Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning
Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications for geothermal resource exploration. It is essential to recognize various GSMs for potential geothermal energy exploration. However, there is...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 8; p. 2913 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications for geothermal resource exploration. It is essential to recognize various GSMs for potential geothermal energy exploration. However, there is a lack of work to fulfill this task using deep learning (DL), which has achieved unprecedented successes in computer vision and image interpretation. This study aims to explore the feasibility of using a DL model to fulfill the recognition of GSMs with photographs. A new image dataset was created for the GSM recognition by preprocessing and visual interpretation with expert knowledge and a high-quality check after downloading images from the Internet. The dataset consists of seven GSM types, i.e., warm spring, hot spring, geyser, fumarole, mud pot, hydrothermal alteration, crater lake, and one type of none GSM, including 500 images of different photographs for each type. The recognition results of the GoogLeNet model were compared with those of three machine learning (ML) algorithms, i.e., Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbor (KNN), by using the assessment metrics of overall accuracy (OA), overall F1 score (OF), and computational time (CT) for training and testing the models via cross-validation. The results show that the retrained GoogLeNet model using transfer learning has significant advantages of accuracies and performances over the three ML classifiers, with the highest OA, the biggest OF, and the fastest CT for both the validation and test. Correspondingly, the three selected ML classifiers perform poorly for this task due to their low OA, small OF, and long CT. This suggests that transfer learning with a pretrained network be a feasible method to fulfill the recognition of the GSMs. Hopefully, this study provides a reference paradigm to help promote further research on the application of state-of-the-art DL in the geothermics domain. |
---|---|
AbstractList | Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications for geothermal resource exploration. It is essential to recognize various GSMs for potential geothermal energy exploration. However, there is a lack of work to fulfill this task using deep learning (DL), which has achieved unprecedented successes in computer vision and image interpretation. This study aims to explore the feasibility of using a DL model to fulfill the recognition of GSMs with photographs. A new image dataset was created for the GSM recognition by preprocessing and visual interpretation with expert knowledge and a high-quality check after downloading images from the Internet. The dataset consists of seven GSM types, i.e., warm spring, hot spring, geyser, fumarole, mud pot, hydrothermal alteration, crater lake, and one type of none GSM, including 500 images of different photographs for each type. The recognition results of the GoogLeNet model were compared with those of three machine learning (ML) algorithms, i.e., Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbor (KNN), by using the assessment metrics of overall accuracy (OA), overall F1 score (OF), and computational time (CT) for training and testing the models via cross-validation. The results show that the retrained GoogLeNet model using transfer learning has significant advantages of accuracies and performances over the three ML classifiers, with the highest OA, the biggest OF, and the fastest CT for both the validation and test. Correspondingly, the three selected ML classifiers perform poorly for this task due to their low OA, small OF, and long CT. This suggests that transfer learning with a pretrained network be a feasible method to fulfill the recognition of the GSMs. Hopefully, this study provides a reference paradigm to help promote further research on the application of state-of-the-art DL in the geothermics domain. |
Author | Li, Yongyi Xiong, Yongzhu Chen, Yankui Liao, Jingqing Huang, Kekun Zhu, Mingyong |
Author_xml | – sequence: 1 givenname: Yongzhu orcidid: 0000-0002-4417-6409 surname: Xiong fullname: Xiong, Yongzhu – sequence: 2 givenname: Mingyong surname: Zhu fullname: Zhu, Mingyong – sequence: 3 givenname: Yongyi orcidid: 0000-0003-2032-2069 surname: Li fullname: Li, Yongyi – sequence: 4 givenname: Kekun surname: Huang fullname: Huang, Kekun – sequence: 5 givenname: Yankui surname: Chen fullname: Chen, Yankui – sequence: 6 givenname: Jingqing surname: Liao fullname: Liao, Jingqing |
BookMark | eNpNUctKBDEQDKLg-rj4BQFvwmiSnkfibVmfsCL4OIfeTM-aZTcZM7MH_97REbUvXRTV1dX0AdsNMRBjJ1KcAxhxQUEWQisjYYdNpDFlJkUFu__wPjvuupUYCkACwITVT-TiMvjex8Bjw28p9m-UNrjmz9vUoCP-gME31PX4peku-ZTP4qbF5Ltx5AHdmw_E54Qp-LDkGGp-RdT-Mkdsr8F1R8c__ZC93ly_zO6y-ePt_Ww6z9wQus-aWqMALPNS6VrmWDhTLSqQBkEMaEEFNTp3EqoKlCoqI7AUlaZCSClAARyy-9G3jriybfIbTB82orffRExLi6n3bk3W1a6s8lphqVRucrUgo0hrrCHPNbhi8DodvdoU37fD-XYVtykM8a0qC2VKo4UaVGejyqXYdYma361S2K-n2L-nwCeWL34T |
CitedBy_id | crossref_primary_10_3390_en15165780 crossref_primary_10_60084_ljes_v2i1_172 crossref_primary_10_1002_dug2_12098 crossref_primary_10_1186_s40517_024_00300_x |
Cites_doi | 10.1016/j.geothermics.2014.09.002 10.1007/s00024-017-1690-z 10.1016/j.geothermics.2021.102250 10.3390/rs12010086 10.1016/j.geothermics.2017.12.001 10.1186/s40517-019-0130-y 10.1016/j.eswa.2010.11.066 10.1073/pnas.2113877119 10.3390/en9100855 10.1109/IGARSS39084.2020.9323541 10.1038/nclimate1598 10.1038/nature14539 10.1038/s41598-021-99244-6 10.1146/annurev-environ-020220-061831 10.1016/j.rse.2006.09.001 10.1186/s40517-019-0135-6 10.1186/s40517-021-00200-4 10.1016/j.apenergy.2019.113476 10.1109/IPTC.2010.127 10.1007/s12583-018-0838-9 10.1088/1755-1315/732/1/012022 10.1016/j.geothermics.2022.102348 10.1016/j.jvolgeores.2003.12.012 10.1080/01431160802326081 10.1016/j.jvolgeores.2004.11.009 10.1109/CVPR.2015.7298594 10.3390/en13071792 10.1109/ICCASM.2010.5622651 10.1016/bs.agph.2020.08.002 10.1016/j.geothermics.2007.09.002 10.1016/j.eswa.2013.08.038 10.1007/s12665-022-10201-6 10.20944/preprints202201.0107.v1 10.1016/j.renene.2020.02.044 10.1016/j.rse.2008.10.005 10.1109/TGRS.2004.831865 10.1016/j.renene.2021.09.127 10.1111/1365-2478.12927 10.17014/ijog.6.3.291-309 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en15082913 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_cdc674d2a6224942be92e88ad34483c5 10_3390_en15082913 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO ITC KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c291t-fd8a03a64628d14a5c97b7319a3097bbe5ef84c13773225790a6078e501103233 |
IEDL.DBID | 8FG |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:14:03 EDT 2024 Thu Oct 10 16:07:17 EDT 2024 Wed Sep 25 14:04:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-fd8a03a64628d14a5c97b7319a3097bbe5ef84c13773225790a6078e501103233 |
ORCID | 0000-0003-2032-2069 0000-0002-4417-6409 |
OpenAccessLink | https://www.proquest.com/docview/2652969802?pq-origsite=%requestingapplication% |
PQID | 2652969802 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cdc674d2a6224942be92e88ad34483c5 proquest_journals_2652969802 crossref_primary_10_3390_en15082913 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Garg (ref_41) 2014; 41 Freski (ref_25) 2021; 97 Zhang (ref_8) 2018; 29 Peng (ref_10) 2019; 7 ref_11 Sedara (ref_7) 2022; 81 Turker (ref_38) 2015; 34 ref_51 Coolbaugh (ref_17) 2007; 106 Klemperer (ref_52) 2022; 119 Tende (ref_21) 2021; 11 Muther (ref_6) 2022; 100 Otukei (ref_44) 2010; 12 Hellman (ref_18) 2004; 135 Tooke (ref_45) 2009; 113 Dramsch (ref_26) 2020; 61 Gangwani (ref_27) 2021; 18 ref_34 Zhang (ref_20) 2020; 153 ref_32 ref_31 ref_30 Yang (ref_29) 2022; 182 Assouline (ref_23) 2019; 7 ref_37 Kumar (ref_50) 2019; 253 Li (ref_39) 2019; 68 Wardoyo (ref_22) 2021; 732 Chan (ref_15) 2018; 175 Melgani (ref_35) 2004; 42 ref_47 Shahdi (ref_28) 2021; 9 Donti (ref_33) 2021; 46 Chi (ref_42) 2009; 13 Du (ref_13) 2005; 142 Minissale (ref_14) 2018; 72 ref_43 ref_1 Zhang (ref_12) 2008; 37 Lizarazo (ref_36) 2008; 29 LeCun (ref_46) 2015; 521 Huang (ref_2) 2012; 2 ref_49 Pang (ref_3) 2014; 49 ref_48 ref_9 Calvin (ref_16) 2015; 53 ref_5 ref_4 Li (ref_40) 2011; 38 Xiong (ref_19) 2016; 43 Gentana (ref_24) 2019; 6 |
References_xml | – volume: 53 start-page: 517 year: 2015 ident: ref_16 article-title: Remote sensing of geothermal-related minerals for resource exploration in Nevada publication-title: Geothermics doi: 10.1016/j.geothermics.2014.09.002 contributor: fullname: Calvin – volume: 175 start-page: 303 year: 2018 ident: ref_15 article-title: Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-017-1690-z contributor: fullname: Chan – ident: ref_5 – ident: ref_32 – volume: 97 start-page: 102250 year: 2021 ident: ref_25 article-title: The effects of alteration degree, moisture and temperature on laser return intensity for mapping geothermal manifestations publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102250 contributor: fullname: Freski – ident: ref_51 doi: 10.3390/rs12010086 – volume: 72 start-page: 258 year: 2018 ident: ref_14 article-title: A simple geochemical prospecting method for geothermal resources in flat areas publication-title: Geothermics doi: 10.1016/j.geothermics.2017.12.001 contributor: fullname: Minissale – volume: 7 start-page: 14 year: 2019 ident: ref_10 article-title: Geophysical survey of geothermal energy potential in the Liaoji Belt, northeastern China publication-title: Geotherm. Energy doi: 10.1186/s40517-019-0130-y contributor: fullname: Peng – ident: ref_1 – volume: 38 start-page: 6689 year: 2011 ident: ref_40 article-title: Multi-objective uniform design as a SVM model selection tool for face recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.066 contributor: fullname: Li – volume: 119 start-page: e2113877119 year: 2022 ident: ref_52 article-title: Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in the continental collision publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2113877119 contributor: fullname: Klemperer – ident: ref_11 doi: 10.3390/en9100855 – ident: ref_49 doi: 10.1109/IGARSS39084.2020.9323541 – volume: 49 start-page: 719 year: 2014 ident: ref_3 article-title: Geothermal studies in China: Progress and prospects 1995–2014 publication-title: Chin. J. Geol. contributor: fullname: Pang – volume: 2 start-page: 557 year: 2012 ident: ref_2 article-title: Geothermal energy in China publication-title: Nat. Clim. Change doi: 10.1038/nclimate1598 contributor: fullname: Huang – volume: 12 start-page: S27 year: 2010 ident: ref_44 article-title: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Otukei – volume: 521 start-page: 436 year: 2015 ident: ref_46 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – ident: ref_4 – ident: ref_31 – ident: ref_48 – volume: 18 start-page: 62 year: 2021 ident: ref_27 article-title: A Deep Learning Approach for Modeling of Geothermal Energy Prediction publication-title: Int. J. Comput. Sci. Inf. Secur. contributor: fullname: Gangwani – volume: 11 start-page: 19755 year: 2021 ident: ref_21 article-title: A spatial analysis for geothermal energy exploration using bivariate predictive modelling publication-title: Sci. Rep. doi: 10.1038/s41598-021-99244-6 contributor: fullname: Tende – volume: 46 start-page: 719 year: 2021 ident: ref_33 article-title: Machine Learning for Sustainable Energy Systems publication-title: Annu. Rev. Env. Resour. doi: 10.1146/annurev-environ-020220-061831 contributor: fullname: Donti – volume: 106 start-page: 350 year: 2007 ident: ref_17 article-title: Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.001 contributor: fullname: Coolbaugh – volume: 7 start-page: 19 year: 2019 ident: ref_23 article-title: A machine learning approach for mapping the very shallow theoretical geothermal potential publication-title: Geotherm. Energy doi: 10.1186/s40517-019-0135-6 contributor: fullname: Assouline – volume: 9 start-page: 1 year: 2021 ident: ref_28 article-title: Exploratory analysis of machine learning methods in predicting subsurface temperature and geothermal gradient of Northeastern United States publication-title: Geotherm. Energy doi: 10.1186/s40517-021-00200-4 contributor: fullname: Shahdi – volume: 253 start-page: 113476 year: 2019 ident: ref_50 article-title: A novel GDP prediction technique based on transfer learning using CO2 emission dataset publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2019.113476 contributor: fullname: Kumar – ident: ref_43 doi: 10.1109/IPTC.2010.127 – volume: 29 start-page: 452 year: 2018 ident: ref_8 article-title: Development of Geothermal Resources in China: A Review publication-title: J. Earth Sci.-China doi: 10.1007/s12583-018-0838-9 contributor: fullname: Zhang – volume: 732 start-page: 012022 year: 2021 ident: ref_22 article-title: Application of Artificial Intelligence in Forecasting Geothermal Production publication-title: IOP Conf. Ser. Earth Environm. Sci. doi: 10.1088/1755-1315/732/1/012022 contributor: fullname: Wardoyo – ident: ref_30 – volume: 43 start-page: 109 year: 2016 ident: ref_19 article-title: Application of remote sensing technique to the identification of geothermal anomaly in Tengchong area, southwest China publication-title: J. Chengdu Univ. Technol. contributor: fullname: Xiong – volume: 100 start-page: 102348 year: 2022 ident: ref_6 article-title: Geothermal 4.0: AI-Enabled geothermal reservoir development-current status, potentials, limitations, and ways forward publication-title: Geothermics doi: 10.1016/j.geothermics.2022.102348 contributor: fullname: Muther – volume: 135 start-page: 195 year: 2004 ident: ref_18 article-title: Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing publication-title: J. Volcanol. Geoth. Res. doi: 10.1016/j.jvolgeores.2003.12.012 contributor: fullname: Hellman – volume: 29 start-page: 7277 year: 2008 ident: ref_36 article-title: SVM-based segmentation and classification of remotely sensed data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802326081 contributor: fullname: Lizarazo – volume: 142 start-page: 243 year: 2005 ident: ref_13 article-title: Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China publication-title: J. Volcanol. Geoth. Res. doi: 10.1016/j.jvolgeores.2004.11.009 contributor: fullname: Du – ident: ref_47 doi: 10.1109/CVPR.2015.7298594 – ident: ref_9 doi: 10.3390/en13071792 – ident: ref_37 doi: 10.1109/ICCASM.2010.5622651 – volume: 61 start-page: 1 year: 2020 ident: ref_26 article-title: 70 years of machine learning in geoscience in review publication-title: Adv. Geophys. doi: 10.1016/bs.agph.2020.08.002 contributor: fullname: Dramsch – volume: 37 start-page: 73 year: 2008 ident: ref_12 article-title: Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China publication-title: Geothermics doi: 10.1016/j.geothermics.2007.09.002 contributor: fullname: Zhang – volume: 41 start-page: 1389 year: 2014 ident: ref_41 article-title: Performance evaluation of microbial fuel cell by artificial intelligence methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.038 contributor: fullname: Garg – volume: 81 start-page: 70 year: 2022 ident: ref_7 article-title: Heat flow estimation and quantification of geothermal reservoir of a basement terrain using geophysical and numerical techniques publication-title: Environ. Earth Sci. doi: 10.1007/s12665-022-10201-6 contributor: fullname: Sedara – ident: ref_34 doi: 10.20944/preprints202201.0107.v1 – volume: 153 start-page: 564 year: 2020 ident: ref_20 article-title: Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models publication-title: Renew. Energ. doi: 10.1016/j.renene.2020.02.044 contributor: fullname: Zhang – volume: 113 start-page: 398 year: 2009 ident: ref_45 article-title: Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.10.005 contributor: fullname: Tooke – volume: 42 start-page: 1778 year: 2004 ident: ref_35 article-title: Classification of hyperspectral remote sensing images with support vector machines publication-title: IEEE Trans. Geosci. Remote doi: 10.1109/TGRS.2004.831865 contributor: fullname: Melgani – volume: 182 start-page: 32 year: 2022 ident: ref_29 article-title: Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network publication-title: Renew. Energ. doi: 10.1016/j.renene.2021.09.127 contributor: fullname: Yang – volume: 68 start-page: 1270 year: 2019 ident: ref_39 article-title: Separation of Multi-mode Surface Waves by Supervised Machine Learning Methods publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12927 contributor: fullname: Li – volume: 13 start-page: 415 year: 2009 ident: ref_42 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Net. contributor: fullname: Chi – volume: 6 start-page: 291 year: 2019 ident: ref_24 article-title: Morphotectonics of Mount Rendingan Area Related To the Appearances of Geothermal Surface Manifestations publication-title: Indones. J. Geosci. doi: 10.17014/ijog.6.3.291-309 contributor: fullname: Gentana – volume: 34 start-page: 58 year: 2015 ident: ref_38 article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Turker |
SSID | ssj0000331333 |
Score | 2.373159 |
Snippet | Geothermal surface manifestations (GSMs) are direct clues towards hydrothermal activities of a geothermal system in the subsurface and significant indications... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2913 |
SubjectTerms | Artificial intelligence Computer applications Computer vision Computing time Datasets Decision Tree (DT) Deep learning Deep Learning (DL) Energy Feasibility Geophysics Geothermal energy geothermal manifestation Geothermal power Geothermal resources Geysers Hot springs Image quality K-Nearest Neighbor (KNN) Lakes Learning algorithms Machine learning Neural networks Resource exploration Support Vector Machine (SVM) Support vector machines Sustainable development Transfer learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1EoyBKsUV07cWK28igVUhmASt0iP85MpFUf_x-fk5YiBha2yIqV5L6c786--46QG59r61CRMg2QpN64pHAZSzgo3E4GXngscB69yOE4fZ5kk61WX5gTVtMD14LrWmdlnjquZTA2KuUGFIei0E6EwELYmr2Uqa1gKq7BQoTgS9R8pCLE9V2okPmcq574YYEiUf-vdTgal8EB2W-8Qtqv3-aQ7EB1RPa2uAKPiXtdp_pMKzr19Ali7dRnmPa2mnttgY40Jqos6sP1xS3t0_tNl0GcMoqJk0AbTtUPqitHHwBmm5ETMh48vt8Pk6ZFQmLDpywT7wrNhJZYYep6qc6syk0e1EoLFq4MZOCL1CKtIGpurpiWwSmADM2-4EKcklY1reCMUK9Vz1iTidxAKnKGWKVWGem01L7H2uR6LbZyVjNhlCGCQOGW38JtkzuU6OYOZK-OAwHTssG0_AvTNums8SgblVqUXOIRsSoYP_-PZ1yQXY6VDDEJp0Nay_kKLoN_sTRX8Vf6AvHtzMI priority: 102 providerName: Directory of Open Access Journals |
Title | Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning |
URI | https://www.proquest.com/docview/2652969802 https://doaj.org/article/cdc674d2a6224942be92e88ad34483c5 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4LDAgnqI8KkuwRk3sJI5ZEBRahFSECpW6RX6cmUhKW_4_PjctICSWKLLjIWff03ffEXLphDIWGSlTAFHqtI0Km8URA4nhZGCFwwLnwVP-MEofx9m4CbjNmrTKpUwMgtrWBmPkHZbjDaEsYnY9-YiwaxTerjYtNNbJZsKEQOer6PVXMZaYc--C8QUqKffefQcqxD9nMuG_9FCA6_8jjYOK6e2SncY2pDeLzdwja1Dtk-0fiIEHxA6XCT91RWtH-xAqqN79spfPqVMG6EBhuspsccU-u6I3tLvqNYhLBiF9EmiDrPpGVWXpHcBkNXJIRr371-5D1DRKiIz_lXnkbKFirnKsM7VJqjIjhRaeuRSP_ZuGDFyRGgQXRP4VMla5Nw0gQ-XPGedHZKOqKzgm1CmZaKMzLjSkXMS4Y6mROrcqVy6JW-RiSbZyssDDKL0fgcQtv4nbIrdI0dUXiGEdBurpW9mwRGmsyUVqmcq9GSFTpkEyKApluXcZucla5Gy5H2XDWLPy-xic_D99SrYYViqEJJszsjGffsK5tx_muh0OSZts3t4_PQ_bwQv3z_44-QJhz8gL |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgPQAHxCrKagmuEamdzVxQC5SytEIsErfIy7gnktKW_8eTui0IiVvkxIfMeMazviHkzKZSGxSkWAIEkVUmyEwcBgwEhpOBZRYbnHv9pPsW3b_H7z7gNvZllTOdWClqU2qMkZ-zBDOEIgvZ5fAzwKlRmF31IzSWSR2hqpzzVW_f9J-e51GWkHPnhPEpLil3_v05FIiAzkST_7qJKsD-P_q4umQ6G2TdW4e0NWXnJlmCYous_cAM3CbmeVbyUxa0tPQWqh6qD7ft5WtkpQbak1iwMp4m2ccXtEWv5tMGcUuvKqAE6rFVB1QWhl4DDOcrO-Stc_N61Q38qIRAu1-ZBNZkMuQywU5T04xkrEWqUidekofuSUEMNos0wguiBKcilIkzDiDG658zzndJrSgL2CPUStFUWsU8VRDxNESeRVqoxMhE2mbYIKczsuXDKSJG7jwJJG6-IG6DtJGi8y8QxbpaKEeD3AtFro1O0sgwmThDQkRMgWCQZdJw5zRyHTfI4YwfuRetcb44CPv_vz4hK93X3mP-eNd_OCCrDPsWqpKbQ1KbjL7gyFkTE3Xsj8w3oirI3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa2FBjWw7AnlrbbBGxXI4oky1YvQ19Z90hQdCvQm6EH1dPsNEn_f0VHSTcM2M2QrYMpkSKpjx8BPsXK-kCKVFrEQkUXijqUvBBoKJ2Moo5U4Dyd6fMr9e26vM74p2WGVW5sYm-oQ-cpRz4Smm4ITc3FKGZYxMXp5PP8tqAOUnTTmttpPIadSmnJB7BzfDa7uNxmXLiUKSCTa45SmWL9EbbEhi7MWP51KvXk_f_Y5v7AmTyHZ9lTZEfrpX0Bj7B9Cbt_8Ae-gnC5gf90Lesi-4J9PdXvNO3n3SJaj2xqCbyyXF-4Lw_ZETvZdh6kKdMeTIks86zeMNsGdoo43468hqvJ2a-T8yK3TSh8-pVVEUNtubSaqk7DWNnSm8pVSdWs5OnJYYmxVp6oBkmbK8OtTo4CluQKSCHlGxi0XYtvgUVrxs67UlYOlaw4rZ_yxulgtY1jPoSPG7E18zU7RpOiChJu8yDcIRyTRLdfEKN1P9AtbpqsII0PXlcqCKuTU2GUcGgE1rUNMgWQ0pdDONisR5PVbNk8bIq9_7_-AE_Sbml-fJ1934engkoYevTNAQxWizt8lxyLlXufd8w92onNCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+Geothermal+Surface+Manifestations%3A+A+Comparison+of+Machine+Learning+and+Deep+Learning&rft.jtitle=Energies+%28Basel%29&rft.au=Xiong%2C+Yongzhu&rft.au=Zhu%2C+Mingyong&rft.au=Li%2C+Yongyi&rft.au=Huang%2C+Kekun&rft.date=2022-04-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=8&rft.spage=2913&rft_id=info:doi/10.3390%2Fen15082913&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en15082913 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |