Optimized Resonators for Piezoelectric Power Conversion
The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant fre...
Saved in:
Published in | IEEE open journal of power electronics Vol. 2; pp. 212 - 224 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant frequencies, making them a promising technology for further miniaturizing dc-dc converters. In this paper we analyze the impact of resonator parameters on the performance of the piezoelectric resonator based dc-dc converter, derive the optimal load impedance and efficiency limits, and analyze the impacts of varying conversion ratio and load impedance. This work is accompanied by a prototype dc-dc converter using a piezoelectric resonator fabricated from lithium niobate. The piezoelectric resonator has a quality factor of 4178 and a coupling coefficient, <inline-formula><tex-math notation="LaTeX">k_t^2</tex-math></inline-formula>, of 29%. The converter is able to achieve high efficiency zero voltage switching and a continuously variable conversion ratio without the use of any discrete inductors. It achieves a maximum power output of 30.9 W at an efficiency of 95.2% with a power density of 6.76 <inline-formula><tex-math notation="LaTeX">\frac{\text {W}}{\text {cm}^3}</tex-math></inline-formula>. |
---|---|
AbstractList | The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant frequencies, making them a promising technology for further miniaturizing dc-dc converters. In this paper we analyze the impact of resonator parameters on the performance of the piezoelectric resonator based dc-dc converter, derive the optimal load impedance and efficiency limits, and analyze the impacts of varying conversion ratio and load impedance. This work is accompanied by a prototype dc-dc converter using a piezoelectric resonator fabricated from lithium niobate. The piezoelectric resonator has a quality factor of 4178 and a coupling coefficient, <tex-math notation="LaTeX">$k_t^2$</tex-math>, of 29%. The converter is able to achieve high efficiency zero voltage switching and a continuously variable conversion ratio without the use of any discrete inductors. It achieves a maximum power output of 30.9 W at an efficiency of 95.2% with a power density of 6.76 <tex-math notation="LaTeX">$\frac{\text {W}}{\text {cm}^3}$</tex-math>. The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant frequencies, making them a promising technology for further miniaturizing dc-dc converters. In this paper we analyze the impact of resonator parameters on the performance of the piezoelectric resonator based dc-dc converter, derive the optimal load impedance and efficiency limits, and analyze the impacts of varying conversion ratio and load impedance. This work is accompanied by a prototype dc-dc converter using a piezoelectric resonator fabricated from lithium niobate. The piezoelectric resonator has a quality factor of 4178 and a coupling coefficient, <inline-formula><tex-math notation="LaTeX">k_t^2</tex-math></inline-formula>, of 29%. The converter is able to achieve high efficiency zero voltage switching and a continuously variable conversion ratio without the use of any discrete inductors. It achieves a maximum power output of 30.9 W at an efficiency of 95.2% with a power density of 6.76 <inline-formula><tex-math notation="LaTeX">\frac{\text {W}}{\text {cm}^3}</tex-math></inline-formula>. |
Author | Jeronimo Segovia-Fernandez, Jeronimo Lu, Ruochen Gu, Lei Stolt, Eric A. Chakraborty, Sombuddha Braun, Weston D. Rivas-Davila, Juan M. |
Author_xml | – sequence: 1 givenname: Weston D. orcidid: 0000-0003-1363-2245 surname: Braun fullname: Braun, Weston D. email: wdb@stanford.edu organization: Electrical Engineering, Stanford University, Stanford, California, USA – sequence: 2 givenname: Eric A. surname: Stolt fullname: Stolt, Eric A. email: stolt@stanford.edu organization: Electrical Engineering, Stanford University, Stanford, California, USA – sequence: 3 givenname: Lei orcidid: 0000-0001-9556-6426 surname: Gu fullname: Gu, Lei email: leigu@stanford.edu organization: Electrical Engineering, Stanford University, Stanford, California, USA – sequence: 4 givenname: Jeronimo surname: Jeronimo Segovia-Fernandez fullname: Jeronimo Segovia-Fernandez, Jeronimo email: jeronimo.segovia@ti.com organization: Kilby Labs, Texas Instruments Inc., Santa Clara, CA, USA – sequence: 5 givenname: Sombuddha orcidid: 0000-0003-0982-8296 surname: Chakraborty fullname: Chakraborty, Sombuddha email: s-chakraborty@ti.com organization: Kilby Labs, Texas Instruments Inc., Santa Clara, CA, USA – sequence: 6 givenname: Ruochen orcidid: 0000-0003-0025-3924 surname: Lu fullname: Lu, Ruochen email: ruochen@utexas.edu organization: Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, USA – sequence: 7 givenname: Juan M. orcidid: 0000-0003-2494-8579 surname: Rivas-Davila fullname: Rivas-Davila, Juan M. email: jmrivas@stanford.edu organization: Electrical Engineering, Stanford University, Stanford, California, USA |
BookMark | eNp9kM1KAzEUhYNUsNa-gG7mBVpvfmYms5RStVJoEV2HNLmRlOmkJINin97pjyIuXN3Lge9wzrkkvSY0SMg1hTGlUN0unpbT-ZgBo2MORQkMzkifFUKMKKei9-u_IMOU1gDAcko7oU_Kxbb1G79Dmz1jCo1uQ0yZCzFbetwFrNG00ZtsGT4wZpPQvGNMPjRX5NzpOuHwdAfk9X76MnkczRcPs8ndfGRYxWBkjKA0Z1obELmjK0TGrSggNxYcsILTHG1XQljexS6qSgpTWUZLIzlwt-IDMjv62qDXahv9RsdPFbRXByHEN6Vj602NilOXgyyYMc4KWVpZOCmtgNKICtCKzksevUwMKUV0yvhWt12bNmpfKwpqv6c67Kn2e6rTnh3K_qDfUf6Fbo6QR8QfoOKSFoLzL8fJgWI |
CODEN | IOJPA6 |
CitedBy_id | crossref_primary_10_1109_JMEMS_2021_3114627 crossref_primary_10_1109_ACCESS_2023_3272504 crossref_primary_10_1109_TPEL_2021_3115182 crossref_primary_10_1109_TUFFC_2023_3303123 crossref_primary_10_1109_TPEL_2023_3276478 crossref_primary_10_1109_JSSC_2024_3434980 crossref_primary_10_1109_TPEL_2022_3142997 crossref_primary_10_3390_mi15040477 crossref_primary_10_3390_electronics11233983 crossref_primary_10_1109_OJPEL_2021_3128509 crossref_primary_10_1109_JESTPE_2021_3128595 crossref_primary_10_1109_TPEL_2021_3114350 crossref_primary_10_1541_ieejjia_22008217 crossref_primary_10_1088_1361_6439_ac288f crossref_primary_10_1109_TPEL_2022_3217773 crossref_primary_10_1016_j_nanoen_2024_109856 crossref_primary_10_1109_OJPEL_2024_3365029 crossref_primary_10_1109_TPEL_2023_3334211 crossref_primary_10_1109_TPEL_2024_3457867 crossref_primary_10_1109_MMM_2021_3132111 |
Cites_doi | 10.1109/ULTSYM.2001.991846 10.1109/JMEMS.2020.2982775 10.1049/ip-epa:20030254 10.1109/INTLEC.1992.268407 10.1109/MEMSYS.2017.7863571 10.1016/S0921-5107(02)00517-2 10.1038/s41467-019-09680-2 10.1109/ICPE.2011.5944656 10.1109/ULTSYM.2004.1417696 10.1109/JESTPE.2019.2934429 10.1109/JMEMS.2019.2892708 10.1109/FCS.2018.8597475 10.1002/mmce.20550 10.1063/1.124055 10.1109/TPEL.2020.3004147 10.1109/JRPROC.1928.221466 10.1109/3DPEIM.2016.7570571 10.1109/TPEL.2019.2900526 10.1109/ULTSYM.2019.8925617 10.1109/LED.2012.2230609 10.1109/TUFFC.2004.1320823 10.1063/1.1660528 10.1109/APEC39645.2020.9124606 10.1109/ULTSYM.2010.5935436 10.7567/JJAP.50.09ND20 10.1109/TPEL.2017.2776609 10.1109/TPEL.2015.2514084 10.1109/COMPEL.2015.7236436 10.1109/ISAF.2004.1418378 10.1016/0022-3697(66)90071-0 10.1109/TUFFC.2010.1485 10.1109/TPEL.2018.2868447 10.1109/APEC.2009.4802910 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/OJPEL.2021.3067020 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2644-1314 |
EndPage | 224 |
ExternalDocumentID | oai_doaj_org_article_31f50862ccfd487d86f88d407c490ed4 10_1109_OJPEL_2021_3067020 9381643 |
Genre | orig-research |
GrantInformation_xml | – fundername: Texas Instruments funderid: 10.13039/100004361 – fundername: nano@Stanford labs – fundername: National Nanotechnology Coordinated Infrastructure grantid: ECCS-1542152 – fundername: Stanford's SystemX Alliance – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c2920-cc41152aac045f1bee23d4605cd0f026315ed1104d302069984c9d217c8303fb3 |
IEDL.DBID | RIE |
ISSN | 2644-1314 |
IngestDate | Wed Aug 27 01:21:53 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 Tue Jul 01 00:47:49 EDT 2025 Wed Aug 27 01:53:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2920-cc41152aac045f1bee23d4605cd0f026315ed1104d302069984c9d217c8303fb3 |
ORCID | 0000-0003-1363-2245 0000-0001-9556-6426 0000-0003-0982-8296 0000-0003-2494-8579 0000-0003-0025-3924 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9381643 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_OJPEL_2021_3067020 crossref_primary_10_1109_OJPEL_2021_3067020 ieee_primary_9381643 doaj_primary_oai_doaj_org_article_31f50862ccfd487d86f88d407c490ed4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE open journal of power electronics |
PublicationTitleAbbrev | OJPEL |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 van dyke (ref6) 1928; 16 ref31 ref30 ref33 ref11 ref32 ref10 segovia-fernandez (ref4) 0 ruby (ref17) 2005; 217 ref2 ref1 ref39 ref16 ref19 ref18 eisner (ref38) 2021; 21 chandorkar (ref3) 0 ref24 ref23 ref26 ref25 ref20 ref41 ref28 ref27 du (ref34) 2004; 51 ref29 ref8 (ref22) 1988 ref7 ref9 ref5 ref40 (ref21) 0 |
References_xml | – ident: ref36 doi: 10.1109/ULTSYM.2001.991846 – ident: ref31 doi: 10.1109/JMEMS.2020.2982775 – ident: ref32 doi: 10.1049/ip-epa:20030254 – ident: ref30 doi: 10.1109/INTLEC.1992.268407 – ident: ref35 doi: 10.1109/MEMSYS.2017.7863571 – year: 1988 ident: ref22 article-title: IEEE Standard on Piezoelectricity – ident: ref15 doi: 10.1016/S0921-5107(02)00517-2 – ident: ref27 doi: 10.1038/s41467-019-09680-2 – ident: ref40 doi: 10.1109/ICPE.2011.5944656 – ident: ref28 doi: 10.1109/ULTSYM.2004.1417696 – ident: ref8 doi: 10.1109/JESTPE.2019.2934429 – ident: ref26 doi: 10.1109/MEMSYS.2017.7863571 – ident: ref16 doi: 10.1109/JMEMS.2019.2892708 – ident: ref41 doi: 10.1109/FCS.2018.8597475 – year: 0 ident: ref21 article-title: APC International Ltd. publication-title: Physical and Piezoelectric Properties of APCI Materials – start-page: 74 year: 0 ident: ref3 article-title: Limits of quality factor in bulk-mode micromechanical resonators publication-title: Proc IEEE 21st Int Conf Micro Electro Mech Syst – ident: ref37 doi: 10.1002/mmce.20550 – ident: ref20 doi: 10.1063/1.124055 – ident: ref10 doi: 10.1109/TPEL.2020.3004147 – volume: 217 start-page: 217 year: 2005 ident: ref17 article-title: The effect of perimeter geometry on FBAR resonator electrical performance publication-title: Microwave Symp Dig – volume: 16 start-page: 742 year: 1928 ident: ref6 article-title: the piezo-electric resonator and its equivalent network publication-title: Proceedings of the IRE doi: 10.1109/JRPROC.1928.221466 – ident: ref2 doi: 10.1109/3DPEIM.2016.7570571 – ident: ref11 doi: 10.1109/TPEL.2019.2900526 – ident: ref25 doi: 10.1109/ULTSYM.2019.8925617 – ident: ref23 doi: 10.1109/LED.2012.2230609 – volume: 51 start-page: 502 year: 2004 ident: ref34 article-title: High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode publication-title: IEEE Trans Ultrason Ferroelectr Freq Control doi: 10.1109/TUFFC.2004.1320823 – ident: ref18 doi: 10.1063/1.1660528 – ident: ref29 doi: 10.1109/LED.2012.2230609 – ident: ref13 doi: 10.1109/APEC39645.2020.9124606 – volume: 21 year: 2021 ident: ref38 article-title: A laterally vibrating lithium niobate mems resonator array operating at 500 $^{\circ }$C in air publication-title: SENSORS – ident: ref24 doi: 10.1109/ULTSYM.2010.5935436 – ident: ref12 doi: 10.7567/JJAP.50.09ND20 – ident: ref5 doi: 10.1109/TPEL.2017.2776609 – ident: ref1 doi: 10.1109/TPEL.2015.2514084 – ident: ref7 doi: 10.1109/COMPEL.2015.7236436 – ident: ref33 doi: 10.1109/ISAF.2004.1418378 – ident: ref14 doi: 10.1016/0022-3697(66)90071-0 – ident: ref19 doi: 10.1109/TUFFC.2010.1485 – ident: ref9 doi: 10.1109/TPEL.2018.2868447 – ident: ref39 doi: 10.1109/APEC.2009.4802910 – start-page: 1 year: 0 ident: ref4 article-title: Monolithic ALN mems-CMOS resonant transformer for wake-up receivers publication-title: Proc IEEE Int Ultrasonics Symp |
SSID | ssj0002511131 |
Score | 2.3160977 |
Snippet | The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters.... |
SourceID | doaj crossref ieee |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 212 |
SubjectTerms | Capacitance DC-DC power converters Inductors Integrated circuit modeling piezoelectric devices Resonators RLC circuits Switches |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBDlSxnYUKhdO2k8QlVUVUA7UKlblPguUiVIEZSlv547J63CAgtr5FjOOzt-zx_3hLhGLUHKLAkBbBIaKkRDCqkvs9NtpjIVJ3w5-ek5Hs3MeB7NG1ZffCasSg9cAdfVqoiYdjtXAJFrSOIiSYBkiDNWIvhMoDTnNcQU_4OZOCutNrdkpO1OxtPhI-nBnrpllizZ4LsxE_mE_T8cVvwE83Ag9mtmGNxVLToUO1geib1GvsC26E9ogL8t1ggBL7uXLJg_A6KdwXSB62VlabNwwZStz4IBHyj3q2HHYvYwfBmMwtr5IHTsHhU6Z4ip9bLMEeMqVI7Y08A7mA5kQapJqwiBPsuApg-JSTIZZ4HUhUtoSipyfSJa5bLEUxEogh8cRrmxSIhFOZImtJHpowOFCjtCbVBIXZ0WnN0pXlMvD6RNPXIpI5fWyHXEzfad9yopxq-l7xncbUlOaO0fUJjTOszpX2HuiDaHZluJ5Q1Po8_-o-5zscvtrRZWLkRr9fGFl0Q1VvmV71Xf50_MbA priority: 102 providerName: Directory of Open Access Journals |
Title | Optimized Resonators for Piezoelectric Power Conversion |
URI | https://ieeexplore.ieee.org/document/9381643 https://doaj.org/article/31f50862ccfd487d86f88d407c490ed4 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz34QiM-SA_etNCl29IelUAIEeEgCbem3Z0mRC1G4cLB3-7MtjRqjPHSNJvdZjKz251vdmc-gCt0He04cWBrHQa2pE60pJDmMjPdxiIWfsDJyeMHfziTo7k3r8BNmQuDiObyGbb41Zzl66Vac6isHfIpl3SrUCXgludqlfEUdpWFK7Z5MU7Ynoym_XtCgB3RYr_YYUrvL3uPKdH_jVPFbCmDfRhvhclvkjy11qukpTY_6jT-V9oD2Ct8S-s2nwyHUMHsCHa_VBysQ3dCv4iXxQa1xYH7jCH3u0WOqzVd4GaZk-IslDVl8jSrx1fSTTztGGaD_mNvaBfcCbZi_ilbKUm-XieOFflsqUgQO67mM1ClnZRwlys81KQmqV1SjE-gS6pQEz5RAW1qaeKeQC1bZngKliADaoVeIkOUoeMlSKgy9GQXlRYosAFiq9VIFYXFmd_iOTIAwwkjY4mILREVlmjAdTnmNS-r8WfvOzZW2ZNLYpsG0ndUrLDIFanH-EypVBMK04GfBoEmvKpIaNSyAXW2UfmRwjxnvzefww5LkAdbLqC2elvjJbkfq6RpYDs9xx_9ppmDn9TG2Dc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAHXgMxnj1wg5ZmTbv2CIhpjA12AGm3qk1caQI6BNtlvx477SpACHGrorSy7KT258T-AE7Rc7XrJqGtdRTakibRlkJay8x0m4hEBCEXJw_ug-6T7I38UQ3Oq1oYRDSXz9DhR3OWrydqxqmyi4hPuaS3BMvk931RVGtVGRUOloUnFpUxbnTx0Bve9AkDtoTDkbHLpN5fvI9p0v-NVcU4lc4GDBbiFHdJnp3ZNHXU_Eenxv_KuwnrZXRpXRbLYQtqmG_D2peegw1oP9BP4nU8R21x6j5n0P1hUehqDcc4nxS0OGNlDZk-zbrmS-kmo7YDT52bx-uuXbIn2IoZqGylJEV7rSRRFLVlIkVseZpPQZV2M0JenvBRk5qk9kgxAcEuqSJNCEWF5Nay1NuFej7JcQ8sQSbUCv1URigj10-RcGXkyzYqLVBgE8RCq7EqW4szw8VLbCCGG8XGEjFbIi4t0YSz6p23orHGn7Ov2FjVTG6KbQZI33G5x2JPZD4jNKUyTThMh0EWhpoQqyKhUcsmNNhG1UdK8-z_PnwCK93HQT_u397fHcAqS1OkXg6hPn2f4REFI9P02KzBTxUz2Vo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Resonators+for+Piezoelectric+Power+Conversion&rft.jtitle=IEEE+open+journal+of+power+electronics&rft.au=Braun%2C+Weston+D.&rft.au=Stolt%2C+Eric+A.&rft.au=Gu%2C+Lei&rft.au=Segovia-Fernandez%2C+Jeronimo&rft.date=2021&rft.issn=2644-1314&rft.eissn=2644-1314&rft.volume=2&rft.spage=212&rft.epage=224&rft_id=info:doi/10.1109%2FOJPEL.2021.3067020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJPEL_2021_3067020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1314&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1314&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1314&client=summon |