Optimized Resonators for Piezoelectric Power Conversion

The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant fre...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of power electronics Vol. 2; pp. 212 - 224
Main Authors Braun, Weston D., Stolt, Eric A., Gu, Lei, Jeronimo Segovia-Fernandez, Jeronimo, Chakraborty, Sombuddha, Lu, Ruochen, Rivas-Davila, Juan M.
Format Journal Article
LanguageEnglish
Published IEEE 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant frequencies, making them a promising technology for further miniaturizing dc-dc converters. In this paper we analyze the impact of resonator parameters on the performance of the piezoelectric resonator based dc-dc converter, derive the optimal load impedance and efficiency limits, and analyze the impacts of varying conversion ratio and load impedance. This work is accompanied by a prototype dc-dc converter using a piezoelectric resonator fabricated from lithium niobate. The piezoelectric resonator has a quality factor of 4178 and a coupling coefficient, <inline-formula><tex-math notation="LaTeX">k_t^2</tex-math></inline-formula>, of 29%. The converter is able to achieve high efficiency zero voltage switching and a continuously variable conversion ratio without the use of any discrete inductors. It achieves a maximum power output of 30.9 W at an efficiency of 95.2% with a power density of 6.76 <inline-formula><tex-math notation="LaTeX">\frac{\text {W}}{\text {cm}^3}</tex-math></inline-formula>.
AbstractList The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant frequencies, making them a promising technology for further miniaturizing dc-dc converters. In this paper we analyze the impact of resonator parameters on the performance of the piezoelectric resonator based dc-dc converter, derive the optimal load impedance and efficiency limits, and analyze the impacts of varying conversion ratio and load impedance. This work is accompanied by a prototype dc-dc converter using a piezoelectric resonator fabricated from lithium niobate. The piezoelectric resonator has a quality factor of 4178 and a coupling coefficient, <tex-math notation="LaTeX">$k_t^2$</tex-math>, of 29%. The converter is able to achieve high efficiency zero voltage switching and a continuously variable conversion ratio without the use of any discrete inductors. It achieves a maximum power output of 30.9 W at an efficiency of 95.2% with a power density of 6.76 <tex-math notation="LaTeX">$\frac{\text {W}}{\text {cm}^3}$</tex-math>.
The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters. Piezoelectric resonators can have a very high quality factor and provide an inductive impedance between their series and parallel resonant frequencies, making them a promising technology for further miniaturizing dc-dc converters. In this paper we analyze the impact of resonator parameters on the performance of the piezoelectric resonator based dc-dc converter, derive the optimal load impedance and efficiency limits, and analyze the impacts of varying conversion ratio and load impedance. This work is accompanied by a prototype dc-dc converter using a piezoelectric resonator fabricated from lithium niobate. The piezoelectric resonator has a quality factor of 4178 and a coupling coefficient, <inline-formula><tex-math notation="LaTeX">k_t^2</tex-math></inline-formula>, of 29%. The converter is able to achieve high efficiency zero voltage switching and a continuously variable conversion ratio without the use of any discrete inductors. It achieves a maximum power output of 30.9 W at an efficiency of 95.2% with a power density of 6.76 <inline-formula><tex-math notation="LaTeX">\frac{\text {W}}{\text {cm}^3}</tex-math></inline-formula>.
Author Jeronimo Segovia-Fernandez, Jeronimo
Lu, Ruochen
Gu, Lei
Stolt, Eric A.
Chakraborty, Sombuddha
Braun, Weston D.
Rivas-Davila, Juan M.
Author_xml – sequence: 1
  givenname: Weston D.
  orcidid: 0000-0003-1363-2245
  surname: Braun
  fullname: Braun, Weston D.
  email: wdb@stanford.edu
  organization: Electrical Engineering, Stanford University, Stanford, California, USA
– sequence: 2
  givenname: Eric A.
  surname: Stolt
  fullname: Stolt, Eric A.
  email: stolt@stanford.edu
  organization: Electrical Engineering, Stanford University, Stanford, California, USA
– sequence: 3
  givenname: Lei
  orcidid: 0000-0001-9556-6426
  surname: Gu
  fullname: Gu, Lei
  email: leigu@stanford.edu
  organization: Electrical Engineering, Stanford University, Stanford, California, USA
– sequence: 4
  givenname: Jeronimo
  surname: Jeronimo Segovia-Fernandez
  fullname: Jeronimo Segovia-Fernandez, Jeronimo
  email: jeronimo.segovia@ti.com
  organization: Kilby Labs, Texas Instruments Inc., Santa Clara, CA, USA
– sequence: 5
  givenname: Sombuddha
  orcidid: 0000-0003-0982-8296
  surname: Chakraborty
  fullname: Chakraborty, Sombuddha
  email: s-chakraborty@ti.com
  organization: Kilby Labs, Texas Instruments Inc., Santa Clara, CA, USA
– sequence: 6
  givenname: Ruochen
  orcidid: 0000-0003-0025-3924
  surname: Lu
  fullname: Lu, Ruochen
  email: ruochen@utexas.edu
  organization: Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, USA
– sequence: 7
  givenname: Juan M.
  orcidid: 0000-0003-2494-8579
  surname: Rivas-Davila
  fullname: Rivas-Davila, Juan M.
  email: jmrivas@stanford.edu
  organization: Electrical Engineering, Stanford University, Stanford, California, USA
BookMark eNp9kM1KAzEUhYNUsNa-gG7mBVpvfmYms5RStVJoEV2HNLmRlOmkJINin97pjyIuXN3Lge9wzrkkvSY0SMg1hTGlUN0unpbT-ZgBo2MORQkMzkifFUKMKKei9-u_IMOU1gDAcko7oU_Kxbb1G79Dmz1jCo1uQ0yZCzFbetwFrNG00ZtsGT4wZpPQvGNMPjRX5NzpOuHwdAfk9X76MnkczRcPs8ndfGRYxWBkjKA0Z1obELmjK0TGrSggNxYcsILTHG1XQljexS6qSgpTWUZLIzlwt-IDMjv62qDXahv9RsdPFbRXByHEN6Vj602NilOXgyyYMc4KWVpZOCmtgNKICtCKzksevUwMKUV0yvhWt12bNmpfKwpqv6c67Kn2e6rTnh3K_qDfUf6Fbo6QR8QfoOKSFoLzL8fJgWI
CODEN IOJPA6
CitedBy_id crossref_primary_10_1109_JMEMS_2021_3114627
crossref_primary_10_1109_ACCESS_2023_3272504
crossref_primary_10_1109_TPEL_2021_3115182
crossref_primary_10_1109_TUFFC_2023_3303123
crossref_primary_10_1109_TPEL_2023_3276478
crossref_primary_10_1109_JSSC_2024_3434980
crossref_primary_10_1109_TPEL_2022_3142997
crossref_primary_10_3390_mi15040477
crossref_primary_10_3390_electronics11233983
crossref_primary_10_1109_OJPEL_2021_3128509
crossref_primary_10_1109_JESTPE_2021_3128595
crossref_primary_10_1109_TPEL_2021_3114350
crossref_primary_10_1541_ieejjia_22008217
crossref_primary_10_1088_1361_6439_ac288f
crossref_primary_10_1109_TPEL_2022_3217773
crossref_primary_10_1016_j_nanoen_2024_109856
crossref_primary_10_1109_OJPEL_2024_3365029
crossref_primary_10_1109_TPEL_2023_3334211
crossref_primary_10_1109_TPEL_2024_3457867
crossref_primary_10_1109_MMM_2021_3132111
Cites_doi 10.1109/ULTSYM.2001.991846
10.1109/JMEMS.2020.2982775
10.1049/ip-epa:20030254
10.1109/INTLEC.1992.268407
10.1109/MEMSYS.2017.7863571
10.1016/S0921-5107(02)00517-2
10.1038/s41467-019-09680-2
10.1109/ICPE.2011.5944656
10.1109/ULTSYM.2004.1417696
10.1109/JESTPE.2019.2934429
10.1109/JMEMS.2019.2892708
