Transformer for High-Speed Train Wheel Wear Prediction With Multiplex Local-Global Temporal Fusion
The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value without timely maintenance, it will seriously affect the dynamic performance of the HST and even cause a derailment accident. With HSTs and sens...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value without timely maintenance, it will seriously affect the dynamic performance of the HST and even cause a derailment accident. With HSTs and sensor technology development, massive operation data can be obtained, which provides a new possibility for developing a data-driven algorithm for wheel wear prediction. To this end, this article proposes a novel transformer-based framework with multiplex local-global temporal fusion (LGF-Trans), which can be used for wheel wear prediction via vibration signals. First, a multiplex local temporal fusion architecture is proposed, composed of multiple local temporal attention networks (LTA-Networks). It can encode the local temporal correlation of the signal and improve the detail perception ability of the model. Subsequently, the transformer architecture is introduced, which uses the multi-head attention mechanism to fully encode the global temporal correlation features of vibration signals, thereby modeling the internal relationship between the input signal and the wheel wear status. LGF-Trans fully integrates the advantages of convolutional network and transformer architecture in local feature learning and global feature learning, thereby effectively extracting valuable features from massive noisy operating data. Experiments on the real operation dataset of CRH1A HST show that LGF-Trans can accurately predict wheel wear curves, and it has a better performance than the state-of-the-art deep learning methods. This confirms that LGF-Trans is expected to be a powerful tool for wheel wear prediction. |
---|---|
AbstractList | The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value without timely maintenance, it will seriously affect the dynamic performance of the HST and even cause a derailment accident. With HSTs and sensor technology development, massive operation data can be obtained, which provides a new possibility for developing a data-driven algorithm for wheel wear prediction. To this end, this article proposes a novel transformer-based framework with multiplex local-global temporal fusion (LGF-Trans), which can be used for wheel wear prediction via vibration signals. First, a multiplex local temporal fusion architecture is proposed, composed of multiple local temporal attention networks (LTA-Networks). It can encode the local temporal correlation of the signal and improve the detail perception ability of the model. Subsequently, the transformer architecture is introduced, which uses the multi-head attention mechanism to fully encode the global temporal correlation features of vibration signals, thereby modeling the internal relationship between the input signal and the wheel wear status. LGF-Trans fully integrates the advantages of convolutional network and transformer architecture in local feature learning and global feature learning, thereby effectively extracting valuable features from massive noisy operating data. Experiments on the real operation dataset of CRH1A HST show that LGF-Trans can accurately predict wheel wear curves, and it has a better performance than the state-of-the-art deep learning methods. This confirms that LGF-Trans is expected to be a powerful tool for wheel wear prediction. |
Author | Wang, Huan Li, Yan-Fu Men, Tianli |
Author_xml | – sequence: 1 givenname: Huan orcidid: 0000-0002-1403-5314 surname: Wang fullname: Wang, Huan email: huan-wan21@mails.tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Tianli orcidid: 0000-0002-8935-9647 surname: Men fullname: Men, Tianli email: mentl18@mails.tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Yan-Fu orcidid: 0000-0001-5755-7115 surname: Li fullname: Li, Yan-Fu email: liyanfu@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
BookMark | eNp9kM1LAzEQxYNUsH7cBS8Bz1sn2WSzOUqxVWhRsOJxye5ObMp2s2a3oP-9KS0ePHh6w8x78-B3Tkatb5GQawYTxkDfrZ6WEw6cT1ImRc7VCRkzKVWis4yPyBiA5YkWMjsj532_AQCVCTUm5SqYtrc-bDHQKPTRfayT1w6xpvHkWvq-RmzoO5pAXwLWrhqcj1s3rOly1wyua_CLLnxlmmTe-NI0dIXbzoc4zHZ99F6SU2uaHq-OekHeZg-r6WOyeJ4_Te8XScU1GxJb2rJiaSYkmhpEbYSUkBshwGpmIUWpIQehUJU8M6a2klusWVrnOVNlqdMLcnv42wX_ucN-KDZ-F9pYWfBMgEg5UyK64OCqgu_7gLbogtua8F0wKPYki0iy2JMsjiRjJPsTqdxg9hiGSKj5L3hzCDpE_O3RirNcp-kPBuSCiA |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2022_3189730 crossref_primary_10_1155_2023_4468025 crossref_primary_10_1109_TIM_2024_3470949 crossref_primary_10_1109_TSMC_2024_3389068 crossref_primary_10_1109_TIM_2022_3196742 crossref_primary_10_1109_TIM_2024_3413151 crossref_primary_10_1109_TIM_2022_3214494 crossref_primary_10_1109_TITS_2024_3365808 |
Cites_doi | 10.1016/j.wear.2018.01.007 10.1109/CVPR.2016.90 10.1177/0954409713478528 10.1080/00423119708969355 10.1109/TNNLS.2021.3060494 10.1016/0043-1648(91)90018-P 10.1016/S0043-1648(02)00087-X 10.1080/00423110600996017 10.1109/TIE.2019.2902817 10.1109/ICPHM.2018.8448864 10.1109/TIM.2021.3088489 10.1109/TIM.2020.2968161 10.1109/TII.2019.2955540 10.1080/00423110802331559 10.1109/TIM.2020.3039612 10.1109/CVPR.2017.195 10.1109/TII.2020.2967557 10.1016/j.isatra.2021.04.022 10.1063/1.1721448 10.1109/TIM.2020.2969092 10.1080/00423114.2002.11666258 10.1016/j.knosys.2021.107187 10.1016/j.triboint.2007.10.007 10.3390/s17020425 10.1109/TASLP.2020.3039600 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.24 10.1109/TIM.2020.3017900 10.1016/j.wear.2006.03.025 10.1109/TIM.2020.3047922 10.1109/TIM.2020.3039614 10.1080/00423114.2013.798421 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3154827 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 12 |
ExternalDocumentID | 10_1109_TIM_2022_3154827 9721893 |
Genre | orig-research |
GrantInformation_xml | – fundername: Zhibo Lucchini Railway Equipment Company, Ltd – fundername: National Natural Science Foundation of China grantid: 71731008 funderid: 10.13039/501100001809 – fundername: Beijing Municipal Natural Science Foundation-Rail Transit Joint Research Program grantid: L191022 funderid: 10.13039/501100005089 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-fbfbc13645ead04da45508a440f91f03e5908047e7b26aadf52fed13d8817bb93 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:16:26 EDT 2025 Tue Jul 01 03:07:11 EDT 2025 Thu Apr 24 22:52:54 EDT 2025 Wed Aug 27 02:48:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-fbfbc13645ead04da45508a440f91f03e5908047e7b26aadf52fed13d8817bb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8935-9647 0000-0002-1403-5314 0000-0001-5755-7115 |
PQID | 2640432174 |
PQPubID | 85462 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2640432174 crossref_primary_10_1109_TIM_2022_3154827 crossref_citationtrail_10_1109_TIM_2022_3154827 ieee_primary_9721893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref36 ref11 ref33 ref2 ref1 ref17 ref16 ref19 Szabó (ref10) 2003 ref18 Vaswani (ref30) Ba (ref32) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Dosovitskiy (ref31) ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Simonyan (ref35) |
References_xml | – ident: ref15 doi: 10.1016/j.wear.2018.01.007 – ident: ref17 doi: 10.1109/CVPR.2016.90 – start-page: 88 issue: 4 year: 2003 ident: ref10 article-title: Wheel-profile wear simulation in case of operation on a specified railway network publication-title: Eur. Railway Rev. – ident: ref6 doi: 10.1177/0954409713478528 – ident: ref9 doi: 10.1080/00423119708969355 – ident: ref24 doi: 10.1109/TNNLS.2021.3060494 – volume-title: Proc. NIPS ident: ref32 article-title: Layer normalization – ident: ref4 doi: 10.1016/0043-1648(91)90018-P – ident: ref2 doi: 10.1016/S0043-1648(02)00087-X – ident: ref5 doi: 10.1080/00423110600996017 – ident: ref26 doi: 10.1109/TIE.2019.2902817 – ident: ref13 doi: 10.1109/ICPHM.2018.8448864 – ident: ref22 doi: 10.1109/TIM.2021.3088489 – ident: ref28 doi: 10.1109/TIM.2020.2968161 – ident: ref23 doi: 10.1109/TII.2019.2955540 – ident: ref1 doi: 10.1080/00423110802331559 – ident: ref20 doi: 10.1109/TIM.2020.3039612 – ident: ref36 doi: 10.1109/CVPR.2017.195 – volume-title: Proc. ICLR ident: ref31 article-title: An image is worth $16\times16$ words: Transformers for image recognition at scale – ident: ref33 doi: 10.1109/TII.2020.2967557 – ident: ref19 doi: 10.1016/j.isatra.2021.04.022 – ident: ref12 doi: 10.1063/1.1721448 – ident: ref25 doi: 10.1109/TIM.2020.2969092 – ident: ref11 doi: 10.1080/00423114.2002.11666258 – ident: ref18 doi: 10.1016/j.knosys.2021.107187 – ident: ref7 doi: 10.1016/j.triboint.2007.10.007 – ident: ref34 doi: 10.3390/s17020425 – ident: ref16 doi: 10.1109/TASLP.2020.3039600 – volume-title: Proc. ICLR ident: ref35 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref14 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.24 – ident: ref27 doi: 10.1109/TIM.2020.3017900 – volume-title: Proc. NIPS ident: ref30 article-title: Attention is all you need – ident: ref8 doi: 10.1016/j.wear.2006.03.025 – ident: ref29 doi: 10.1109/TIM.2020.3047922 – ident: ref21 doi: 10.1109/TIM.2020.3039614 – ident: ref3 doi: 10.1080/00423114.2013.798421 |
SSID | ssj0007647 |
Score | 2.4563646 |
Snippet | The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Convolutional neural network (CNN) Correlation Deep learning Derailments Feature extraction High speed rail high-speed train (HST) Machine learning Multiplexing Predictive models Railroad accidents & safety Railroad transportation Railroad wheels Representation learning Tool wear transformer Transformers Vibration vibration signals Vibrations wheel wear prediction Wheels |
Title | Transformer for High-Speed Train Wheel Wear Prediction With Multiplex Local-Global Temporal Fusion |
URI | https://ieeexplore.ieee.org/document/9721893 https://www.proquest.com/docview/2640432174 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5UEPTgo1WsL_bgRXDbJM3zKGJRMSKYUm8hu5lFsVSpKYi_3pk8ii_EU3LYDYFvd-ebnZlvAI4iP8AwzIw0uVHSDT0jFTqZxBwDW-eedsoq_vjGvxi6V_fe_QKczGthELFMPsMuv5ax_PxZz_iqrMdKM2RfF2GRHLeqVmt-6ga-W-lj2rSBiRU0IUkr6iWXMTmCjkP-qceql19MUNlT5cdBXFqXwTrEzX9VSSVP3Vmhuvr9m2Tjf398A9ZqmilOq3WxCQs4acHqJ_HBFiyXyZ_6tQ0qadgrTgU9BCd_yLsXMmwi4RYSgo5sHIsR7QpxO-XQDsMpRo_Fg4jrjMQ3cc1mUVZNBERSSV6NxWDG93FbMBycJ2cXsu69IAkdu5BGGaVtjlHSUrPcPOPq5zBzXctEtrH6yL3SLTfAQDl-luXGcwzmdj8PQztQKupvw9LkeYI7IJSlQyIRxhB3I1NIo0ONEfaNpRw0mdOBXgNHqmthcu6PMU5LB8WKUgIwZQDTGsAOHM9nvFSiHH-MbTMe83E1FB3YbxBP6137mhI5ZIVCctJ2f5-1Byv87eoKZh-WiukMD4iUFOqwXI0fioTeuA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58IOrBt1ife_AiuG2SJk1yFLFUbUQworeQ3cyiWKrUFMRf70wexRfiKTnsksC3u9_Mzsw3AIdhx8cgSI00mVHSDTwjFTqpxAx9W2eedooq_uiq07t1L-69-yk4ntTCIGKRfIZNfi1i-dmzHvNVWYuVZohfp2GWeN-zy2qtybnrd9xSIdOmLUx2QR2UtMJWfB6RK-g45KF6rHv5hYSKrio_juKCX7rLENV_VqaVPDXHuWrq92-ijf_99RVYqgxNcVKujFWYwuEaLH6SH1yDuSL9U7-ug4pr-xVHgh6C0z_kzQtRm4i5iYSgQxsH4o72hbgecXCHARV3j_mDiKqcxDfRZ2KUZRsBEZeiVwPRHfON3Abcds_i056sui9IwsfOpVFGaZujlLTYLDdLuf45SF3XMqFtrDZyt3TL9dFXTidNM-M5BjO7nQWB7SsVtjdhZvg8xC0QytIBmRHGkPVGZEijA40hto2lHDSp04BWDUeiK2ly7pAxSAoXxQoTAjBhAJMKwAYcTWa8lLIcf4xdZzwm4yooGrBbI55U-_Y1IfOQNQrJTdv-fdYBzPfiqJ_0z68ud2CBv1NeyOzCTD4a4x6ZKLnaL1bmB1JG4gE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformer+for+High-Speed+Train+Wheel+Wear+Prediction+With+Multiplex+Local%E2%80%93Global+Temporal+Fusion&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Huan&rft.au=Men%2C+Tianli&rft.au=Li%2C+Yan-Fu&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2022.3154827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3154827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |