Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning

Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications for geothermal resource exploration. It is essential to recognize various GSMs for potential geothermal energy exploration. However, there is...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 8; p. 2913
Main Authors Xiong, Yongzhu, Zhu, Mingyong, Li, Yongyi, Huang, Kekun, Chen, Yankui, Liao, Jingqing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications for geothermal resource exploration. It is essential to recognize various GSMs for potential geothermal energy exploration. However, there is a lack of work to fulfill this task using deep learning (DL), which has achieved unprecedented successes in computer vision and image interpretation. This study aims to explore the feasibility of using a DL model to fulfill the recognition of GSMs with photographs. A new image dataset was created for the GSM recognition by preprocessing and visual interpretation with expert knowledge and a high-quality check after downloading images from the Internet. The dataset consists of seven GSM types, i.e., warm spring, hot spring, geyser, fumarole, mud pot, hydrothermal alteration, crater lake, and one type of none GSM, including 500 images of different photographs for each type. The recognition results of the GoogLeNet model were compared with those of three machine learning (ML) algorithms, i.e., Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbor (KNN), by using the assessment metrics of overall accuracy (OA), overall F1 score (OF), and computational time (CT) for training and testing the models via cross-validation. The results show that the retrained GoogLeNet model using transfer learning has significant advantages of accuracies and performances over the three ML classifiers, with the highest OA, the biggest OF, and the fastest CT for both the validation and test. Correspondingly, the three selected ML classifiers perform poorly for this task due to their low OA, small OF, and long CT. This suggests that transfer learning with a pretrained network be a feasible method to fulfill the recognition of the GSMs. Hopefully, this study provides a reference paradigm to help promote further research on the application of state-of-the-art DL in the geothermics domain.
AbstractList Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications for geothermal resource exploration. It is essential to recognize various GSMs for potential geothermal energy exploration. However, there is a lack of work to fulfill this task using deep learning (DL), which has achieved unprecedented successes in computer vision and image interpretation. This study aims to explore the feasibility of using a DL model to fulfill the recognition of GSMs with photographs. A new image dataset was created for the GSM recognition by preprocessing and visual interpretation with expert knowledge and a high-quality check after downloading images from the Internet. The dataset consists of seven GSM types, i.e., warm spring, hot spring, geyser, fumarole, mud pot, hydrothermal alteration, crater lake, and one type of none GSM, including 500 images of different photographs for each type. The recognition results of the GoogLeNet model were compared with those of three machine learning (ML) algorithms, i.e., Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbor (KNN), by using the assessment metrics of overall accuracy (OA), overall F1 score (OF), and computational time (CT) for training and testing the models via cross-validation. The results show that the retrained GoogLeNet model using transfer learning has significant advantages of accuracies and performances over the three ML classifiers, with the highest OA, the biggest OF, and the fastest CT for both the validation and test. Correspondingly, the three selected ML classifiers perform poorly for this task due to their low OA, small OF, and long CT. This suggests that transfer learning with a pretrained network be a feasible method to fulfill the recognition of the GSMs. Hopefully, this study provides a reference paradigm to help promote further research on the application of state-of-the-art DL in the geothermics domain.
Author Li, Yongyi
Xiong, Yongzhu
Chen, Yankui
Liao, Jingqing
Huang, Kekun
Zhu, Mingyong
Author_xml – sequence: 1
  givenname: Yongzhu
  orcidid: 0000-0002-4417-6409
  surname: Xiong
  fullname: Xiong, Yongzhu
– sequence: 2
  givenname: Mingyong
  surname: Zhu
  fullname: Zhu, Mingyong
– sequence: 3
  givenname: Yongyi
  orcidid: 0000-0003-2032-2069
  surname: Li
  fullname: Li, Yongyi
– sequence: 4
  givenname: Kekun
  surname: Huang
  fullname: Huang, Kekun
– sequence: 5
  givenname: Yankui
  surname: Chen
  fullname: Chen, Yankui
– sequence: 6
  givenname: Jingqing
  surname: Liao
  fullname: Liao, Jingqing
BookMark eNpNUctKBDEQDKLg-rj4BQFvwmiSnkfibVmfsCL4OIfeTM-aZTcZM7MH_97REbUvXRTV1dX0AdsNMRBjJ1KcAxhxQUEWQisjYYdNpDFlJkUFu__wPjvuupUYCkACwITVT-TiMvjex8Bjw28p9m-UNrjmz9vUoCP-gME31PX4peku-ZTP4qbF5Ltx5AHdmw_E54Qp-LDkGGp-RdT-Mkdsr8F1R8c__ZC93ly_zO6y-ePt_Ww6z9wQus-aWqMALPNS6VrmWDhTLSqQBkEMaEEFNTp3EqoKlCoqI7AUlaZCSClAARyy-9G3jriybfIbTB82orffRExLi6n3bk3W1a6s8lphqVRucrUgo0hrrCHPNbhi8DodvdoU37fD-XYVtykM8a0qC2VKo4UaVGejyqXYdYma361S2K-n2L-nwCeWL34T
CitedBy_id crossref_primary_10_3390_en15165780
crossref_primary_10_60084_ljes_v2i1_172
crossref_primary_10_1002_dug2_12098
crossref_primary_10_1186_s40517_024_00300_x
Cites_doi 10.1016/j.geothermics.2014.09.002
10.1007/s00024-017-1690-z
10.1016/j.geothermics.2021.102250
10.3390/rs12010086
10.1016/j.geothermics.2017.12.001
10.1186/s40517-019-0130-y
10.1016/j.eswa.2010.11.066
10.1073/pnas.2113877119
10.3390/en9100855
10.1109/IGARSS39084.2020.9323541
10.1038/nclimate1598
10.1038/nature14539
10.1038/s41598-021-99244-6
10.1146/annurev-environ-020220-061831
10.1016/j.rse.2006.09.001
10.1186/s40517-019-0135-6
10.1186/s40517-021-00200-4
10.1016/j.apenergy.2019.113476
10.1109/IPTC.2010.127
10.1007/s12583-018-0838-9
10.1088/1755-1315/732/1/012022
10.1016/j.geothermics.2022.102348
10.1016/j.jvolgeores.2003.12.012
10.1080/01431160802326081
10.1016/j.jvolgeores.2004.11.009
10.1109/CVPR.2015.7298594
10.3390/en13071792
10.1109/ICCASM.2010.5622651
10.1016/bs.agph.2020.08.002
10.1016/j.geothermics.2007.09.002
10.1016/j.eswa.2013.08.038
10.1007/s12665-022-10201-6
10.20944/preprints202201.0107.v1
10.1016/j.renene.2020.02.044
10.1016/j.rse.2008.10.005
10.1109/TGRS.2004.831865
10.1016/j.renene.2021.09.127
10.1111/1365-2478.12927
10.17014/ijog.6.3.291-309
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en15082913
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_cdc674d2a6224942be92e88ad34483c5
10_3390_en15082913
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
ITC
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c291t-fd8a03a64628d14a5c97b7319a3097bbe5ef84c13773225790a6078e501103233
IEDL.DBID 8FG
ISSN 1996-1073
IngestDate Tue Oct 22 15:14:03 EDT 2024
Thu Oct 10 16:07:17 EDT 2024
Wed Sep 25 14:04:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fd8a03a64628d14a5c97b7319a3097bbe5ef84c13773225790a6078e501103233
ORCID 0000-0003-2032-2069
0000-0002-4417-6409
OpenAccessLink https://www.proquest.com/docview/2652969802?pq-origsite=%requestingapplication%
PQID 2652969802
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_cdc674d2a6224942be92e88ad34483c5
proquest_journals_2652969802
crossref_primary_10_3390_en15082913
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Garg (ref_41) 2014; 41
Freski (ref_25) 2021; 97
Zhang (ref_8) 2018; 29
Peng (ref_10) 2019; 7
ref_11
Sedara (ref_7) 2022; 81
Turker (ref_38) 2015; 34
ref_51
Coolbaugh (ref_17) 2007; 106
Klemperer (ref_52) 2022; 119
Tende (ref_21) 2021; 11
Muther (ref_6) 2022; 100
Otukei (ref_44) 2010; 12
Hellman (ref_18) 2004; 135
Tooke (ref_45) 2009; 113
Dramsch (ref_26) 2020; 61
Gangwani (ref_27) 2021; 18
ref_34
Zhang (ref_20) 2020; 153
ref_32
ref_31
ref_30
Yang (ref_29) 2022; 182
Assouline (ref_23) 2019; 7
ref_37
Kumar (ref_50) 2019; 253
Li (ref_39) 2019; 68
Wardoyo (ref_22) 2021; 732
Chan (ref_15) 2018; 175
Melgani (ref_35) 2004; 42
ref_47
Shahdi (ref_28) 2021; 9
Donti (ref_33) 2021; 46
Chi (ref_42) 2009; 13
Du (ref_13) 2005; 142
Minissale (ref_14) 2018; 72
ref_43
ref_1
Zhang (ref_12) 2008; 37
Lizarazo (ref_36) 2008; 29
LeCun (ref_46) 2015; 521
Huang (ref_2) 2012; 2
ref_49
Pang (ref_3) 2014; 49
ref_48
ref_9
Calvin (ref_16) 2015; 53
ref_5
ref_4
Li (ref_40) 2011; 38
Xiong (ref_19) 2016; 43
Gentana (ref_24) 2019; 6
References_xml – volume: 53
  start-page: 517
  year: 2015
  ident: ref_16
  article-title: Remote sensing of geothermal-related minerals for resource exploration in Nevada
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2014.09.002
  contributor:
    fullname: Calvin
– volume: 175
  start-page: 303
  year: 2018
  ident: ref_15
  article-title: Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-017-1690-z
  contributor:
    fullname: Chan
– ident: ref_5
– ident: ref_32
– volume: 97
  start-page: 102250
  year: 2021
  ident: ref_25
  article-title: The effects of alteration degree, moisture and temperature on laser return intensity for mapping geothermal manifestations
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102250
  contributor:
    fullname: Freski
– ident: ref_51
  doi: 10.3390/rs12010086
– volume: 72
  start-page: 258
  year: 2018
  ident: ref_14
  article-title: A simple geochemical prospecting method for geothermal resources in flat areas
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2017.12.001
  contributor:
    fullname: Minissale
– volume: 7
  start-page: 14
  year: 2019
  ident: ref_10
  article-title: Geophysical survey of geothermal energy potential in the Liaoji Belt, northeastern China
  publication-title: Geotherm. Energy
  doi: 10.1186/s40517-019-0130-y
  contributor:
    fullname: Peng
– ident: ref_1
– volume: 38
  start-page: 6689
  year: 2011
  ident: ref_40
  article-title: Multi-objective uniform design as a SVM model selection tool for face recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.066
  contributor:
    fullname: Li
– volume: 119
  start-page: e2113877119
  year: 2022
  ident: ref_52
  article-title: Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in the continental collision
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2113877119
  contributor:
    fullname: Klemperer
– ident: ref_11
  doi: 10.3390/en9100855
– ident: ref_49
  doi: 10.1109/IGARSS39084.2020.9323541
– volume: 49
  start-page: 719
  year: 2014
  ident: ref_3
  article-title: Geothermal studies in China: Progress and prospects 1995–2014
  publication-title: Chin. J. Geol.
  contributor:
    fullname: Pang
– volume: 2
  start-page: 557
  year: 2012
  ident: ref_2
  article-title: Geothermal energy in China
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1598
  contributor:
    fullname: Huang
– volume: 12
  start-page: S27
  year: 2010
  ident: ref_44
  article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Otukei
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_46
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– ident: ref_4
– ident: ref_31
– ident: ref_48
– volume: 18
  start-page: 62
  year: 2021
  ident: ref_27
  article-title: A Deep Learning Approach for Modeling of Geothermal Energy Prediction
  publication-title: Int. J. Comput. Sci. Inf. Secur.
  contributor:
    fullname: Gangwani
– volume: 11
  start-page: 19755
  year: 2021
  ident: ref_21
  article-title: A spatial analysis for geothermal energy exploration using bivariate predictive modelling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99244-6
  contributor:
    fullname: Tende
– volume: 46
  start-page: 719
  year: 2021
  ident: ref_33
  article-title: Machine Learning for Sustainable Energy Systems
  publication-title: Annu. Rev. Env. Resour.
  doi: 10.1146/annurev-environ-020220-061831
  contributor:
    fullname: Donti
– volume: 106
  start-page: 350
  year: 2007
  ident: ref_17
  article-title: Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.001
  contributor:
    fullname: Coolbaugh
– volume: 7
  start-page: 19
  year: 2019
  ident: ref_23
  article-title: A machine learning approach for mapping the very shallow theoretical geothermal potential
  publication-title: Geotherm. Energy
  doi: 10.1186/s40517-019-0135-6
  contributor:
    fullname: Assouline
– volume: 9
  start-page: 1
  year: 2021
  ident: ref_28
  article-title: Exploratory analysis of machine learning methods in predicting subsurface temperature and geothermal gradient of Northeastern United States
  publication-title: Geotherm. Energy
  doi: 10.1186/s40517-021-00200-4
  contributor:
    fullname: Shahdi
– volume: 253
  start-page: 113476
  year: 2019
  ident: ref_50
  article-title: A novel GDP prediction technique based on transfer learning using CO2 emission dataset
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2019.113476
  contributor:
    fullname: Kumar
– ident: ref_43
  doi: 10.1109/IPTC.2010.127
– volume: 29
  start-page: 452
  year: 2018
  ident: ref_8
  article-title: Development of Geothermal Resources in China: A Review
  publication-title: J. Earth Sci.-China
  doi: 10.1007/s12583-018-0838-9
  contributor:
    fullname: Zhang
– volume: 732
  start-page: 012022
  year: 2021
  ident: ref_22
  article-title: Application of Artificial Intelligence in Forecasting Geothermal Production
  publication-title: IOP Conf. Ser. Earth Environm. Sci.
  doi: 10.1088/1755-1315/732/1/012022
  contributor:
    fullname: Wardoyo
– ident: ref_30
– volume: 43
  start-page: 109
  year: 2016
  ident: ref_19
  article-title: Application of remote sensing technique to the identification of geothermal anomaly in Tengchong area, southwest China
  publication-title: J. Chengdu Univ. Technol.
  contributor:
    fullname: Xiong
– volume: 100
  start-page: 102348
  year: 2022
  ident: ref_6
  article-title: Geothermal 4.0: AI-Enabled geothermal reservoir development-current status, potentials, limitations, and ways forward
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2022.102348
  contributor:
    fullname: Muther
– volume: 135
  start-page: 195
  year: 2004
  ident: ref_18
  article-title: Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing
  publication-title: J. Volcanol. Geoth. Res.
  doi: 10.1016/j.jvolgeores.2003.12.012
  contributor:
    fullname: Hellman
– volume: 29
  start-page: 7277
  year: 2008
  ident: ref_36
  article-title: SVM-based segmentation and classification of remotely sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802326081
  contributor:
    fullname: Lizarazo
– volume: 142
  start-page: 243
  year: 2005
  ident: ref_13
  article-title: Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China
  publication-title: J. Volcanol. Geoth. Res.
  doi: 10.1016/j.jvolgeores.2004.11.009
  contributor:
    fullname: Du
– ident: ref_47
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_9
  doi: 10.3390/en13071792
– ident: ref_37
  doi: 10.1109/ICCASM.2010.5622651
– volume: 61
  start-page: 1
  year: 2020
  ident: ref_26
  article-title: 70 years of machine learning in geoscience in review
  publication-title: Adv. Geophys.
  doi: 10.1016/bs.agph.2020.08.002
  contributor:
    fullname: Dramsch
– volume: 37
  start-page: 73
  year: 2008
  ident: ref_12
  article-title: Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2007.09.002
  contributor:
    fullname: Zhang
– volume: 41
  start-page: 1389
  year: 2014
  ident: ref_41
  article-title: Performance evaluation of microbial fuel cell by artificial intelligence methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.038
  contributor:
    fullname: Garg
– volume: 81
  start-page: 70
  year: 2022
  ident: ref_7
  article-title: Heat flow estimation and quantification of geothermal reservoir of a basement terrain using geophysical and numerical techniques
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-022-10201-6
  contributor:
    fullname: Sedara
– ident: ref_34
  doi: 10.20944/preprints202201.0107.v1
– volume: 153
  start-page: 564
  year: 2020
  ident: ref_20
  article-title: Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2020.02.044
  contributor:
    fullname: Zhang
– volume: 113
  start-page: 398
  year: 2009
  ident: ref_45
  article-title: Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.10.005
  contributor:
    fullname: Tooke
– volume: 42
  start-page: 1778
  year: 2004
  ident: ref_35
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote
  doi: 10.1109/TGRS.2004.831865
  contributor:
    fullname: Melgani
– volume: 182
  start-page: 32
  year: 2022
  ident: ref_29
  article-title: Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2021.09.127
  contributor:
    fullname: Yang
– volume: 68
  start-page: 1270
  year: 2019
  ident: ref_39
  article-title: Separation of Multi-mode Surface Waves by Supervised Machine Learning Methods
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12927
  contributor:
    fullname: Li
– volume: 13
  start-page: 415
  year: 2009
  ident: ref_42
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Net.
  contributor:
    fullname: Chi
– volume: 6
  start-page: 291
  year: 2019
  ident: ref_24
  article-title: Morphotectonics of Mount Rendingan Area Related To the Appearances of Geothermal Surface Manifestations
  publication-title: Indones. J. Geosci.
  doi: 10.17014/ijog.6.3.291-309
  contributor:
    fullname: Gentana
– volume: 34
  start-page: 58
  year: 2015
  ident: ref_38
  article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Turker
SSID ssj0000331333
Score 2.373159
Snippet Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2913
SubjectTerms Artificial intelligence
Computer applications
Computer vision
Computing time
Datasets
Decision Tree (DT)
Deep learning
Deep Learning (DL)
Energy
Feasibility
Geophysics
Geothermal energy
geothermal manifestation
Geothermal power
Geothermal resources
Geysers
Hot springs
Image quality
K-Nearest Neighbor (KNN)
Lakes
Learning algorithms
Machine learning
Neural networks
Resource exploration
Support Vector Machine (SVM)
Support vector machines
Sustainable development
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyBKsUV07cWK28igVUhmASt0iP85MpFUf_x-fk5YiBha2yIqV5L6c786--46QG59r61CRMg2QpN64pHAZSzgo3E4GXngscB69yOE4fZ5kk61WX5gTVtMD14LrWmdlnjquZTA2KuUGFIei0E6EwELYmr2Uqa1gKq7BQoTgS9R8pCLE9V2okPmcq574YYEiUf-vdTgal8EB2W-8Qtqv3-aQ7EB1RPa2uAKPiXtdp_pMKzr19Ali7dRnmPa2mnttgY40Jqos6sP1xS3t0_tNl0GcMoqJk0AbTtUPqitHHwBmm5ETMh48vt8Pk6ZFQmLDpywT7wrNhJZYYep6qc6syk0e1EoLFq4MZOCL1CKtIGpurpiWwSmADM2-4EKcklY1reCMUK9Vz1iTidxAKnKGWKVWGem01L7H2uR6LbZyVjNhlCGCQOGW38JtkzuU6OYOZK-OAwHTssG0_AvTNums8SgblVqUXOIRsSoYP_-PZ1yQXY6VDDEJp0Nay_kKLoN_sTRX8Vf6AvHtzMI
  priority: 102
  providerName: Directory of Open Access Journals
Title Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning
URI https://www.proquest.com/docview/2652969802
https://doaj.org/article/cdc674d2a6224942be92e88ad34483c5
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4LDAgnqI8KkuwRk3sJI5ZEBRahFSECpW6RX6cmUhKW_4_PjctICSWKLLjIWff03ffEXLphDIWGSlTAFHqtI0Km8URA4nhZGCFwwLnwVP-MEofx9m4CbjNmrTKpUwMgtrWBmPkHZbjDaEsYnY9-YiwaxTerjYtNNbJZsKEQOer6PVXMZaYc--C8QUqKffefQcqxD9nMuG_9FCA6_8jjYOK6e2SncY2pDeLzdwja1Dtk-0fiIEHxA6XCT91RWtH-xAqqN79spfPqVMG6EBhuspsccU-u6I3tLvqNYhLBiF9EmiDrPpGVWXpHcBkNXJIRr371-5D1DRKiIz_lXnkbKFirnKsM7VJqjIjhRaeuRSP_ZuGDFyRGgQXRP4VMla5Nw0gQ-XPGedHZKOqKzgm1CmZaKMzLjSkXMS4Y6mROrcqVy6JW-RiSbZyssDDKL0fgcQtv4nbIrdI0dUXiGEdBurpW9mwRGmsyUVqmcq9GSFTpkEyKApluXcZucla5Gy5H2XDWLPy-xic_D99SrYYViqEJJszsjGffsK5tx_muh0OSZts3t4_PQ_bwQv3z_44-QJhz8gL
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgPQAHxCrKagmuEamdzVxQC5SytEIsErfIy7gnktKW_8eTui0IiVvkxIfMeMazviHkzKZSGxSkWAIEkVUmyEwcBgwEhpOBZRYbnHv9pPsW3b_H7z7gNvZllTOdWClqU2qMkZ-zBDOEIgvZ5fAzwKlRmF31IzSWSR2hqpzzVW_f9J-e51GWkHPnhPEpLil3_v05FIiAzkST_7qJKsD-P_q4umQ6G2TdW4e0NWXnJlmCYous_cAM3CbmeVbyUxa0tPQWqh6qD7ft5WtkpQbak1iwMp4m2ccXtEWv5tMGcUuvKqAE6rFVB1QWhl4DDOcrO-Stc_N61Q38qIRAu1-ZBNZkMuQywU5T04xkrEWqUidekofuSUEMNos0wguiBKcilIkzDiDG658zzndJrSgL2CPUStFUWsU8VRDxNESeRVqoxMhE2mbYIKczsuXDKSJG7jwJJG6-IG6DtJGi8y8QxbpaKEeD3AtFro1O0sgwmThDQkRMgWCQZdJw5zRyHTfI4YwfuRetcb44CPv_vz4hK93X3mP-eNd_OCCrDPsWqpKbQ1KbjL7gyFkTE3Xsj8w3oirI3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa2FBjWw7AnlrbbBGxXI4oky1YvQ19Z90hQdCvQm6EH1dPsNEn_f0VHSTcM2M2QrYMpkSKpjx8BPsXK-kCKVFrEQkUXijqUvBBoKJ2Moo5U4Dyd6fMr9e26vM74p2WGVW5sYm-oQ-cpRz4Smm4ITc3FKGZYxMXp5PP8tqAOUnTTmttpPIadSmnJB7BzfDa7uNxmXLiUKSCTa45SmWL9EbbEhi7MWP51KvXk_f_Y5v7AmTyHZ9lTZEfrpX0Bj7B9Cbt_8Ae-gnC5gf90Lesi-4J9PdXvNO3n3SJaj2xqCbyyXF-4Lw_ZETvZdh6kKdMeTIks86zeMNsGdoo43468hqvJ2a-T8yK3TSh8-pVVEUNtubSaqk7DWNnSm8pVSdWs5OnJYYmxVp6oBkmbK8OtTo4CluQKSCHlGxi0XYtvgUVrxs67UlYOlaw4rZ_yxulgtY1jPoSPG7E18zU7RpOiChJu8yDcIRyTRLdfEKN1P9AtbpqsII0PXlcqCKuTU2GUcGgE1rUNMgWQ0pdDONisR5PVbNk8bIq9_7_-AE_Sbml-fJ1934engkoYevTNAQxWizt8lxyLlXufd8w92onNCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+Geothermal+Surface+Manifestations%3A+A+Comparison+of+Machine+Learning+and+Deep+Learning&rft.jtitle=Energies+%28Basel%29&rft.au=Xiong%2C+Yongzhu&rft.au=Zhu%2C+Mingyong&rft.au=Li%2C+Yongyi&rft.au=Huang%2C+Kekun&rft.date=2022-04-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=8&rft.spage=2913&rft_id=info:doi/10.3390%2Fen15082913&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en15082913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon