Millimeter-Wave Fully Integrated Dielectric Resonator Antenna and Its Multi-Beam Application

To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 70; no. 8; pp. 6571 - 6580
Main Authors Ma, Chaojun, Zheng, Shao Yong, Pan, Yong Mei, Chen, Zhe
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap structure along the four side-wall boundaries of a certain dielectric region on a printed circuit board. The electromagnetic bandgap (EBG) structure is constructed using a printed array of periodic upside-down mushroom-type unit cells. The resonant-mode analysis reveals that the proposed DR can support conventional dielectric resonator modes and dense dielectric patch (DDP) cavity modes simultaneously. To excite the DR, a substrate-integrated gap waveguide transmission line is embedded in the proposed structure for implementing a fully integrated DRA. For demonstration, a fully integrated dielectric resonator antenna (FIDRA) operating at 31 GHz is designed. Simulated results show that the antenna offers an 11.5% −10 dB impedance bandwidth (29.6 to 33.2 GHz), in which a peak gain of 7.85 dBi is obtained. As an extension, a multi-beam antenna array composed of a <inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula> FIDRA antenna array and a SIGW <inline-formula> <tex-math notation="LaTeX">4 \times 4 </tex-math></inline-formula> Butler matrix is designed and fabricated. The experimental results verified the effectiveness of the proposed configuration in integrating the DRA and feeding network.
AbstractList To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap structure along the four side-wall boundaries of a certain dielectric region on a printed circuit board. The electromagnetic bandgap (EBG) structure is constructed using a printed array of periodic upside-down mushroom-type unit cells. The resonant-mode analysis reveals that the proposed DR can support conventional dielectric resonator modes and dense dielectric patch (DDP) cavity modes simultaneously. To excite the DR, a substrate-integrated gap waveguide transmission line is embedded in the proposed structure for implementing a fully integrated DRA. For demonstration, a fully integrated dielectric resonator antenna (FIDRA) operating at 31 GHz is designed. Simulated results show that the antenna offers an 11.5% −10 dB impedance bandwidth (29.6 to 33.2 GHz), in which a peak gain of 7.85 dBi is obtained. As an extension, a multi-beam antenna array composed of a [Formula Omitted] FIDRA antenna array and a SIGW [Formula Omitted] Butler matrix is designed and fabricated. The experimental results verified the effectiveness of the proposed configuration in integrating the DRA and feeding network.
To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap structure along the four side-wall boundaries of a certain dielectric region on a printed circuit board. The electromagnetic bandgap (EBG) structure is constructed using a printed array of periodic upside-down mushroom-type unit cells. The resonant-mode analysis reveals that the proposed DR can support conventional dielectric resonator modes and dense dielectric patch (DDP) cavity modes simultaneously. To excite the DR, a substrate-integrated gap waveguide transmission line is embedded in the proposed structure for implementing a fully integrated DRA. For demonstration, a fully integrated dielectric resonator antenna (FIDRA) operating at 31 GHz is designed. Simulated results show that the antenna offers an 11.5% −10 dB impedance bandwidth (29.6 to 33.2 GHz), in which a peak gain of 7.85 dBi is obtained. As an extension, a multi-beam antenna array composed of a <inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula> FIDRA antenna array and a SIGW <inline-formula> <tex-math notation="LaTeX">4 \times 4 </tex-math></inline-formula> Butler matrix is designed and fabricated. The experimental results verified the effectiveness of the proposed configuration in integrating the DRA and feeding network.
Author Pan, Yong Mei
Ma, Chaojun
Zheng, Shao Yong
Chen, Zhe
Author_xml – sequence: 1
  givenname: Chaojun
  orcidid: 0000-0002-9052-9172
  surname: Ma
  fullname: Ma, Chaojun
  organization: Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Shao Yong
  orcidid: 0000-0002-4337-7057
  surname: Zheng
  fullname: Zheng, Shao Yong
  email: zhengshaoy@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Yong Mei
  orcidid: 0000-0003-4935-3934
  surname: Pan
  fullname: Pan, Yong Mei
  organization: School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Zhe
  orcidid: 0000-0002-8661-5107
  surname: Chen
  fullname: Chen, Zhe
  organization: Guangdong Provincial Mobile Terminal Microwave and Millimeter-Wave Antenna Engineering Research Center, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kE1Lw0AQhhdRsK3eBS8LnlP3K5vkGKvVQosiFT0IYbOZyJbtpm42Qv-9qS0ePHgahnmfmeEZomPXOEDogpIxpSS7XuZPY0YYG3MqKZf0CA1oHKcRY4weowEhNI0yJt9O0bBtV30rUiEG6H1hrDVrCOCjV_UFeNpZu8UzF-DDqwAVvjVgQQdvNH6GtnEqNB7n_dw5hZWr8Cy0eNHZYKIbUGucbzbWaBVM487QSa1sC-eHOkIv07vl5CGaP97PJvk80iyjIaprCZprCUTEVV0q4FzWIpGihLLMlJBl3wBkUlUlI4JmaSI1SE1KXtWKZnyErvZ7N7757KANxarpvOtPFiyhjMRCkKRPyX1K-6ZtPdSFNuHnz-CVsQUlxc5k0ZssdiaLg8keJH_AjTdr5bf_IZd7xADAbzxLBJdJzL8BsVqBVA
CODEN IETPAK
CitedBy_id crossref_primary_10_3390_mi15081022
crossref_primary_10_1109_OJAP_2023_3319631
crossref_primary_10_1109_TAP_2023_3262339
crossref_primary_10_1109_LAWP_2023_3314845
crossref_primary_10_1109_TAP_2023_3242429
crossref_primary_10_1016_j_aeue_2024_155590
crossref_primary_10_1109_TVT_2024_3378722
crossref_primary_10_3390_s24051413
crossref_primary_10_1109_LAWP_2024_3398723
crossref_primary_10_1017_S1759078723000119
crossref_primary_10_1109_ACCESS_2023_3293739
crossref_primary_10_1109_OJAP_2024_3367242
crossref_primary_10_3390_app13148222
crossref_primary_10_1016_j_rio_2023_100354
crossref_primary_10_3390_mi13122178
Cites_doi 10.1109/TAP.2008.927560
10.1109/TAP.2017.2724585
10.1109/LAWP.2019.2949947
10.1109/LAWP.2014.2325033
10.1109/TAP.2016.2565740
10.1109/TAP.2011.2143658
10.1109/TAP.2008.2005551
10.1109/TAP.2009.2029292
10.1109/TAP.2018.2829528
10.1109/TAP.2004.825156
10.1109/TMTT.2013.2252184
10.1109/TAP.2019.2950101
10.1109/LAWP.2019.2895320
10.1109/TAP.2011.2167922
10.1109/TAP.1983.1143080
10.1109/TAP.2011.2158962
10.1109/ACCESS.2013.2260813
10.1109/22.798001
10.1109/TAP.2013.2262667
10.1109/TAP.2019.2938629
10.1109/TAP.2015.2390228
10.1109/TAP.2010.2050443
10.1109/TAP.2004.841530
10.1109/MWSYM.2016.7540186
10.1109/TAP.2014.2382670
10.1109/TAP.2013.2291558
10.1109/ACCESS.2019.2893443
10.1109/TAP.2013.2260122
10.1109/TAP.2015.2506726
10.1109/TAP.2015.2513075
10.1109/LAWP.2008.2011147
10.1109/TAP.2018.2841414
10.1109/TAP.2016.2632702
10.1109/TAP.2015.2441118
10.1109/TTHZ.2015.2424682
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2022.3161361
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 6580
ExternalDocumentID 10_1109_TAP_2022_3161361
9743675
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61922031; 61671485
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-ff6ec3c6e045dfbae336f4764bebb9a46b476ee96adb20419876ce6c0b3dfa193
IEDL.DBID RIE
ISSN 0018-926X
IngestDate Mon Jun 30 10:07:05 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 03:23:02 EDT 2025
Wed Aug 27 02:14:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ff6ec3c6e045dfbae336f4764bebb9a46b476ee96adb20419876ce6c0b3dfa193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4337-7057
0000-0002-9052-9172
0000-0002-8661-5107
0000-0003-4935-3934
PQID 2712054407
PQPubID 85476
PageCount 10
ParticipantIDs ieee_primary_9743675
crossref_primary_10_1109_TAP_2022_3161361
proquest_journals_2712054407
crossref_citationtrail_10_1109_TAP_2022_3161361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TAP.2008.927560
– volume-title: General Information of Dielectric Constant for RT/Duroid 6010.2LM and RO3010 High Frequency Circuit Materials. (Revised 1318 061517 Publication #92-338)
  ident: ref33
– ident: ref16
  doi: 10.1109/TAP.2017.2724585
– ident: ref22
