Millimeter-Wave Fully Integrated Dielectric Resonator Antenna and Its Multi-Beam Application
To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap s...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 70; no. 8; pp. 6571 - 6580 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap structure along the four side-wall boundaries of a certain dielectric region on a printed circuit board. The electromagnetic bandgap (EBG) structure is constructed using a printed array of periodic upside-down mushroom-type unit cells. The resonant-mode analysis reveals that the proposed DR can support conventional dielectric resonator modes and dense dielectric patch (DDP) cavity modes simultaneously. To excite the DR, a substrate-integrated gap waveguide transmission line is embedded in the proposed structure for implementing a fully integrated DRA. For demonstration, a fully integrated dielectric resonator antenna (FIDRA) operating at 31 GHz is designed. Simulated results show that the antenna offers an 11.5% −10 dB impedance bandwidth (29.6 to 33.2 GHz), in which a peak gain of 7.85 dBi is obtained. As an extension, a multi-beam antenna array composed of a <inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula> FIDRA antenna array and a SIGW <inline-formula> <tex-math notation="LaTeX">4 \times 4 </tex-math></inline-formula> Butler matrix is designed and fabricated. The experimental results verified the effectiveness of the proposed configuration in integrating the DRA and feeding network. |
---|---|
AbstractList | To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap structure along the four side-wall boundaries of a certain dielectric region on a printed circuit board. The electromagnetic bandgap (EBG) structure is constructed using a printed array of periodic upside-down mushroom-type unit cells. The resonant-mode analysis reveals that the proposed DR can support conventional dielectric resonator modes and dense dielectric patch (DDP) cavity modes simultaneously. To excite the DR, a substrate-integrated gap waveguide transmission line is embedded in the proposed structure for implementing a fully integrated DRA. For demonstration, a fully integrated dielectric resonator antenna (FIDRA) operating at 31 GHz is designed. Simulated results show that the antenna offers an 11.5% −10 dB impedance bandwidth (29.6 to 33.2 GHz), in which a peak gain of 7.85 dBi is obtained. As an extension, a multi-beam antenna array composed of a [Formula Omitted] FIDRA antenna array and a SIGW [Formula Omitted] Butler matrix is designed and fabricated. The experimental results verified the effectiveness of the proposed configuration in integrating the DRA and feeding network. To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is proposed. First, a dielectric resonator with artificial electromagnetic boundaries is implemented by introducing the electromagnetic band-gap structure along the four side-wall boundaries of a certain dielectric region on a printed circuit board. The electromagnetic bandgap (EBG) structure is constructed using a printed array of periodic upside-down mushroom-type unit cells. The resonant-mode analysis reveals that the proposed DR can support conventional dielectric resonator modes and dense dielectric patch (DDP) cavity modes simultaneously. To excite the DR, a substrate-integrated gap waveguide transmission line is embedded in the proposed structure for implementing a fully integrated DRA. For demonstration, a fully integrated dielectric resonator antenna (FIDRA) operating at 31 GHz is designed. Simulated results show that the antenna offers an 11.5% −10 dB impedance bandwidth (29.6 to 33.2 GHz), in which a peak gain of 7.85 dBi is obtained. As an extension, a multi-beam antenna array composed of a <inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula> FIDRA antenna array and a SIGW <inline-formula> <tex-math notation="LaTeX">4 \times 4 </tex-math></inline-formula> Butler matrix is designed and fabricated. The experimental results verified the effectiveness of the proposed configuration in integrating the DRA and feeding network. |
Author | Pan, Yong Mei Ma, Chaojun Zheng, Shao Yong Chen, Zhe |
Author_xml | – sequence: 1 givenname: Chaojun orcidid: 0000-0002-9052-9172 surname: Ma fullname: Ma, Chaojun organization: Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Shao Yong orcidid: 0000-0002-4337-7057 surname: Zheng fullname: Zheng, Shao Yong email: zhengshaoy@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Yong Mei orcidid: 0000-0003-4935-3934 surname: Pan fullname: Pan, Yong Mei organization: School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Zhe orcidid: 0000-0002-8661-5107 surname: Chen fullname: Chen, Zhe organization: Guangdong Provincial Mobile Terminal Microwave and Millimeter-Wave Antenna Engineering Research Center, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China |
BookMark | eNp9kE1Lw0AQhhdRsK3eBS8LnlP3K5vkGKvVQosiFT0IYbOZyJbtpm42Qv-9qS0ePHgahnmfmeEZomPXOEDogpIxpSS7XuZPY0YYG3MqKZf0CA1oHKcRY4weowEhNI0yJt9O0bBtV30rUiEG6H1hrDVrCOCjV_UFeNpZu8UzF-DDqwAVvjVgQQdvNH6GtnEqNB7n_dw5hZWr8Cy0eNHZYKIbUGucbzbWaBVM487QSa1sC-eHOkIv07vl5CGaP97PJvk80iyjIaprCZprCUTEVV0q4FzWIpGihLLMlJBl3wBkUlUlI4JmaSI1SE1KXtWKZnyErvZ7N7757KANxarpvOtPFiyhjMRCkKRPyX1K-6ZtPdSFNuHnz-CVsQUlxc5k0ZssdiaLg8keJH_AjTdr5bf_IZd7xADAbzxLBJdJzL8BsVqBVA |
CODEN | IETPAK |
CitedBy_id | crossref_primary_10_3390_mi15081022 crossref_primary_10_1109_OJAP_2023_3319631 crossref_primary_10_1109_TAP_2023_3262339 crossref_primary_10_1109_LAWP_2023_3314845 crossref_primary_10_1109_TAP_2023_3242429 crossref_primary_10_1016_j_aeue_2024_155590 crossref_primary_10_1109_TVT_2024_3378722 crossref_primary_10_3390_s24051413 crossref_primary_10_1109_LAWP_2024_3398723 crossref_primary_10_1017_S1759078723000119 crossref_primary_10_1109_ACCESS_2023_3293739 crossref_primary_10_1109_OJAP_2024_3367242 crossref_primary_10_3390_app13148222 crossref_primary_10_1016_j_rio_2023_100354 crossref_primary_10_3390_mi13122178 |
Cites_doi | 10.1109/TAP.2008.927560 10.1109/TAP.2017.2724585 10.1109/LAWP.2019.2949947 10.1109/LAWP.2014.2325033 10.1109/TAP.2016.2565740 10.1109/TAP.2011.2143658 10.1109/TAP.2008.2005551 10.1109/TAP.2009.2029292 10.1109/TAP.2018.2829528 10.1109/TAP.2004.825156 10.1109/TMTT.2013.2252184 10.1109/TAP.2019.2950101 10.1109/LAWP.2019.2895320 10.1109/TAP.2011.2167922 10.1109/TAP.1983.1143080 10.1109/TAP.2011.2158962 10.1109/ACCESS.2013.2260813 10.1109/22.798001 10.1109/TAP.2013.2262667 10.1109/TAP.2019.2938629 10.1109/TAP.2015.2390228 10.1109/TAP.2010.2050443 10.1109/TAP.2004.841530 10.1109/MWSYM.2016.7540186 10.1109/TAP.2014.2382670 10.1109/TAP.2013.2291558 10.1109/ACCESS.2019.2893443 10.1109/TAP.2013.2260122 10.1109/TAP.2015.2506726 10.1109/TAP.2015.2513075 10.1109/LAWP.2008.2011147 10.1109/TAP.2018.2841414 10.1109/TAP.2016.2632702 10.1109/TAP.2015.2441118 10.1109/TTHZ.2015.2424682 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TAP.2022.3161361 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2221 |
EndPage | 6580 |
ExternalDocumentID | 10_1109_TAP_2022_3161361 9743675 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61922031; 61671485 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-ff6ec3c6e045dfbae336f4764bebb9a46b476ee96adb20419876ce6c0b3dfa193 |
IEDL.DBID | RIE |
ISSN | 0018-926X |
IngestDate | Mon Jun 30 10:07:05 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 03:23:02 EDT 2025 Wed Aug 27 02:14:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-ff6ec3c6e045dfbae336f4764bebb9a46b476ee96adb20419876ce6c0b3dfa193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4337-7057 0000-0002-9052-9172 0000-0002-8661-5107 0000-0003-4935-3934 |
PQID | 2712054407 |
PQPubID | 85476 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9743675 crossref_primary_10_1109_TAP_2022_3161361 proquest_journals_2712054407 crossref_citationtrail_10_1109_TAP_2022_3161361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on antennas and propagation |
PublicationTitleAbbrev | TAP |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1109/TAP.2008.927560 – volume-title: General Information of Dielectric Constant for RT/Duroid 6010.2LM and RO3010 High Frequency Circuit Materials. (Revised 1318 061517 Publication #92-338) ident: ref33 – ident: ref16 doi: 10.1109/TAP.2017.2724585 – ident: ref22 doi: 10.1109/LAWP.2019.2949947 – ident: ref18 doi: 10.1109/LAWP.2014.2325033 – ident: ref20 doi: 10.1109/TAP.2016.2565740 – ident: ref9 doi: 10.1109/TAP.2011.2143658 – ident: ref25 doi: 10.1109/TAP.2008.2005551 – ident: ref11 doi: 10.1109/TAP.2009.2029292 – ident: ref28 doi: 10.1109/TAP.2018.2829528 – ident: ref7 doi: 10.1109/TAP.2004.825156 – ident: ref36 doi: 10.1109/TMTT.2013.2252184 – ident: ref15 doi: 10.1109/TAP.2019.2950101 – ident: ref35 doi: 10.1109/LAWP.2019.2895320 – ident: ref10 doi: 10.1109/TAP.2011.2167922 – ident: ref8 doi: 10.1109/TAP.1983.1143080 – ident: ref13 doi: 10.1109/TAP.2011.2158962 – ident: ref1 doi: 10.1109/ACCESS.2013.2260813 – ident: ref29 doi: 10.1109/22.798001 – ident: ref31 doi: 10.1109/TAP.2013.2262667 – ident: ref23 doi: 10.1109/TAP.2019.2938629 – ident: ref5 doi: 10.1109/TAP.2015.2390228 – ident: ref12 doi: 10.1109/TAP.2010.2050443 – ident: ref30 doi: 10.1109/TAP.2004.841530 – ident: ref27 doi: 10.1109/MWSYM.2016.7540186 – ident: ref14 doi: 10.1109/TAP.2014.2382670 – ident: ref21 doi: 10.1109/TAP.2013.2291558 – ident: ref17 doi: 10.1109/ACCESS.2019.2893443 – ident: ref34 doi: 10.1109/TAP.2013.2260122 – ident: ref3 doi: 10.1109/TAP.2015.2506726 – ident: ref4 doi: 10.1109/TAP.2015.2513075 – ident: ref32 doi: 10.1109/LAWP.2008.2011147 – ident: ref6 doi: 10.1109/TAP.2018.2841414 – ident: ref26 doi: 10.1109/TAP.2016.2632702 – ident: ref19 doi: 10.1109/TAP.2015.2441118 – ident: ref24 doi: 10.1109/TTHZ.2015.2424682 |
SSID | ssj0014844 |
Score | 2.5121644 |
Snippet | To address the issues of the inconvenient fabrication and integration for millimeter-wave (MMW) dielectric resonator antennas (DRAs), a new configuration is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6571 |
SubjectTerms | Antenna arrays Antennas Boundaries Cavity resonators Configurations Dielectric resonator antenna (DRA) Dielectric resonator antennas Dielectrics electromagnetic bandgap (EBG) Energy gap Laminates Metamaterials Millimeter waves millimeter-wave (MMW) antenna multi-beam Multibeam antennas Periodic structures Radio antennas substrate-integrated gap waveguide Substrates Surface waves Transmission lines Waveguides |
Title | Millimeter-Wave Fully Integrated Dielectric Resonator Antenna and Its Multi-Beam Application |
URI | https://ieeexplore.ieee.org/document/9743675 https://www.proquest.com/docview/2712054407 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH5YT3pwF-tGDl4Ep52ZxHTmWDeqoHhosQdhyPIGinYUnQr6632Zpa6ItxlIQshL8r4vbwPYs1qhu-a8SAnhiYhOuhK842lfW06ExMXrOm-LK9kbiIvh4XAGDqaxMIhYOJ9hy30Wtnz7YCbuqaxN2JcTwG1Ag4hbGas1tRiISJQZlwM6wKEc1iZJP273u9dEBMOQ-CkpLxl8UUFFTZUfF3GhXc4W4bKeV-lUctea5Lpl3r6lbPzvxJdgoYKZrFvui2WYwWwF5j8lH1yFWxcGOBo7dxjvRr0gc2z0lZ3X-SMsOxmVRXJGhrlX_szxc9Z1Pu-ZYiqz7Dx_ZkUEr3eEasy6H8bwNRicnfaPe15Va8EzYRzkXppKNNxIJIhnUxIg5zIVHSk0ah0rITX9IMZSWR36wj1VSIPS-JrbVBEKXIfZ7CHDDWBKxX56qBTnluhHwFVEJI1UcYAy4oTfmtCulz8xVSJyVw_jPikIiR8nJLDECSypBNaE_WmPxzIJxx9tV936T9tVS9-E7VrCSXVKn5OwE4QEWYnTbv7eawvm3Nilw982zOZPE9whEJLr3WL3vQOkw9h0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4FegAOtBAQ4VF86AWJTXbXjrN7TFuihJc4JCIHpJUfs1IELKhsKrW_nvE-UqAV6m1XsmXLY3u-z_MC-GK1QnfNeZESwhMRnXQleM_TvracCImL13XeFpdyOBGn0-60AceLWBhELJzPsO0-C1u-fTBz91TWIezLCeAuwQfS-92gjNZa2AxEJMqcywEd4VBOa6OkH3fG_SuigmFIDJXUlwxeKaGiqspfV3GhXwYf4aKeWelWctue57ptfr9J2vi_U_8E6xXQZP1yZ2xAA7NNWHuRfrAJNy4QcHbvHGK8a_UTmeOjv9ioziBh2fdZWSZnZph7588cQ2d95_WeKaYyy0b5EytieL2vqO5Z_485fAsmg5Pxt6FXVVvwTBgHuZemEg03Egnk2ZREyLlMRU8KjVrHSkhNP4ixVFaHvnCPFdKgNL7mNlWEA7dhOXvIcAeYUrGfdpXi3BIBCbiKiKaRMg5QRpwQXAs69fInpkpF7ipi3CUFJfHjhASWOIEllcBacLTo8Vim4XinbdOt_6JdtfQt2K8lnFTn9CkJe0FIoJVY7e6_ex3CynB8cZ6cjy7P9mDVjVO6_-3Dcv5jjgcESXL9udiJzxfV270 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Millimeter-Wave+Fully+Integrated+Dielectric+Resonator+Antenna+and+Its+Multi-Beam+Application&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Ma%2C+Chaojun&rft.au=Shao+Yong+Zheng&rft.au=Pan%2C+Yong+Mei&rft.au=Chen%2C+Zhe&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=8&rft.spage=6571&rft_id=info:doi/10.1109%2FTAP.2022.3161361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |