Greenness identification based on HSV decision tree
Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness identification are based on visible spectral-index, such as the excess green index, the excess green minus excess red index, the vegetative index, the...
Saved in:
Published in | Information processing in agriculture Vol. 2; no. 3-4; pp. 149 - 160 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2214-3173 2214-3173 |
DOI | 10.1016/j.inpa.2015.07.003 |
Cover
Loading…
Abstract | Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness identification are based on visible spectral-index, such as the excess green index, the excess green minus excess red index, the vegetative index, the color index of vegetation extraction, the combined index. All these visible spectral-index based methods are working on the assumption that plants display a clear high degree of greenness, and soil is the only background element. In fact, the brightness and contrast of an image coming from outdoor environments are seriously affected by the weather conditions and the capture time. The color of the plant varies from dark green to bright green. The back ground elements may contain crop straw, straw ash besides soil. These environmental factors always make the visible spectral-index based methods unable to work correctly. In this paper, an HSV decision tree based method for greenness identification from maize seedling images captured outdoors is proposed. Firstly, the image was converted from RGB color space to HSV color space to avoid influence of illumination. Secondly, most of the background pixels were removed according to their hue values compared with the ones of green plants. Thirdly, the pixels of wheat straws whose hue values were intersected with tender green leaves were eliminated subject to their hues, saturations and values. At last, thresholding was employed to get the green plants. The results indicate that the proposed method can recognize greenness pixels correctly from the crop images captured outdoors. |
---|---|
AbstractList | Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness identification are based on visible spectral-index, such as the excess green index, the excess green minus excess red index, the vegetative index, the color index of vegetation extraction, the combined index. All these visible spectral-index based methods are working on the assumption that plants display a clear high degree of greenness, and soil is the only background element. In fact, the brightness and contrast of an image coming from outdoor environments are seriously affected by the weather conditions and the capture time. The color of the plant varies from dark green to bright green. The back ground elements may contain crop straw, straw ash besides soil. These environmental factors always make the visible spectral-index based methods unable to work correctly. In this paper, an HSV decision tree based method for greenness identification from maize seedling images captured outdoors is proposed. Firstly, the image was converted from RGB color space to HSV color space to avoid influence of illumination. Secondly, most of the background pixels were removed according to their hue values compared with the ones of green plants. Thirdly, the pixels of wheat straws whose hue values were intersected with tender green leaves were eliminated subject to their hues, saturations and values. At last, thresholding was employed to get the green plants. The results indicate that the proposed method can recognize greenness pixels correctly from the crop images captured outdoors. |
Author | Wang, Sile Yang, Wenzhu Zhang, Jingsi Zhao, Xiaolan Feng, Jiaqi |
Author_xml | – sequence: 1 givenname: Wenzhu surname: Yang fullname: Yang, Wenzhu email: wenzhuyang@163.com – sequence: 2 givenname: Sile surname: Wang fullname: Wang, Sile – sequence: 3 givenname: Xiaolan surname: Zhao fullname: Zhao, Xiaolan – sequence: 4 givenname: Jingsi surname: Zhang fullname: Zhang, Jingsi – sequence: 5 givenname: Jiaqi surname: Feng fullname: Feng, Jiaqi |
BookMark | eNp9kE1LAzEQhoNUsNb-AU979LLrJNltsuBFirZCwYMf15BNJpCyzdZkK_jv3bUexENP8zK8z8A8l2QSuoCEXFMoKNDF7bbwYa8LBrQqQBQA_IxMGaNlzqngkz_5gsxT2gIAFQteAkwJX0XEEDClzFsMvXfe6N53IWt0QpsNYf3ynlk0Po3bfqhfkXOn24Tz3zkjb48Pr8t1vnlePS3vN7lhNeM51Y6DdRVvqCldSTltpLGNE5KDKZlz1tYWa8crCRSlXEBtua4RG-s0VJLPyM3x7j52HwdMvdr5ZLBtdcDukBQDWUIFQvChKo9VE7uUIjplfP_zRx-1bxUFNapSWzWqUqMqBUINqgaU_UP30e90_DoN3R0hHP7_9BhVMh6DQesjml7Zzp_CvwH_0oPW |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3036278 crossref_primary_10_1016_j_jenvman_2023_117693 crossref_primary_10_3389_fpls_2024_1357316 crossref_primary_10_1109_ACCESS_2023_3333367 crossref_primary_10_1590_0103_8478cr20200692 crossref_primary_10_1080_13658816_2021_1937632 crossref_primary_10_34133_2021_9792582 crossref_primary_10_1080_01431161_2018_1528017 crossref_primary_10_1080_1343943X_2020_1829490 crossref_primary_10_1109_LRA_2023_3262417 crossref_primary_10_1016_j_biosystemseng_2020_07_013 crossref_primary_10_1007_s11119_019_09697_z crossref_primary_10_1007_s11119_022_09963_7 crossref_primary_10_3389_fpls_2019_00559 crossref_primary_10_1016_j_ifacol_2022_11_133 crossref_primary_10_1007_s11119_022_09908_0 crossref_primary_10_1007_s11119_017_9511_z crossref_primary_10_3390_rs12182982 crossref_primary_10_1088_1755_1315_500_1_012067 crossref_primary_10_1109_ACCESS_2024_3506827 crossref_primary_10_1016_j_biosystemseng_2019_11_001 crossref_primary_10_1007_s10489_023_04880_2 crossref_primary_10_32604_iasc_2021_015225 crossref_primary_10_1007_s10514_020_09903_2 crossref_primary_10_18667_cienciaypoderaereo_709 crossref_primary_10_1371_journal_pone_0222695 crossref_primary_10_22184_1993_7296_FRos_2024_18_4_320_330 crossref_primary_10_1007_s42464_022_00155_6 crossref_primary_10_1016_j_ecolind_2024_112108 crossref_primary_10_31413_nativa_v6i4_5405 |
Cites_doi | 10.1016/j.eswa.2012.07.034 10.1016/j.compag.2012.07.003 10.1016/j.eja.2013.03.005 10.1016/j.biosystemseng.2013.07.014 10.1016/j.eswa.2012.10.033 10.1016/j.eswa.2012.03.040 10.1016/j.compag.2010.09.013 10.1016/j.jag.2007.09.002 10.1016/j.eja.2013.02.011 10.1016/j.agrformet.2012.07.014 10.1016/j.protcy.2013.11.010 10.13031/2013.27839 10.1007/s11119-005-6787-1 10.1016/j.dsp.2009.10.008 10.1016/j.compag.2011.04.006 10.1109/AIM.2003.1225492 10.1016/j.agrformet.2013.02.011 |
ContentType | Journal Article |
Copyright | 2015 China Agricultural University |
Copyright_xml | – notice: 2015 China Agricultural University |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.inpa.2015.07.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2214-3173 |
EndPage | 160 |
ExternalDocumentID | 10_1016_j_inpa_2015_07_003 S2214317315000347 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL SSZ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c2923-1af30df53b1c4f4131b8cdbf7830c42ffdd9de9f35801e88609d3a9eebdfa0583 |
IEDL.DBID | IXB |
ISSN | 2214-3173 |
IngestDate | Fri Jul 11 06:30:54 EDT 2025 Tue Jul 01 03:27:30 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 Wed May 17 02:05:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Variable illumination Complex background Greenness identification Field crop image HSV decision tree |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2923-1af30df53b1c4f4131b8cdbf7830c42ffdd9de9f35801e88609d3a9eebdfa0583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214317315000347 |
PQID | 2084050773 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2084050773 crossref_citationtrail_10_1016_j_inpa_2015_07_003 crossref_primary_10_1016_j_inpa_2015_07_003 elsevier_sciencedirect_doi_10_1016_j_inpa_2015_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October-December 2015 2015-10-00 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October-December 2015 |
PublicationDecade | 2010 |
PublicationTitle | Information processing in agriculture |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xiang, Tian (b0025) 2011; 78 Montalvo, Guerrero, Romeo, Emmi, Guijarro, Pajares (b0055) 2013; 40 Romeo, Pajares, Montalvo, Guerrero, Guijarro, Cruz (b0045) 2013; 40 Lee, Lee (b0030) 2013; 48 Daniel, David, Antonio, Julián, Jose (b0050) 2014; 117 Hague, Tillet, Wheeler (b0080) 2006; 7 Guijarro, Pajares, Riomoros, Herrera, Burgos-Artizzu, Ribeiro (b0060) 2011; 75 Yang (b0040) 2012; 88 Pierpaoli, Carli, Pignatti, Canavari (b0005) 2013; 8 Duveiller, Baret, Defourny (b0010) 2012; 166–167 Jose, Miguel, Juan, Juan (b0090) 2010; 20 Yu, Cao, Wu, Bai, Qin, Zhuo (b0020) 2013; 174–175 Wang, Li, Lu, Fang (b0015) 2013; 49 Guerrero, Pajares, Montalvo, Romeo, Guijarro (b0065) 2012; 39 Neto (b0075) 2004 Woebbecke, Meyer, Von Bargen, Mortensen (b0070) 1995; 38 Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In: Proc. AIM proceeding of advanced intelligent mechatronics. Kobe, Japan; 2003. p. 1079–83. Ma, Wang, Zhang, Hou, Zhuang, He (b0035) 2008; 10 Ma (10.1016/j.inpa.2015.07.003_b0035) 2008; 10 Lee (10.1016/j.inpa.2015.07.003_b0030) 2013; 48 Woebbecke (10.1016/j.inpa.2015.07.003_b0070) 1995; 38 Montalvo (10.1016/j.inpa.2015.07.003_b0055) 2013; 40 Guerrero (10.1016/j.inpa.2015.07.003_b0065) 2012; 39 Yang (10.1016/j.inpa.2015.07.003_b0040) 2012; 88 Duveiller (10.1016/j.inpa.2015.07.003_b0010) 2012; 166–167 Romeo (10.1016/j.inpa.2015.07.003_b0045) 2013; 40 Yu (10.1016/j.inpa.2015.07.003_b0020) 2013; 174–175 Xiang (10.1016/j.inpa.2015.07.003_b0025) 2011; 78 Neto (10.1016/j.inpa.2015.07.003_b0075) 2004 Wang (10.1016/j.inpa.2015.07.003_b0015) 2013; 49 Pierpaoli (10.1016/j.inpa.2015.07.003_b0005) 2013; 8 Daniel (10.1016/j.inpa.2015.07.003_b0050) 2014; 117 Jose (10.1016/j.inpa.2015.07.003_b0090) 2010; 20 10.1016/j.inpa.2015.07.003_b0085 Guijarro (10.1016/j.inpa.2015.07.003_b0060) 2011; 75 Hague (10.1016/j.inpa.2015.07.003_b0080) 2006; 7 |
References_xml | – reference: Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In: Proc. AIM proceeding of advanced intelligent mechatronics. Kobe, Japan; 2003. p. 1079–83. – volume: 20 start-page: 806 year: 2010 end-page: 823 ident: b0090 article-title: Detecting skin in face recognition systems: a colour spaces study publication-title: Digital Signal Process – year: 2004 ident: b0075 article-title: A combined statistical-soft computing approach for classification and mapping weed species in minimum tillage systems – volume: 78 start-page: 1 year: 2011 end-page: 8 ident: b0025 article-title: An automated stand-alone in-field remote sensing system (SIRSS) for in-season crop monitoring publication-title: Comput Electron Agric – volume: 49 start-page: 126 year: 2013 end-page: 140 ident: b0015 article-title: Estimating near future regional corn yields by integrating multi-source observations into a crop growth model publication-title: Eur J Agron – volume: 48 start-page: 57 year: 2013 end-page: 65 ident: b0030 article-title: Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis publication-title: Eur J Agron – volume: 39 start-page: 11149 year: 2012 end-page: 11155 ident: b0065 article-title: Support vector machines for crop/weeds identification in maize fields publication-title: Expert Syst Appl – volume: 8 start-page: 61 year: 2013 end-page: 69 ident: b0005 article-title: Drivers of precision agriculture technologies adoption: a literature review publication-title: Proc Technol – volume: 88 start-page: 13 year: 2012 end-page: 24 ident: b0040 article-title: A high-resolution airborne four-camera imaging system for agricultural remote sensing publication-title: Comput Electron Agric – volume: 10 start-page: 426 year: 2008 end-page: 437 ident: b0035 article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data publication-title: Int J Appl Earth Obs Geoinf – volume: 38 start-page: 271 year: 1995 end-page: 281 ident: b0070 article-title: Shape features for identifying young weeds using image analysis publication-title: Trans Am Soc Agric Eng – volume: 166–167 start-page: 156 year: 2012 end-page: 168 ident: b0010 article-title: Remotely sensed green area index for winter wheat crop monitoring: 10-year assessment at regional scale over a fragmented landscape publication-title: Agric For Meteorol – volume: 7 start-page: 21 year: 2006 end-page: 32 ident: b0080 article-title: Automated crop and weed monitoring in widely spaced cereals publication-title: Precision Agric – volume: 174–175 start-page: 65 year: 2013 end-page: 84 ident: b0020 article-title: Automatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stage publication-title: Agric For Meteorol – volume: 117 start-page: 23 year: 2014 end-page: 34 ident: b0050 article-title: A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain publication-title: Biosyst Eng – volume: 40 start-page: 75 year: 2013 end-page: 82 ident: b0055 article-title: Automatic expert system for weeds/crops identification in images from maize fields publication-title: Expert Syst Appl – volume: 40 start-page: 2275 year: 2013 end-page: 2286 ident: b0045 article-title: A new expert system for greenness identification in agricultural images publication-title: Expert Syst Appl – volume: 75 start-page: 75 year: 2011 end-page: 83 ident: b0060 article-title: Automatic segmentation of relevant textures in agricultural images publication-title: Comput Electron Agric – volume: 40 start-page: 75 issue: 1 year: 2013 ident: 10.1016/j.inpa.2015.07.003_b0055 article-title: Automatic expert system for weeds/crops identification in images from maize fields publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.034 – volume: 88 start-page: 13 year: 2012 ident: 10.1016/j.inpa.2015.07.003_b0040 article-title: A high-resolution airborne four-camera imaging system for agricultural remote sensing publication-title: Comput Electron Agric doi: 10.1016/j.compag.2012.07.003 – volume: 49 start-page: 126 year: 2013 ident: 10.1016/j.inpa.2015.07.003_b0015 article-title: Estimating near future regional corn yields by integrating multi-source observations into a crop growth model publication-title: Eur J Agron doi: 10.1016/j.eja.2013.03.005 – volume: 117 start-page: 23 year: 2014 ident: 10.1016/j.inpa.2015.07.003_b0050 article-title: A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2013.07.014 – volume: 40 start-page: 2275 issue: 6 year: 2013 ident: 10.1016/j.inpa.2015.07.003_b0045 article-title: A new expert system for greenness identification in agricultural images publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.10.033 – year: 2004 ident: 10.1016/j.inpa.2015.07.003_b0075 – volume: 39 start-page: 11149 issue: 12 year: 2012 ident: 10.1016/j.inpa.2015.07.003_b0065 article-title: Support vector machines for crop/weeds identification in maize fields publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.03.040 – volume: 75 start-page: 75 issue: 1 year: 2011 ident: 10.1016/j.inpa.2015.07.003_b0060 article-title: Automatic segmentation of relevant textures in agricultural images publication-title: Comput Electron Agric doi: 10.1016/j.compag.2010.09.013 – volume: 10 start-page: 426 issue: 4 year: 2008 ident: 10.1016/j.inpa.2015.07.003_b0035 article-title: Monitoring winter wheat growth in North China by combining a crop model and remote sensing data publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2007.09.002 – volume: 48 start-page: 57 issue: 4 year: 2013 ident: 10.1016/j.inpa.2015.07.003_b0030 article-title: Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis publication-title: Eur J Agron doi: 10.1016/j.eja.2013.02.011 – volume: 166–167 start-page: 156 year: 2012 ident: 10.1016/j.inpa.2015.07.003_b0010 article-title: Remotely sensed green area index for winter wheat crop monitoring: 10-year assessment at regional scale over a fragmented landscape publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2012.07.014 – volume: 8 start-page: 61 year: 2013 ident: 10.1016/j.inpa.2015.07.003_b0005 article-title: Drivers of precision agriculture technologies adoption: a literature review publication-title: Proc Technol doi: 10.1016/j.protcy.2013.11.010 – volume: 38 start-page: 271 year: 1995 ident: 10.1016/j.inpa.2015.07.003_b0070 article-title: Shape features for identifying young weeds using image analysis publication-title: Trans Am Soc Agric Eng doi: 10.13031/2013.27839 – volume: 7 start-page: 21 issue: 1 year: 2006 ident: 10.1016/j.inpa.2015.07.003_b0080 article-title: Automated crop and weed monitoring in widely spaced cereals publication-title: Precision Agric doi: 10.1007/s11119-005-6787-1 – volume: 20 start-page: 806 issue: 3 year: 2010 ident: 10.1016/j.inpa.2015.07.003_b0090 article-title: Detecting skin in face recognition systems: a colour spaces study publication-title: Digital Signal Process doi: 10.1016/j.dsp.2009.10.008 – volume: 78 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.inpa.2015.07.003_b0025 article-title: An automated stand-alone in-field remote sensing system (SIRSS) for in-season crop monitoring publication-title: Comput Electron Agric doi: 10.1016/j.compag.2011.04.006 – ident: 10.1016/j.inpa.2015.07.003_b0085 doi: 10.1109/AIM.2003.1225492 – volume: 174–175 start-page: 65 year: 2013 ident: 10.1016/j.inpa.2015.07.003_b0020 article-title: Automatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stage publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2013.02.011 |
SSID | ssj0001763400 |
Score | 2.1496627 |
Snippet | Greenness identification from crop images captured outdoors is the important step for crop growth monitoring. The commonly used methods for greenness... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 149 |
SubjectTerms | color Complex background corn decision support systems environmental factors Field crop image Greenness identification HSV decision tree leaves lighting monitoring seedlings soil Variable illumination vegetation weather wheat straw |
Title | Greenness identification based on HSV decision tree |
URI | https://dx.doi.org/10.1016/j.inpa.2015.07.003 https://www.proquest.com/docview/2084050773 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-InzY1TwTcKSpt3axzkcw6EPzuneStIkUpFuzO3_9y5NFRX24FtbklIuze_ucr-7I-RKgY4JrcppCghJoyiVVDLdpRrMA664Vdqx3e8fuqNpdDeLZw0yqHNhkFbpsb_CdIfW_knHS7OzKIrOJAw5aj_BY1dlBTPKsVILJvHNbr7PWWADRS4TBcdTnOBzZyqaV1EusPwQj10Nz7p31l_99AupnfoZ7pFdbzcG_erT9knDlAdkp_-69LUzzCERjkOD0BUU2pOAnNwDVFU6gIvR5DnQvqtOgPHoIzId3j4NRtT3RKB5CLYY5dIKpm0sFM8jC_LlKsm1sr1EsDwKrdU61Sa1GN3kJkm6LNVCpsYobSWLE3FMmuW8NCckAN-IgTuThCYykQLDRMk4tEzCqspU8LBFeC2JLPcFw7FvxXtWM8PeMpRehtLLGMaxRYtcf81ZVOUyNo6OawFnPxY9AzzfOO-yXo0MdgOGOGRp5usPGAQOK5i4PXH6z3efkW28q_h656S5Wq7NBdgdK9UmW_3x48u47fz2tvvNPgHyntaw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPiz5l4Mwtru43tiEQCClwAw61p19bMmEEQ_n9fu06jJhy8LVvfsnzdvve69_U9hO4E-BiiReanwJB-GKbc54GMfQnhARZYC2nV7sNR3JuGT7NoVkOdai-MkVU67i853bK1O9N0aDYXed4cE4KN96M4slVWWltoG6KB2Oi6-rOH7x8t8AWFdiuKMfCNhds8U-q88mJh6g_hyBbxrJpn_XVQv6ja-p_uAdp3gaPXLp_tENVUcYT22q9LVzxDHSNqRTSGu7xcOhWQBd4zvkp6cNAbv3jStdXxTEL6BE27j5NOz3dNEfyMQDDmY65pIHVEBc5CDQBjkWRS6FZCgywkWkuZSpVqk97EKkniIJWUp0oJqXkQJfQU1Yt5oc6QB4ujANYzCVGhCgVEJoJHRAccppWnFJMGwhUSLHMVw03jindWScPemEGPGfRYYBLZtIHuv2wWZb2MjaOjCmD2Y9YZEPpGu9tqNhh8DibHwQs1X3_AIFixQozbouf_vPcN2ulNhgM26I-eL9CuuVKK9y5RfbVcqysIQlbi2r5knw_W1z8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greenness+identification+based+on+HSV+decision+tree&rft.jtitle=Information+processing+in+agriculture&rft.au=Yang%2C+Wenzhu&rft.au=Wang%2C+Sile&rft.au=Zhao%2C+Xiaolan&rft.au=Zhang%2C+Jingsi&rft.date=2015-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-3173&rft.eissn=2214-3173&rft.volume=2&rft.issue=3-4&rft.spage=149&rft.epage=160&rft_id=info:doi/10.1016%2Fj.inpa.2015.07.003&rft.externalDocID=S2214317315000347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3173&client=summon |