Greenness identification based on HSV decision tree

Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness identification are based on visible spectral-index, such as the excess green index, the excess green minus excess red index, the vegetative index, the...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in agriculture Vol. 2; no. 3-4; pp. 149 - 160
Main Authors Yang, Wenzhu, Wang, Sile, Zhao, Xiaolan, Zhang, Jingsi, Feng, Jiaqi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2015
Subjects
Online AccessGet full text
ISSN2214-3173
2214-3173
DOI10.1016/j.inpa.2015.07.003

Cover

Loading…
Abstract Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness identification are based on visible spectral-index, such as the excess green index, the excess green minus excess red index, the vegetative index, the color index of vegetation extraction, the combined index. All these visible spectral-index based methods are working on the assumption that plants display a clear high degree of greenness, and soil is the only background element. In fact, the brightness and contrast of an image coming from outdoor environments are seriously affected by the weather conditions and the capture time. The color of the plant varies from dark green to bright green. The back ground elements may contain crop straw, straw ash besides soil. These environmental factors always make the visible spectral-index based methods unable to work correctly. In this paper, an HSV decision tree based method for greenness identification from maize seedling images captured outdoors is proposed. Firstly, the image was converted from RGB color space to HSV color space to avoid influence of illumination. Secondly, most of the background pixels were removed according to their hue values compared with the ones of green plants. Thirdly, the pixels of wheat straws whose hue values were intersected with tender green leaves were eliminated subject to their hues, saturations and values. At last, thresholding was employed to get the green plants. The results indicate that the proposed method can recognize greenness pixels correctly from the crop images captured outdoors.
AbstractList Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness identification are based on visible spectral-index, such as the excess green index, the excess green minus excess red index, the vegetative index, the color index of vegetation extraction, the combined index. All these visible spectral-index based methods are working on the assumption that plants display a clear high degree of greenness, and soil is the only background element. In fact, the brightness and contrast of an image coming from outdoor environments are seriously affected by the weather conditions and the capture time. The color of the plant varies from dark green to bright green. The back ground elements may contain crop straw, straw ash besides soil. These environmental factors always make the visible spectral-index based methods unable to work correctly. In this paper, an HSV decision tree based method for greenness identification from maize seedling images captured outdoors is proposed. Firstly, the image was converted from RGB color space to HSV color space to avoid influence of illumination. Secondly, most of the background pixels were removed according to their hue values compared with the ones of green plants. Thirdly, the pixels of wheat straws whose hue values were intersected with tender green leaves were eliminated subject to their hues, saturations and values. At last, thresholding was employed to get the green plants. The results indicate that the proposed method can recognize greenness pixels correctly from the crop images captured outdoors.
Author Wang, Sile
Yang, Wenzhu
Zhang, Jingsi
Zhao, Xiaolan
Feng, Jiaqi
Author_xml – sequence: 1
  givenname: Wenzhu
  surname: Yang
  fullname: Yang, Wenzhu
  email: wenzhuyang@163.com
– sequence: 2
  givenname: Sile
  surname: Wang
  fullname: Wang, Sile
– sequence: 3
  givenname: Xiaolan
  surname: Zhao
  fullname: Zhao, Xiaolan
– sequence: 4
  givenname: Jingsi
  surname: Zhang
  fullname: Zhang, Jingsi
– sequence: 5
  givenname: Jiaqi
  surname: Feng
  fullname: Feng, Jiaqi
BookMark eNp9kE1LAzEQhoNUsNb-AU979LLrJNltsuBFirZCwYMf15BNJpCyzdZkK_jv3bUexENP8zK8z8A8l2QSuoCEXFMoKNDF7bbwYa8LBrQqQBQA_IxMGaNlzqngkz_5gsxT2gIAFQteAkwJX0XEEDClzFsMvXfe6N53IWt0QpsNYf3ynlk0Po3bfqhfkXOn24Tz3zkjb48Pr8t1vnlePS3vN7lhNeM51Y6DdRVvqCldSTltpLGNE5KDKZlz1tYWa8crCRSlXEBtua4RG-s0VJLPyM3x7j52HwdMvdr5ZLBtdcDukBQDWUIFQvChKo9VE7uUIjplfP_zRx-1bxUFNapSWzWqUqMqBUINqgaU_UP30e90_DoN3R0hHP7_9BhVMh6DQesjml7Zzp_CvwH_0oPW
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3036278
crossref_primary_10_1016_j_jenvman_2023_117693
crossref_primary_10_3389_fpls_2024_1357316
crossref_primary_10_1109_ACCESS_2023_3333367
crossref_primary_10_1590_0103_8478cr20200692
crossref_primary_10_1080_13658816_2021_1937632
crossref_primary_10_34133_2021_9792582
crossref_primary_10_1080_01431161_2018_1528017
crossref_primary_10_1080_1343943X_2020_1829490
crossref_primary_10_1109_LRA_2023_3262417
crossref_primary_10_1016_j_biosystemseng_2020_07_013
crossref_primary_10_1007_s11119_019_09697_z
crossref_primary_10_1007_s11119_022_09963_7
crossref_primary_10_3389_fpls_2019_00559
crossref_primary_10_1016_j_ifacol_2022_11_133
crossref_primary_10_1007_s11119_022_09908_0
crossref_primary_10_1007_s11119_017_9511_z
crossref_primary_10_3390_rs12182982
crossref_primary_10_1088_1755_1315_500_1_012067
crossref_primary_10_1109_ACCESS_2024_3506827
crossref_primary_10_1016_j_biosystemseng_2019_11_001
crossref_primary_10_1007_s10489_023_04880_2
crossref_primary_10_32604_iasc_2021_015225
crossref_primary_10_1007_s10514_020_09903_2
crossref_primary_10_18667_cienciaypoderaereo_709
crossref_primary_10_1371_journal_pone_0222695
crossref_primary_10_22184_1993_7296_FRos_2024_18_4_320_330
crossref_primary_10_1007_s42464_022_00155_6
crossref_primary_10_1016_j_ecolind_2024_112108
crossref_primary_10_31413_nativa_v6i4_5405
Cites_doi 10.1016/j.eswa.2012.07.034
10.1016/j.compag.2012.07.003
10.1016/j.eja.2013.03.005
10.1016/j.biosystemseng.2013.07.014
10.1016/j.eswa.2012.10.033
10.1016/j.eswa.2012.03.040
10.1016/j.compag.2010.09.013
10.1016/j.jag.2007.09.002
10.1016/j.eja.2013.02.011
10.1016/j.agrformet.2012.07.014
10.1016/j.protcy.2013.11.010
10.13031/2013.27839
10.1007/s11119-005-6787-1
10.1016/j.dsp.2009.10.008
10.1016/j.compag.2011.04.006
10.1109/AIM.2003.1225492
10.1016/j.agrformet.2013.02.011
ContentType Journal Article
Copyright 2015 China Agricultural University
Copyright_xml – notice: 2015 China Agricultural University
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.inpa.2015.07.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2214-3173
EndPage 160
ExternalDocumentID 10_1016_j_inpa_2015_07_003
S2214317315000347
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c2923-1af30df53b1c4f4131b8cdbf7830c42ffdd9de9f35801e88609d3a9eebdfa0583
IEDL.DBID IXB
ISSN 2214-3173
IngestDate Fri Jul 11 06:30:54 EDT 2025
Tue Jul 01 03:27:30 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
Wed May 17 02:05:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Variable illumination
Complex background
Greenness identification
Field crop image
HSV decision tree
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2923-1af30df53b1c4f4131b8cdbf7830c42ffdd9de9f35801e88609d3a9eebdfa0583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214317315000347
PQID 2084050773
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2084050773
crossref_citationtrail_10_1016_j_inpa_2015_07_003
crossref_primary_10_1016_j_inpa_2015_07_003
elsevier_sciencedirect_doi_10_1016_j_inpa_2015_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October-December 2015
2015-10-00
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October-December 2015
PublicationDecade 2010
PublicationTitle Information processing in agriculture
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xiang, Tian (b0025) 2011; 78
Montalvo, Guerrero, Romeo, Emmi, Guijarro, Pajares (b0055) 2013; 40
Romeo, Pajares, Montalvo, Guerrero, Guijarro, Cruz (b0045) 2013; 40
Lee, Lee (b0030) 2013; 48
Daniel, David, Antonio, Julián, Jose (b0050) 2014; 117
Hague, Tillet, Wheeler (b0080) 2006; 7
Guijarro, Pajares, Riomoros, Herrera, Burgos-Artizzu, Ribeiro (b0060) 2011; 75
Yang (b0040) 2012; 88
Pierpaoli, Carli, Pignatti, Canavari (b0005) 2013; 8
Duveiller, Baret, Defourny (b0010) 2012; 166–167
Jose, Miguel, Juan, Juan (b0090) 2010; 20
Yu, Cao, Wu, Bai, Qin, Zhuo (b0020) 2013; 174–175
Wang, Li, Lu, Fang (b0015) 2013; 49
Guerrero, Pajares, Montalvo, Romeo, Guijarro (b0065) 2012; 39
Neto (b0075) 2004
Woebbecke, Meyer, Von Bargen, Mortensen (b0070) 1995; 38
Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In: Proc. AIM proceeding of advanced intelligent mechatronics. Kobe, Japan; 2003. p. 1079–83.
Ma, Wang, Zhang, Hou, Zhuang, He (b0035) 2008; 10
Ma (10.1016/j.inpa.2015.07.003_b0035) 2008; 10
Lee (10.1016/j.inpa.2015.07.003_b0030) 2013; 48
Woebbecke (10.1016/j.inpa.2015.07.003_b0070) 1995; 38
Montalvo (10.1016/j.inpa.2015.07.003_b0055) 2013; 40
Guerrero (10.1016/j.inpa.2015.07.003_b0065) 2012; 39
Yang (10.1016/j.inpa.2015.07.003_b0040) 2012; 88
Duveiller (10.1016/j.inpa.2015.07.003_b0010) 2012; 166–167
Romeo (10.1016/j.inpa.2015.07.003_b0045) 2013; 40
Yu (10.1016/j.inpa.2015.07.003_b0020) 2013; 174–175
Xiang (10.1016/j.inpa.2015.07.003_b0025) 2011; 78
Neto (10.1016/j.inpa.2015.07.003_b0075) 2004
Wang (10.1016/j.inpa.2015.07.003_b0015) 2013; 49
Pierpaoli (10.1016/j.inpa.2015.07.003_b0005) 2013; 8
Daniel (10.1016/j.inpa.2015.07.003_b0050) 2014; 117
Jose (10.1016/j.inpa.2015.07.003_b0090) 2010; 20
10.1016/j.inpa.2015.07.003_b0085
Guijarro (10.1016/j.inpa.2015.07.003_b0060) 2011; 75
Hague (10.1016/j.inpa.2015.07.003_b0080) 2006; 7
References_xml – reference: Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In: Proc. AIM proceeding of advanced intelligent mechatronics. Kobe, Japan; 2003. p. 1079–83.
– volume: 20
  start-page: 806
  year: 2010
  end-page: 823
  ident: b0090
  article-title: Detecting skin in face recognition systems: a colour spaces study
  publication-title: Digital Signal Process
– year: 2004
  ident: b0075
  article-title: A combined statistical-soft computing approach for classification and mapping weed species in minimum tillage systems
– volume: 78
  start-page: 1
  year: 2011
  end-page: 8
  ident: b0025
  article-title: An automated stand-alone in-field remote sensing system (SIRSS) for in-season crop monitoring
  publication-title: Comput Electron Agric
– volume: 49
  start-page: 126
  year: 2013
  end-page: 140
  ident: b0015
  article-title: Estimating near future regional corn yields by integrating multi-source observations into a crop growth model
  publication-title: Eur J Agron
– volume: 48
  start-page: 57
  year: 2013
  end-page: 65
  ident: b0030
  article-title: Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis
  publication-title: Eur J Agron
– volume: 39
  start-page: 11149
  year: 2012
  end-page: 11155
  ident: b0065
  article-title: Support vector machines for crop/weeds identification in maize fields
  publication-title: Expert Syst Appl
– volume: 8
  start-page: 61
  year: 2013
  end-page: 69
  ident: b0005
  article-title: Drivers of precision agriculture technologies adoption: a literature review
  publication-title: Proc Technol
– volume: 88
  start-page: 13
  year: 2012
  end-page: 24
  ident: b0040
  article-title: A high-resolution airborne four-camera imaging system for agricultural remote sensing
  publication-title: Comput Electron Agric
– volume: 10
  start-page: 426
  year: 2008
  end-page: 437
  ident: b0035
  article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 38
  start-page: 271
  year: 1995
  end-page: 281
  ident: b0070
  article-title: Shape features for identifying young weeds using image analysis
  publication-title: Trans Am Soc Agric Eng
– volume: 166–167
  start-page: 156
  year: 2012
  end-page: 168
  ident: b0010
  article-title: Remotely sensed green area index for winter wheat crop monitoring: 10-year assessment at regional scale over a fragmented landscape
  publication-title: Agric For Meteorol
– volume: 7
  start-page: 21
  year: 2006
  end-page: 32
  ident: b0080
  article-title: Automated crop and weed monitoring in widely spaced cereals
  publication-title: Precision Agric
– volume: 174–175
  start-page: 65
  year: 2013
  end-page: 84
  ident: b0020
  article-title: Automatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stage
  publication-title: Agric For Meteorol
– volume: 117
  start-page: 23
  year: 2014
  end-page: 34
  ident: b0050
  article-title: A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain
  publication-title: Biosyst Eng
– volume: 40
  start-page: 75
  year: 2013
  end-page: 82
  ident: b0055
  article-title: Automatic expert system for weeds/crops identification in images from maize fields
  publication-title: Expert Syst Appl
– volume: 40
  start-page: 2275
  year: 2013
  end-page: 2286
  ident: b0045
  article-title: A new expert system for greenness identification in agricultural images
  publication-title: Expert Syst Appl
– volume: 75
  start-page: 75
  year: 2011
  end-page: 83
  ident: b0060
  article-title: Automatic segmentation of relevant textures in agricultural images
  publication-title: Comput Electron Agric
– volume: 40
  start-page: 75
  issue: 1
  year: 2013
  ident: 10.1016/j.inpa.2015.07.003_b0055
  article-title: Automatic expert system for weeds/crops identification in images from maize fields
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.034
– volume: 88
  start-page: 13
  year: 2012
  ident: 10.1016/j.inpa.2015.07.003_b0040
  article-title: A high-resolution airborne four-camera imaging system for agricultural remote sensing
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2012.07.003
– volume: 49
  start-page: 126
  year: 2013
  ident: 10.1016/j.inpa.2015.07.003_b0015
  article-title: Estimating near future regional corn yields by integrating multi-source observations into a crop growth model
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2013.03.005
– volume: 117
  start-page: 23
  year: 2014
  ident: 10.1016/j.inpa.2015.07.003_b0050
  article-title: A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2013.07.014
– volume: 40
  start-page: 2275
  issue: 6
  year: 2013
  ident: 10.1016/j.inpa.2015.07.003_b0045
  article-title: A new expert system for greenness identification in agricultural images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.10.033
– year: 2004
  ident: 10.1016/j.inpa.2015.07.003_b0075
– volume: 39
  start-page: 11149
  issue: 12
  year: 2012
  ident: 10.1016/j.inpa.2015.07.003_b0065
  article-title: Support vector machines for crop/weeds identification in maize fields
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.03.040
– volume: 75
  start-page: 75
  issue: 1
  year: 2011
  ident: 10.1016/j.inpa.2015.07.003_b0060
  article-title: Automatic segmentation of relevant textures in agricultural images
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2010.09.013
– volume: 10
  start-page: 426
  issue: 4
  year: 2008
  ident: 10.1016/j.inpa.2015.07.003_b0035
  article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2007.09.002
– volume: 48
  start-page: 57
  issue: 4
  year: 2013
  ident: 10.1016/j.inpa.2015.07.003_b0030
  article-title: Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2013.02.011
– volume: 166–167
  start-page: 156
  year: 2012
  ident: 10.1016/j.inpa.2015.07.003_b0010
  article-title: Remotely sensed green area index for winter wheat crop monitoring: 10-year assessment at regional scale over a fragmented landscape
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2012.07.014
– volume: 8
  start-page: 61
  year: 2013
  ident: 10.1016/j.inpa.2015.07.003_b0005
  article-title: Drivers of precision agriculture technologies adoption: a literature review
  publication-title: Proc Technol
  doi: 10.1016/j.protcy.2013.11.010
– volume: 38
  start-page: 271
  year: 1995
  ident: 10.1016/j.inpa.2015.07.003_b0070
  article-title: Shape features for identifying young weeds using image analysis
  publication-title: Trans Am Soc Agric Eng
  doi: 10.13031/2013.27839
– volume: 7
  start-page: 21
  issue: 1
  year: 2006
  ident: 10.1016/j.inpa.2015.07.003_b0080
  article-title: Automated crop and weed monitoring in widely spaced cereals
  publication-title: Precision Agric
  doi: 10.1007/s11119-005-6787-1
– volume: 20
  start-page: 806
  issue: 3
  year: 2010
  ident: 10.1016/j.inpa.2015.07.003_b0090
  article-title: Detecting skin in face recognition systems: a colour spaces study
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2009.10.008
– volume: 78
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.inpa.2015.07.003_b0025
  article-title: An automated stand-alone in-field remote sensing system (SIRSS) for in-season crop monitoring
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2011.04.006
– ident: 10.1016/j.inpa.2015.07.003_b0085
  doi: 10.1109/AIM.2003.1225492
– volume: 174–175
  start-page: 65
  year: 2013
  ident: 10.1016/j.inpa.2015.07.003_b0020
  article-title: Automatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stage
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2013.02.011
SSID ssj0001763400
Score 2.1496627
Snippet Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms color
Complex background
corn
decision support systems
environmental factors
Field crop image
Greenness identification
HSV decision tree
leaves
lighting
monitoring
seedlings
soil
Variable illumination
vegetation
weather
wheat straw
Title Greenness identification based on HSV decision tree
URI https://dx.doi.org/10.1016/j.inpa.2015.07.003
https://www.proquest.com/docview/2084050773
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-InzY1TwTcKSpt3axzkcw6EPzuneStIkUpFuzO3_9y5NFRX24FtbklIuze_ucr-7I-RKgY4JrcppCghJoyiVVDLdpRrMA664Vdqx3e8fuqNpdDeLZw0yqHNhkFbpsb_CdIfW_knHS7OzKIrOJAw5aj_BY1dlBTPKsVILJvHNbr7PWWADRS4TBcdTnOBzZyqaV1EusPwQj10Nz7p31l_99AupnfoZ7pFdbzcG_erT9knDlAdkp_-69LUzzCERjkOD0BUU2pOAnNwDVFU6gIvR5DnQvqtOgPHoIzId3j4NRtT3RKB5CLYY5dIKpm0sFM8jC_LlKsm1sr1EsDwKrdU61Sa1GN3kJkm6LNVCpsYobSWLE3FMmuW8NCckAN-IgTuThCYykQLDRMk4tEzCqspU8LBFeC2JLPcFw7FvxXtWM8PeMpRehtLLGMaxRYtcf81ZVOUyNo6OawFnPxY9AzzfOO-yXo0MdgOGOGRp5usPGAQOK5i4PXH6z3efkW28q_h656S5Wq7NBdgdK9UmW_3x48u47fz2tvvNPgHyntaw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPiz5l4Mwtru43tiEQCClwAw61p19bMmEEQ_n9fu06jJhy8LVvfsnzdvve69_U9hO4E-BiiReanwJB-GKbc54GMfQnhARZYC2nV7sNR3JuGT7NoVkOdai-MkVU67i853bK1O9N0aDYXed4cE4KN96M4slVWWltoG6KB2Oi6-rOH7x8t8AWFdiuKMfCNhds8U-q88mJh6g_hyBbxrJpn_XVQv6ja-p_uAdp3gaPXLp_tENVUcYT22q9LVzxDHSNqRTSGu7xcOhWQBd4zvkp6cNAbv3jStdXxTEL6BE27j5NOz3dNEfyMQDDmY65pIHVEBc5CDQBjkWRS6FZCgywkWkuZSpVqk97EKkniIJWUp0oJqXkQJfQU1Yt5oc6QB4ujANYzCVGhCgVEJoJHRAccppWnFJMGwhUSLHMVw03jindWScPemEGPGfRYYBLZtIHuv2wWZb2MjaOjCmD2Y9YZEPpGu9tqNhh8DibHwQs1X3_AIFixQozbouf_vPcN2ulNhgM26I-eL9CuuVKK9y5RfbVcqysIQlbi2r5knw_W1z8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greenness+identification+based+on+HSV+decision+tree&rft.jtitle=Information+processing+in+agriculture&rft.au=Yang%2C+Wenzhu&rft.au=Wang%2C+Sile&rft.au=Zhao%2C+Xiaolan&rft.au=Zhang%2C+Jingsi&rft.date=2015-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-3173&rft.eissn=2214-3173&rft.volume=2&rft.issue=3-4&rft.spage=149&rft.epage=160&rft_id=info:doi/10.1016%2Fj.inpa.2015.07.003&rft.externalDocID=S2214317315000347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3173&client=summon