 159 Panwar, Gupta, Siddiqui, Morales-Menendez, Bhardwaj, Sharma, Sarker (b24) 2020; 2 Girshick (b32) 2015 Chang, Chiao, Abimannan, Huang, Tsai, Lin (b18) 2020; 11 Wakil, Naeem, Anjum, Waheed, Thaheem, Hussnain, Nawaz (b7) 2019; 11 Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b42) 2021; 54 Hoang, Ky, Thuong, Nhan, Ngan (b21) 2022 Bakar, al Sharaa, Maulan, Munther (b28) 2019 Ripple, Wolf, Newsome, Barnard, Moomaw, Grandcolas (b3) 2019 Hou, Ok (b13) 2019; 566 Turner, Andersen, Baccarelli, Diver, Gapstur, Pope, Prada, Samet, Thurston, Cohen (b12) 2020; 70 Hasan, Shahriar, Jim (b14) 2019; 5 Tan, Le (b39) 2019; vol. 97 He, Zhang, Ren, Sun (b35) 2016 Ceballos, Ehrlich, Dirzo (b2) 2017; 114 Janarthanan, Partheeban, Somasundaram, Elamparithi (b26) 2021; 67 Ahmed, Islam, Tuba, Mahdy, Sujauddin (b19) 2019; 248 Yilmaz, Sagsöz (b8) 2011; 7 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. Hossain, Nijhum, Sadi, Shad, Rahman (b20) 2021 Kumar, Yadav, Gupta, Verma, Ansari, Ahn (b23) 2020; 10 M. Tan, R. Pang, Q.V. Le, Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10781–10790. Ye (10.1016/j.dajour.2023.100283_b22) 2020; 699 Ren (10.1016/j.dajour.2023.100283_b33) 2015; 28 Portella (10.1016/j.dajour.2023.100283_b6) 2016 ultralytics (10.1016/j.dajour.2023.100283_b37) 2022 Nagle (10.1016/j.dajour.2023.100283_b5) 2009; 23 Kumar (10.1016/j.dajour.2023.100283_b23) 2020; 10 Bakar (10.1016/j.dajour.2023.100283_b28) 2019 Ceballos (10.1016/j.dajour.2023.100283_b1) 2015; 1 Ceballos (10.1016/j.dajour.2023.100283_b2) 2017; 114 Jeremy (10.1016/j.dajour.2023.100283_b11) 2017; 390 Nawaz (10.1016/j.dajour.2023.100283_b4) 2022 10.1016/j.dajour.2023.100283_b29 Nazerdeylami (10.1016/j.dajour.2023.100283_b25) 2019 Gupta (10.1016/j.dajour.2023.100283_b15) 2021 Polikar (10.1016/j.dajour.2023.100283_b43) 2001; 31 Hossain (10.1016/j.dajour.2023.100283_b20) 2021 Turner (10.1016/j.dajour.2023.100283_b12) 2020; 70 Deng (10.1016/j.dajour.2023.100283_b34) 2009 Ren (10.1016/j.dajour.2023.100283_b42) 2021; 54 Bindal (10.1016/j.dajour.2023.100283_b17) 2019; 159 Lin (10.1016/j.dajour.2023.100283_b40) 2014 Settles (10.1016/j.dajour.2023.100283_b41) 2009 Ahmed (10.1016/j.dajour.2023.100283_b19) 2019; 248 Girshick (10.1016/j.dajour.2023.100283_b32) 2015 Panwar (10.1016/j.dajour.2023.100283_b24) 2020; 2 Tyrväinen (10.1016/j.dajour.2023.100283_b10) 2014; 38 Hoang (10.1016/j.dajour.2023.100283_b21) 2022 Wu (10.1016/j.dajour.2023.100283_b44) 2019 Janarthanan (10.1016/j.dajour.2023.100283_b26) 2021; 67 Kundu (10.1016/j.dajour.2023.100283_b27) 2020 10.1016/j.dajour.2023.100283_b36 Wibble (10.1016/j.dajour.2023.100283_b9) 2020; 15 Hasan (10.1016/j.dajour.2023.100283_b14) 2019; 5 Tan (10.1016/j.dajour.2023.100283_b39) 2019; vol. 97 Chang (10.1016/j.dajour.2023.100283_b18) 2020; 11 10.1016/j.dajour.2023.100283_b38 Yilmaz (10.1016/j.dajour.2023.100283_b8) 2011; 7 Tian (10.1016/j.dajour.2023.100283_b16) 2022; 10 Ripple (10.1016/j.dajour.2023.100283_b3) 2019 Hou (10.1016/j.dajour.2023.100283_b13) 2019; 566 Tasnim (10.1016/j.dajour.2023.100283_b30) 2023; 62 Girshick (10.1016/j.dajour.2023.100283_b31) 2014 He (10.1016/j.dajour.2023.100283_b35) 2016 Wakil (10.1016/j.dajour.2023.100283_b7) 2019; 11 |
References_xml | – volume: 54 start-page: 1 year: 2021 end-page: 40 ident: b42 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. – start-page: 374 year: 2019 end-page: 382 ident: b44 article-title: Large scale incremental learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 15 year: 2020 ident: b9 article-title: Intensified visual clutter induces increased sympathetic signalling, poorer postural control, and faster torsional eye movements during visual rotation publication-title: PLoS One – volume: 566 start-page: 455 year: 2019 end-page: 456 ident: b13 article-title: Soil pollution — speed up global mapping publication-title: Nature – volume: 67 year: 2021 ident: b26 article-title: A deep learning approach for prediction of air quality index in a metropolitan city publication-title: Sustainable Cities Soc. – volume: vol. 97 start-page: 6105 year: 2019 end-page: 6114 ident: b39 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: Proceedings of the 36th International Conference on Machine Learning – start-page: 1 year: 2020 end-page: 5 ident: b27 article-title: Vehicle pollution detection from images using deep learning publication-title: Intell. Enabled Res.: DoSIER 2019 – volume: 11 start-page: 2211 year: 2019 ident: b7 article-title: A hybrid tool for visual pollution assessment in urban environments publication-title: Sustainability – volume: 70 start-page: 460 year: 2020 end-page: 479 ident: b12 article-title: Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations publication-title: CA: Cancer J. Clin. – volume: 31 start-page: 497 year: 2001 end-page: 508 ident: b43 article-title: Learn++: An incremental learning algorithm for supervised neural networks publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) – volume: 7 start-page: 98 year: 2011 ident: b8 article-title: In the context of visual pollution: effects to trabzon city center silhoutte publication-title: Asian Soc. Sci. – volume: 390 start-page: 1345 year: 2017 end-page: 1422 ident: b11 article-title: Air pollution and brain health: an emerging issue publication-title: Lancet – year: 2019 ident: b28 article-title: Measuring visual pollution threshold along kuala lumpur historic shopping district streets using cumulative area analysis – year: 2016 ident: b6 article-title: Visual Pollution – start-page: 1440 year: 2015 end-page: 1448 ident: b32 article-title: Fast R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – year: 2009 ident: b41 article-title: Active Learning Literature Survey – start-page: 248 year: 2009 end-page: 255 ident: b34 article-title: Imagenet: A large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 114 start-page: E6089 year: 2017 end-page: E6096 ident: b2 article-title: Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines publication-title: Proc. Natl. Acad. Sci. – year: 2019 ident: b3 article-title: World scientists’ warning of a climate emergency publication-title: BioScience – volume: 23 start-page: 537 year: 2009 ident: b5 article-title: Cell phone towers as visual pollution publication-title: Notre Dame JL Ethics Pub. Pol’Y – volume: 10 start-page: 810 year: 2022 ident: b16 article-title: Prediction of river pollution under the rainfall-runoff impact by artificial neural network: A case study of shiyan river, shenzhen, China publication-title: Front. Environ. Sci. – volume: 11 start-page: 1451 year: 2020 end-page: 1463 ident: b18 article-title: An LSTM-based aggregated model for air pollution forecasting publication-title: Atmosp. Pollut. Res. – start-page: 0433 year: 2021 end-page: 0440 ident: b20 article-title: Visual pollution detection using google street view and YOLO publication-title: 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference – volume: 5 year: 2019 ident: b14 article-title: Water pollution in Bangladesh and its impact on public health publication-title: Heliyon – start-page: 23 year: 2022 end-page: 43 ident: b21 article-title: Artificial intelligence in pollution control and management: Status and future prospects publication-title: Artif. Intell. Environ. Sustain.: Chall. Solut. Era Ind. 4.0 – volume: 38 start-page: 1 year: 2014 end-page: 9 ident: b10 article-title: The influence of urban green environments on stress relief measures: A field experiment publication-title: J. Environ. Psychol. – volume: 2 year: 2020 ident: b24 article-title: AquaVision: Automating the detection of waste in water bodies using deep transfer learning publication-title: Case Stud. Chem. Environ. Eng. – reference: M. Tan, R. Pang, Q.V. Le, Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10781–10790. – volume: 159 start-page: 65 year: 2019 end-page: 76 ident: b17 article-title: Predicting groundwater arsenic contamination: Regions at risk in highest populated state of India publication-title: Water Res. – reference: M. Cvetković, A. Momčilović-Petronijević, Visual pollution of the historical city core–a case study, the city of Niš, in: Proceedings of the 6th International Conference Contemporary Achievements in Civil Engineering, Subotica, Serbia, Vol. 20, 2018, pp. 495–504. – start-page: 580 year: 2014 end-page: 587 ident: b31 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2022 ident: b37 article-title: Github.com/ultralytics/yolov5 – volume: 62 start-page: 391 year: 2023 end-page: 402 ident: b30 article-title: Automatic classification of textile visual pollutants using deep learning networks publication-title: Alex. Eng. J. – volume: 699 year: 2020 ident: b22 article-title: Tackling environmental challenges in pollution controls using artificial intelligence: A review publication-title: Sci. Total Environ. – volume: 28 year: 2015 ident: b33 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 770 year: 2016 end-page: 778 ident: b35 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 1 year: 2015 ident: b1 article-title: Accelerated modern human–induced species losses: Entering the sixth mass extinction publication-title: Sci. Adv. – start-page: 740 year: 2014 end-page: 755 ident: b40 article-title: Microsoft COCO: Common objects in context publication-title: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 – volume: 248 year: 2019 ident: b19 article-title: Solving visual pollution with deep learning: A new nexus in environmental management publication-title: J. Environ. Manag. – volume: 10 start-page: 14 year: 2020 ident: b23 article-title: A novel YOLOv3 algorithm-based deep learning approach for waste segregation: Towards smart waste management publication-title: Electronics – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. – start-page: 225 year: 2021 end-page: 240 ident: b15 article-title: Applications of artificial intelligence in environmental science publication-title: Artif. Intell. (AI) – year: 2022 ident: b4 article-title: Visual Pollution: Concepts, Practices and Management Framework – start-page: 332 year: 2019 end-page: 337 ident: b25 article-title: Smart Coastline environment management using deep detection of manmade pollution and hazards publication-title: 2019 5th Conference on Knowledge Based Engineering and Innovation – start-page: 580 year: 2014 ident: 10.1016/j.dajour.2023.100283_b31 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation – start-page: 374 year: 2019 ident: 10.1016/j.dajour.2023.100283_b44 article-title: Large scale incremental learning – volume: vol. 97 start-page: 6105 year: 2019 ident: 10.1016/j.dajour.2023.100283_b39 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – volume: 248 year: 2019 ident: 10.1016/j.dajour.2023.100283_b19 article-title: Solving visual pollution with deep learning: A new nexus in environmental management publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.07.024 – volume: 1 issue: 5 year: 2015 ident: 10.1016/j.dajour.2023.100283_b1 article-title: Accelerated modern human–induced species losses: Entering the sixth mass extinction publication-title: Sci. Adv. doi: 10.1126/sciadv.1400253 – volume: 7 start-page: 98 issue: 5 year: 2011 ident: 10.1016/j.dajour.2023.100283_b8 article-title: In the context of visual pollution: effects to trabzon city center silhoutte publication-title: Asian Soc. Sci. doi: 10.5539/ass.v7n5p98 – volume: 28 year: 2015 ident: 10.1016/j.dajour.2023.100283_b33 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 225 year: 2021 ident: 10.1016/j.dajour.2023.100283_b15 article-title: Applications of artificial intelligence in environmental science publication-title: Artif. Intell. (AI) doi: 10.1201/9781003005629-11 – year: 2019 ident: 10.1016/j.dajour.2023.100283_b3 article-title: World scientists’ warning of a climate emergency publication-title: BioScience doi: 10.1093/biosci/biz088 – year: 2022 ident: 10.1016/j.dajour.2023.100283_b4 – year: 2009 ident: 10.1016/j.dajour.2023.100283_b41 – volume: 390 start-page: 1345 year: 2017 ident: 10.1016/j.dajour.2023.100283_b11 article-title: Air pollution and brain health: an emerging issue publication-title: Lancet – start-page: 740 year: 2014 ident: 10.1016/j.dajour.2023.100283_b40 article-title: Microsoft COCO: Common objects in context – volume: 5 issue: 8 year: 2019 ident: 10.1016/j.dajour.2023.100283_b14 article-title: Water pollution in Bangladesh and its impact on public health publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02145 – volume: 67 year: 2021 ident: 10.1016/j.dajour.2023.100283_b26 article-title: A deep learning approach for prediction of air quality index in a metropolitan city publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2021.102720 – ident: 10.1016/j.dajour.2023.100283_b29 doi: 10.14415/konferencijaGFS2018.049 – ident: 10.1016/j.dajour.2023.100283_b38 doi: 10.1109/CVPR42600.2020.01079 – volume: 159 start-page: 65 year: 2019 ident: 10.1016/j.dajour.2023.100283_b17 article-title: Predicting groundwater arsenic contamination: Regions at risk in highest populated state of India publication-title: Water Res. doi: 10.1016/j.watres.2019.04.054 – volume: 23 start-page: 537 year: 2009 ident: 10.1016/j.dajour.2023.100283_b5 article-title: Cell phone towers as visual pollution publication-title: Notre Dame JL Ethics Pub. Pol’Y – volume: 10 start-page: 810 year: 2022 ident: 10.1016/j.dajour.2023.100283_b16 article-title: Prediction of river pollution under the rainfall-runoff impact by artificial neural network: A case study of shiyan river, shenzhen, China publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2022.887446 – volume: 10 start-page: 14 year: 2020 ident: 10.1016/j.dajour.2023.100283_b23 article-title: A novel YOLOv3 algorithm-based deep learning approach for waste segregation: Towards smart waste management publication-title: Electronics doi: 10.3390/electronics10010014 – start-page: 1 year: 2020 ident: 10.1016/j.dajour.2023.100283_b27 article-title: Vehicle pollution detection from images using deep learning publication-title: Intell. Enabled Res.: DoSIER 2019 – volume: 566 start-page: 455 year: 2019 ident: 10.1016/j.dajour.2023.100283_b13 article-title: Soil pollution — speed up global mapping publication-title: Nature doi: 10.1038/d41586-019-00669-x – volume: 38 start-page: 1 year: 2014 ident: 10.1016/j.dajour.2023.100283_b10 article-title: The influence of urban green environments on stress relief measures: A field experiment publication-title: J. Environ. Psychol. doi: 10.1016/j.jenvp.2013.12.005 – start-page: 248 year: 2009 ident: 10.1016/j.dajour.2023.100283_b34 article-title: Imagenet: A large-scale hierarchical image database – start-page: 770 year: 2016 ident: 10.1016/j.dajour.2023.100283_b35 article-title: Deep residual learning for image recognition – volume: 114 start-page: E6089 issue: 30 year: 2017 ident: 10.1016/j.dajour.2023.100283_b2 article-title: Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1704949114 – start-page: 23 year: 2022 ident: 10.1016/j.dajour.2023.100283_b21 article-title: Artificial intelligence in pollution control and management: Status and future prospects publication-title: Artif. Intell. Environ. Sustain.: Chall. Solut. Era Ind. 4.0 – volume: 11 start-page: 2211 issue: 8 year: 2019 ident: 10.1016/j.dajour.2023.100283_b7 article-title: A hybrid tool for visual pollution assessment in urban environments publication-title: Sustainability doi: 10.3390/su11082211 – year: 2019 ident: 10.1016/j.dajour.2023.100283_b28 – volume: 62 start-page: 391 year: 2023 ident: 10.1016/j.dajour.2023.100283_b30 article-title: Automatic classification of textile visual pollutants using deep learning networks publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.07.039 – volume: 15 issue: 1 year: 2020 ident: 10.1016/j.dajour.2023.100283_b9 article-title: Intensified visual clutter induces increased sympathetic signalling, poorer postural control, and faster torsional eye movements during visual rotation publication-title: PLoS One doi: 10.1371/journal.pone.0227370 – volume: 70 start-page: 460 year: 2020 ident: 10.1016/j.dajour.2023.100283_b12 article-title: Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations publication-title: CA: Cancer J. Clin. – start-page: 1440 year: 2015 ident: 10.1016/j.dajour.2023.100283_b32 article-title: Fast R-CNN – volume: 31 start-page: 497 issue: 4 year: 2001 ident: 10.1016/j.dajour.2023.100283_b43 article-title: Learn++: An incremental learning algorithm for supervised neural networks publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) doi: 10.1109/5326.983933 – year: 2016 ident: 10.1016/j.dajour.2023.100283_b6 – volume: 54 start-page: 1 issue: 9 year: 2021 ident: 10.1016/j.dajour.2023.100283_b42 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. doi: 10.1145/3472291 – volume: 2 year: 2020 ident: 10.1016/j.dajour.2023.100283_b24 article-title: AquaVision: Automating the detection of waste in water bodies using deep transfer learning publication-title: Case Stud. Chem. Environ. Eng. doi: 10.1016/j.cscee.2020.100026 – volume: 11 start-page: 1451 year: 2020 ident: 10.1016/j.dajour.2023.100283_b18 article-title: An LSTM-based aggregated model for air pollution forecasting publication-title: Atmosp. Pollut. Res. doi: 10.1016/j.apr.2020.05.015 – start-page: 0433 year: 2021 ident: 10.1016/j.dajour.2023.100283_b20 article-title: Visual pollution detection using google street view and YOLO – year: 2022 ident: 10.1016/j.dajour.2023.100283_b37 – volume: 699 year: 2020 ident: 10.1016/j.dajour.2023.100283_b22 article-title: Tackling environmental challenges in pollution controls using artificial intelligence: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134279 – ident: 10.1016/j.dajour.2023.100283_b36 doi: 10.1109/CVPR.2016.91 – start-page: 332 year: 2019 ident: 10.1016/j.dajour.2023.100283_b25 article-title: Smart Coastline environment management using deep detection of manmade pollution and hazards |
SSID | ssj0002811303 |
Score | 2.2583878 |
Snippet | Environmental pollution is generally a by-product of various human activities. Researchers have studied the dangers and harmful effects of pollutants and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100283 |
SubjectTerms | Artificial intelligence Data mining Environmental management Machine learning Pollution detection system Visual pollution |
Title | An end-to-end pollution analysis and detection system using artificial intelligence and object detection algorithms |
URI | https://dx.doi.org/10.1016/j.dajour.2023.100283 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9NIeiq5ougQ89GbQiKnF0lHogrSAe4kDpCeBIkdVjEQuLPnSQ_4g_9wZklraGl0CGIJAaEiJ8ywORzNvGHsTLiKQsS6FWmglQhWAUFriGa71uiw1hJa-ePk5PjkLP51H55PJzShqadcWM_19b17JbbSKbahXypL9D832nWIDnqN-8YgaxuM_6Tirp1Ab0W4EULo_VS12hb87phHyihtowdUDd6zN0511D1B3nj3iYkzLSSKbgrwzI0l1-XWzvWgrT23ujdl3vj6PG8_yPY9v2wblNo1yLAVLM5t-ASIaHz6FrCtXZfljuaUvCaq6GrB6WjnwkdyKOLDx9bNtKp-LRRcoYyMRsmI3zUztJb0DQwZ9hJb3qnWZNT8Ffkq0-kUcu5zlGexp82_vZO864FwSaxyUnntGw1qyWVc05xeG7VPqmPrF7ZiltLvD7lITFcRYXg8uO5nMacWncoXdnXTJmDZi8PfB9hs7IwNm9ZA98DsPnjkYPWITqB-z-8uetrd5wpqs5gOgeA8o3gEKTwzvYcEdoLgFFB8AxceAsiIOUCPJAVBP2dmH96u3J8JX5RBa4m5AmMiAmus0wN17cFykAcQp_gJI44Sypo3SUMp0UZYKjX8tj7WKJCQG3wWxCcokeMYO6k0NzxnXYZjEZSRTJSFUYZTOwaSKCIiSUMVKHbKgm75ce8p6qpxymXexievcTXpOk567ST9kopf65ihb_nL9otNM7s1OZ07miKY_Sr64teRLdm_4K7xiB-12B6_Rum2LI-sVOrLI-wGvlKyZ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+end-to-end+pollution+analysis+and+detection+system+using+artificial+intelligence+and+object+detection+algorithms&rft.jtitle=Decision+analytics+journal&rft.au=Hossain%2C+Md.+Yearat&rft.au=Nijhum%2C+Ifran+Rahman&rft.au=Shad%2C+Md.+Tazin+Morshed&rft.au=Sadi%2C+Abu+Adnan&rft.date=2023-09-01&rft.pub=Elsevier+Inc&rft.issn=2772-6622&rft.eissn=2772-6622&rft.volume=8&rft_id=info:doi/10.1016%2Fj.dajour.2023.100283&rft.externalDocID=S2772662223001236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-6622&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-6622&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-6622&client=summon |