10.1109/FCS.2018.8597475
10.1002/mmce.20550
10.1063/1.124055
10.1109/TPEL.2020.3004147
10.1109/JRPROC.1928.221466
10.1109/3DPEIM.2016.7570571
10.1109/TPEL.2019.2900526
10.1109/ULTSYM.2019.8925617
10.1109/LED.2012.2230609
10.1109/TUFFC.2004.1320823
10.1063/1.1660528
10.1109/APEC39645.2020.9124606
10.1109/ULTSYM.2010.5935436
10.7567/JJAP.50.09ND20
10.1109/TPEL.2017.2776609
10.1109/TPEL.2015.2514084
10.1109/COMPEL.2015.7236436
10.1109/ISAF.2004.1418378
10.1016/0022-3697(66)90071-0
10.1109/TUFFC.2010.1485
10.1109/TPEL.2018.2868447
10.1109/APEC.2009.4802910
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/OJPEL.2021.3067020
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-1314
EndPage 224
ExternalDocumentID oai_doaj_org_article_31f50862ccfd487d86f88d407c490ed4
10_1109_OJPEL_2021_3067020
9381643
Genre orig-research
GrantInformation_xml – fundername: Texas Instruments
  funderid: 10.13039/100004361
– fundername: nano@Stanford labs
– fundername: National Nanotechnology Coordinated Infrastructure
  grantid: ECCS-1542152
– fundername: Stanford's SystemX Alliance
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c2920-cc41152aac045f1bee23d4605cd0f026315ed1104d302069984c9d217c8303fb3
IEDL.DBID RIE
ISSN 2644-1314
IngestDate Wed Aug 27 01:21:53 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Tue Jul 01 00:47:49 EDT 2025
Wed Aug 27 01:53:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2920-cc41152aac045f1bee23d4605cd0f026315ed1104d302069984c9d217c8303fb3
ORCID 0000-0003-1363-2245
0000-0001-9556-6426
0000-0003-0982-8296
0000-0003-2494-8579
0000-0003-0025-3924
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9381643
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_OJPEL_2021_3067020
crossref_primary_10_1109_OJPEL_2021_3067020
ieee_primary_9381643
doaj_primary_oai_doaj_org_article_31f50862ccfd487d86f88d407c490ed4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationTitle IEEE open journal of power electronics
PublicationTitleAbbrev OJPEL
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
van dyke (ref6) 1928; 16
ref31
ref30
ref33
ref11
ref32
ref10
segovia-fernandez (ref4) 0
ruby (ref17) 2005; 217
ref2
ref1
ref39
ref16
ref19
ref18
eisner (ref38) 2021; 21
chandorkar (ref3) 0
ref24
ref23
ref26
ref25
ref20
ref41
ref28
ref27
du (ref34) 2004; 51
ref29
ref8
(ref22) 1988
ref7
ref9
ref5
ref40
(ref21) 0
References_xml – ident: ref36
  doi: 10.1109/ULTSYM.2001.991846
– ident: ref31
  doi: 10.1109/JMEMS.2020.2982775
– ident: ref32
  doi: 10.1049/ip-epa:20030254
– ident: ref30
  doi: 10.1109/INTLEC.1992.268407
– ident: ref35
  doi: 10.1109/MEMSYS.2017.7863571
– year: 1988
  ident: ref22
  article-title: IEEE Standard on Piezoelectricity
– ident: ref15
  doi: 10.1016/S0921-5107(02)00517-2
– ident: ref27
  doi: 10.1038/s41467-019-09680-2
– ident: ref40
  doi: 10.1109/ICPE.2011.5944656
– ident: ref28
  doi: 10.1109/ULTSYM.2004.1417696
– ident: ref8
  doi: 10.1109/JESTPE.2019.2934429
– ident: ref26
  doi: 10.1109/MEMSYS.2017.7863571
– ident: ref16
  doi: 10.1109/JMEMS.2019.2892708
– ident: ref41
  doi: 10.1109/FCS.2018.8597475
– year: 0
  ident: ref21
  article-title: APC International Ltd.
  publication-title: Physical and Piezoelectric Properties of APCI Materials
– start-page: 74
  year: 0
  ident: ref3
  article-title: Limits of quality factor in bulk-mode micromechanical resonators
  publication-title: Proc IEEE 21st Int Conf Micro Electro Mech Syst
– ident: ref37
  doi: 10.1002/mmce.20550
– ident: ref20
  doi: 10.1063/1.124055
– ident: ref10
  doi: 10.1109/TPEL.2020.3004147
– volume: 217
  start-page: 217
  year: 2005
  ident: ref17
  article-title: The effect of perimeter geometry on FBAR resonator electrical performance
  publication-title: Microwave Symp Dig
– volume: 16
  start-page: 742
  year: 1928
  ident: ref6
  article-title: the piezo-electric resonator and its equivalent network
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1928.221466
– ident: ref2
  doi: 10.1109/3DPEIM.2016.7570571
– ident: ref11
  doi: 10.1109/TPEL.2019.2900526
– ident: ref25
  doi: 10.1109/ULTSYM.2019.8925617
– ident: ref23
  doi: 10.1109/LED.2012.2230609
– volume: 51
  start-page: 502
  year: 2004
  ident: ref34
  article-title: High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2004.1320823
– ident: ref18
  doi: 10.1063/1.1660528
– ident: ref29
  doi: 10.1109/LED.2012.2230609
– ident: ref13
  doi: 10.1109/APEC39645.2020.9124606
– volume: 21
  year: 2021
  ident: ref38
  article-title: A laterally vibrating lithium niobate mems resonator array operating at 500 $^{\circ }$C in air
  publication-title: SENSORS
– ident: ref24
  doi: 10.1109/ULTSYM.2010.5935436
– ident: ref12
  doi: 10.7567/JJAP.50.09ND20
– ident: ref5
  doi: 10.1109/TPEL.2017.2776609
– ident: ref1
  doi: 10.1109/TPEL.2015.2514084
– ident: ref7
  doi: 10.1109/COMPEL.2015.7236436
– ident: ref33
  doi: 10.1109/ISAF.2004.1418378
– ident: ref14
  doi: 10.1016/0022-3697(66)90071-0
– ident: ref19
  doi: 10.1109/TUFFC.2010.1485
– ident: ref9
  doi: 10.1109/TPEL.2018.2868447
– ident: ref39
  doi: 10.1109/APEC.2009.4802910
– start-page: 1
  year: 0
  ident: ref4
  article-title: Monolithic ALN mems-CMOS resonant transformer for wake-up receivers
  publication-title: Proc IEEE Int Ultrasonics Symp
SSID ssj0002511131
Score 2.3160977
Snippet The performance of inductors at high frequencies and small sizes is one of the largest limiting factors in the continued miniaturization of dc-dc converters....
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 212
SubjectTerms Capacitance
DC-DC power converters
Inductors
Integrated circuit modeling
piezoelectric devices
Resonators
RLC circuits
Switches
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQUBDlSxnYUKhdO2k8QlVUVUA7UKlblPguUiVIEZSlv547J63CAgtr5FjOOzt-zx_3hLhGLUHKLAkBbBIaKkRDCqkvs9NtpjIVJ3w5-ek5Hs3MeB7NG1ZffCasSg9cAdfVqoiYdjtXAJFrSOIiSYBkiDNWIvhMoDTnNcQU_4OZOCutNrdkpO1OxtPhI-nBnrpllizZ4LsxE_mE_T8cVvwE83Ag9mtmGNxVLToUO1geib1GvsC26E9ogL8t1ggBL7uXLJg_A6KdwXSB62VlabNwwZStz4IBHyj3q2HHYvYwfBmMwtr5IHTsHhU6Z4ip9bLMEeMqVI7Y08A7mA5kQapJqwiBPsuApg-JSTIZZ4HUhUtoSipyfSJa5bLEUxEogh8cRrmxSIhFOZImtJHpowOFCjtCbVBIXZ0WnN0pXlMvD6RNPXIpI5fWyHXEzfad9yopxq-l7xncbUlOaO0fUJjTOszpX2HuiDaHZluJ5Q1Po8_-o-5zscvtrRZWLkRr9fGFl0Q1VvmV71Xf50_MbA
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimized Resonators for Piezoelectric Power Conversion
URI https://ieeexplore.ieee.org/document/9381643
https://doaj.org/article/31f50862ccfd487d86f88d407c490ed4
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz34QiM-SA_etNCl29IelUAIEeEgCbem3Z0mRC1G4cLB3-7MtjRqjPHSNJvdZjKz251vdmc-gCt0He04cWBrHQa2pE60pJDmMjPdxiIWfsDJyeMHfziTo7k3r8BNmQuDiObyGbb41Zzl66Vac6isHfIpl3SrUCXgludqlfEUdpWFK7Z5MU7Ynoym_XtCgB3RYr_YYUrvL3uPKdH_jVPFbCmDfRhvhclvkjy11qukpTY_6jT-V9oD2Ct8S-s2nwyHUMHsCHa_VBysQ3dCv4iXxQa1xYH7jCH3u0WOqzVd4GaZk-IslDVl8jSrx1fSTTztGGaD_mNvaBfcCbZi_ilbKUm-XieOFflsqUgQO67mM1ClnZRwlys81KQmqV1SjE-gS6pQEz5RAW1qaeKeQC1bZngKliADaoVeIkOUoeMlSKgy9GQXlRYosAFiq9VIFYXFmd_iOTIAwwkjY4mILREVlmjAdTnmNS-r8WfvOzZW2ZNLYpsG0ndUrLDIFanH-EypVBMK04GfBoEmvKpIaNSyAXW2UfmRwjxnvzefww5LkAdbLqC2elvjJbkfq6RpYDs9xx_9ppmDn9TG2Dc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAHXgMxnj1wg5ZmTbv2CIhpjA12AGm3qk1caQI6BNtlvx477SpACHGrorSy7KT258T-AE7Rc7XrJqGtdRTakibRlkJay8x0m4hEBCEXJw_ug-6T7I38UQ3Oq1oYRDSXz9DhR3OWrydqxqmyi4hPuaS3BMvk931RVGtVGRUOloUnFpUxbnTx0Bve9AkDtoTDkbHLpN5fvI9p0v-NVcU4lc4GDBbiFHdJnp3ZNHXU_Eenxv_KuwnrZXRpXRbLYQtqmG_D2peegw1oP9BP4nU8R21x6j5n0P1hUehqDcc4nxS0OGNlDZk-zbrmS-kmo7YDT52bx-uuXbIn2IoZqGylJEV7rSRRFLVlIkVseZpPQZV2M0JenvBRk5qk9kgxAcEuqSJNCEWF5Nay1NuFej7JcQ8sQSbUCv1URigj10-RcGXkyzYqLVBgE8RCq7EqW4szw8VLbCCGG8XGEjFbIi4t0YSz6p23orHGn7Ov2FjVTG6KbQZI33G5x2JPZD4jNKUyTThMh0EWhpoQqyKhUcsmNNhG1UdK8-z_PnwCK93HQT_u397fHcAqS1OkXg6hPn2f4REFI9P02KzBTxUz2Vo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Resonators+for+Piezoelectric+Power+Conversion&rft.jtitle=IEEE+open+journal+of+power+electronics&rft.au=Braun%2C+Weston+D.&rft.au=Stolt%2C+Eric+A.&rft.au=Gu%2C+Lei&rft.au=Segovia-Fernandez%2C+Jeronimo&rft.date=2021&rft.issn=2644-1314&rft.eissn=2644-1314&rft.volume=2&rft.spage=212&rft.epage=224&rft_id=info:doi/10.1109%2FOJPEL.2021.3067020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJPEL_2021_3067020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1314&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1314&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1314&client=summon