  doi: 10.1109/LAWP.2019.2949947
– ident: ref18
  doi: 10.1109/LAWP.2014.2325033
– ident: ref20
  doi: 10.1109/TAP.2016.2565740
– ident: ref9
  doi: 10.1109/TAP.2011.2143658
– ident: ref25
  doi: 10.1109/TAP.2008.2005551
– ident: ref11
  doi: 10.1109/TAP.2009.2029292
– ident: ref28
  doi: 10.1109/TAP.2018.2829528
– ident: ref7
  doi: 10.1109/TAP.2004.825156
– ident: ref36
  doi: 10.1109/TMTT.2013.2252184
– ident: ref15
  doi: 10.1109/TAP.2019.2950101
– ident: ref35
  doi: 10.1109/LAWP.2019.2895320
– ident: ref10
  doi: 10.1109/TAP.2011.2167922
– ident: ref8
  doi: 10.1109/TAP.1983.1143080
– ident: ref13
  doi: 10.1109/TAP.2011.2158962
– ident: ref1
  doi: 10.1109/ACCESS.2013.2260813
– ident: ref29
  doi: 10.1109/22.798001
– ident: ref31
  doi: 10.1109/TAP.2013.2262667
– ident: ref23
  doi: 10.1109/TAP.2019.2938629
– ident: ref5
  doi: 10.1109/TAP.2015.2390228
– ident: ref12
  doi: 10.1109/TAP.2010.2050443
– ident: ref30
  doi: 10.1109/TAP.2004.841530
– ident: ref27
  doi: 10.1109/MWSYM.2016.7540186
– ident: ref14
  doi: 10.1109/TAP.2014.2382670
– ident: ref21
  doi: 10.1109/TAP.2013.2291558
– ident: ref17
  doi: 10.1109/ACCESS.2019.2893443
– ident: ref34
  doi: 10.1109/TAP.2013.2260122
– ident: ref3
  doi: 10.1109/TAP.2015.2506726
– ident: ref4
  doi: 10.1109/TAP.2015.2513075
– ident: ref32
  doi: 10.1109/LAWP.2008.2011147
– ident: ref6
  doi: 10.1109/TAP.2018.2841414
– ident: ref26
  doi: 10.1109/TAP.2016.2632702
– ident: ref19
  doi: 10.1109/TAP.2015.2441118
– ident: ref24
  doi: 10.1109/TTHZ.2015.2424682
SSID ssj0014844
Score 2.5121644
Snippet To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6571
SubjectTerms Antenna arrays
Antennas
Boundaries
Cavity resonators
Configurations
Dielectric resonator antenna (DRA)
Dielectric resonator antennas
Dielectrics
electromagnetic bandgap (EBG)
Energy gap
Laminates
Metamaterials
Millimeter waves
millimeter-wave (MMW) antenna
multi-beam
Multibeam antennas
Periodic structures
Radio antennas
substrate-integrated gap waveguide
Substrates
Surface waves
Transmission lines
Waveguides
Title Millimeter-Wave Fully Integrated Dielectric Resonator Antenna and Its Multi-Beam Application
URI https://ieeexplore.ieee.org/document/9743675
https://www.proquest.com/docview/2712054407
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH5YT3pwF-tGDl4Ep52ZxHTmWDeqoHhosQdhyPIGinYUnQr6632Zpa6ItxlIQshL8r4vbwPYs1qhu-a8SAnhiYhOuhK842lfW06ExMXrOm-LK9kbiIvh4XAGDqaxMIhYOJ9hy30Wtnz7YCbuqaxN2JcTwG1Ag4hbGas1tRiISJQZlwM6wKEc1iZJP273u9dEBMOQ-CkpLxl8UUFFTZUfF3GhXc4W4bKeV-lUctea5Lpl3r6lbPzvxJdgoYKZrFvui2WYwWwF5j8lH1yFWxcGOBo7dxjvRr0gc2z0lZ3X-SMsOxmVRXJGhrlX_szxc9Z1Pu-ZYiqz7Dx_ZkUEr3eEasy6H8bwNRicnfaPe15Va8EzYRzkXppKNNxIJIhnUxIg5zIVHSk0ah0rITX9IMZSWR36wj1VSIPS-JrbVBEKXIfZ7CHDDWBKxX56qBTnluhHwFVEJI1UcYAy4oTfmtCulz8xVSJyVw_jPikIiR8nJLDECSypBNaE_WmPxzIJxx9tV936T9tVS9-E7VrCSXVKn5OwE4QEWYnTbv7eawvm3Nilw982zOZPE9whEJLr3WL3vQOkw9h0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4FegAOtBAQ4VF86AWJTXbXjrN7TFuihJc4JCIHpJUfs1IELKhsKrW_nvE-UqAV6m1XsmXLY3u-z_MC-GK1QnfNeZESwhMRnXQleM_TvracCImL13XeFpdyOBGn0-60AceLWBhELJzPsO0-C1u-fTBz91TWIezLCeAuwQfS-92gjNZa2AxEJMqcywEd4VBOa6OkH3fG_SuigmFIDJXUlwxeKaGiqspfV3GhXwYf4aKeWelWctue57ptfr9J2vi_U_8E6xXQZP1yZ2xAA7NNWHuRfrAJNy4QcHbvHGK8a_UTmeOjv9ioziBh2fdZWSZnZph7588cQ2d95_WeKaYyy0b5EytieL2vqO5Z_485fAsmg5Pxt6FXVVvwTBgHuZemEg03Egnk2ZREyLlMRU8KjVrHSkhNP4ixVFaHvnCPFdKgNL7mNlWEA7dhOXvIcAeYUrGfdpXi3BIBCbiKiKaRMg5QRpwQXAs69fInpkpF7ipi3CUFJfHjhASWOIEllcBacLTo8Vim4XinbdOt_6JdtfQt2K8lnFTn9CkJe0FIoJVY7e6_ex3CynB8cZ6cjy7P9mDVjVO6_-3Dcv5jjgcESXL9udiJzxfV270
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Millimeter-Wave+Fully+Integrated+Dielectric+Resonator+Antenna+and+Its+Multi-Beam+Application&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Ma%2C+Chaojun&rft.au=Shao+Yong+Zheng&rft.au=Pan%2C+Yong+Mei&rft.au=Chen%2C+Zhe&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=8&rft.spage=6571&rft_id=info:doi/10.1109%2FTAP.2022.3161361&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon