Transformer for High-Speed Train Wheel Wear Prediction With Multiplex Local-Global Temporal Fusion

The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value without timely maintenance, it will seriously affect the dynamic performance of the HST and even cause a derailment accident. With HSTs and sens...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 12
Main Authors Wang, Huan, Men, Tianli, Li, Yan-Fu
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value without timely maintenance, it will seriously affect the dynamic performance of the HST and even cause a derailment accident. With HSTs and sensor technology development, massive operation data can be obtained, which provides a new possibility for developing a data-driven algorithm for wheel wear prediction. To this end, this article proposes a novel transformer-based framework with multiplex local-global temporal fusion (LGF-Trans), which can be used for wheel wear prediction via vibration signals. First, a multiplex local temporal fusion architecture is proposed, composed of multiple local temporal attention networks (LTA-Networks). It can encode the local temporal correlation of the signal and improve the detail perception ability of the model. Subsequently, the transformer architecture is introduced, which uses the multi-head attention mechanism to fully encode the global temporal correlation features of vibration signals, thereby modeling the internal relationship between the input signal and the wheel wear status. LGF-Trans fully integrates the advantages of convolutional network and transformer architecture in local feature learning and global feature learning, thereby effectively extracting valuable features from massive noisy operating data. Experiments on the real operation dataset of CRH1A HST show that LGF-Trans can accurately predict wheel wear curves, and it has a better performance than the state-of-the-art deep learning methods. This confirms that LGF-Trans is expected to be a powerful tool for wheel wear prediction.
AbstractList The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value without timely maintenance, it will seriously affect the dynamic performance of the HST and even cause a derailment accident. With HSTs and sensor technology development, massive operation data can be obtained, which provides a new possibility for developing a data-driven algorithm for wheel wear prediction. To this end, this article proposes a novel transformer-based framework with multiplex local-global temporal fusion (LGF-Trans), which can be used for wheel wear prediction via vibration signals. First, a multiplex local temporal fusion architecture is proposed, composed of multiple local temporal attention networks (LTA-Networks). It can encode the local temporal correlation of the signal and improve the detail perception ability of the model. Subsequently, the transformer architecture is introduced, which uses the multi-head attention mechanism to fully encode the global temporal correlation features of vibration signals, thereby modeling the internal relationship between the input signal and the wheel wear status. LGF-Trans fully integrates the advantages of convolutional network and transformer architecture in local feature learning and global feature learning, thereby effectively extracting valuable features from massive noisy operating data. Experiments on the real operation dataset of CRH1A HST show that LGF-Trans can accurately predict wheel wear curves, and it has a better performance than the state-of-the-art deep learning methods. This confirms that LGF-Trans is expected to be a powerful tool for wheel wear prediction.
Author Wang, Huan
Li, Yan-Fu
Men, Tianli
Author_xml – sequence: 1
  givenname: Huan
  orcidid: 0000-0002-1403-5314
  surname: Wang
  fullname: Wang, Huan
  email: huan-wan21@mails.tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Tianli
  orcidid: 0000-0002-8935-9647
  surname: Men
  fullname: Men, Tianli
  email: mentl18@mails.tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Yan-Fu
  orcidid: 0000-0001-5755-7115
  surname: Li
  fullname: Li, Yan-Fu
  email: liyanfu@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNp9kM1LAzEQxYNUsH7cBS8Bz1sn2WSzOUqxVWhRsOJxye5ObMp2s2a3oP-9KS0ePHh6w8x78-B3Tkatb5GQawYTxkDfrZ6WEw6cT1ImRc7VCRkzKVWis4yPyBiA5YkWMjsj532_AQCVCTUm5SqYtrc-bDHQKPTRfayT1w6xpvHkWvq-RmzoO5pAXwLWrhqcj1s3rOly1wyua_CLLnxlmmTe-NI0dIXbzoc4zHZ99F6SU2uaHq-OekHeZg-r6WOyeJ4_Te8XScU1GxJb2rJiaSYkmhpEbYSUkBshwGpmIUWpIQehUJU8M6a2klusWVrnOVNlqdMLcnv42wX_ucN-KDZ-F9pYWfBMgEg5UyK64OCqgu_7gLbogtua8F0wKPYki0iy2JMsjiRjJPsTqdxg9hiGSKj5L3hzCDpE_O3RirNcp-kPBuSCiA
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2022_3189730
crossref_primary_10_1155_2023_4468025
crossref_primary_10_1109_TIM_2024_3470949
crossref_primary_10_1109_TSMC_2024_3389068
crossref_primary_10_1109_TIM_2022_3196742
crossref_primary_10_1109_TIM_2024_3413151
crossref_primary_10_1109_TIM_2022_3214494
crossref_primary_10_1109_TITS_2024_3365808
Cites_doi 10.1016/j.wear.2018.01.007
10.1109/CVPR.2016.90
10.1177/0954409713478528
10.1080/00423119708969355
10.1109/TNNLS.2021.3060494
10.1016/0043-1648(91)90018-P
10.1016/S0043-1648(02)00087-X
10.1080/00423110600996017
10.1109/TIE.2019.2902817
10.1109/ICPHM.2018.8448864
10.1109/TIM.2021.3088489
10.1109/TIM.2020.2968161
10.1109/TII.2019.2955540
10.1080/00423110802331559
10.1109/TIM.2020.3039612
10.1109/CVPR.2017.195
10.1109/TII.2020.2967557
10.1016/j.isatra.2021.04.022
10.1063/1.1721448
10.1109/TIM.2020.2969092
10.1080/00423114.2002.11666258
10.1016/j.knosys.2021.107187
10.1016/j.triboint.2007.10.007
10.3390/s17020425
10.1109/TASLP.2020.3039600
10.1109/iThings-GreenCom-CPSCom-SmartData.2017.24
10.1109/TIM.2020.3017900
10.1016/j.wear.2006.03.025
10.1109/TIM.2020.3047922
10.1109/TIM.2020.3039614
10.1080/00423114.2013.798421
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3154827
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2022_3154827
9721893
Genre orig-research
GrantInformation_xml – fundername: Zhibo Lucchini Railway Equipment Company, Ltd
– fundername: National Natural Science Foundation of China
  grantid: 71731008
  funderid: 10.13039/501100001809
– fundername: Beijing Municipal Natural Science Foundation-Rail Transit Joint Research Program
  grantid: L191022
  funderid: 10.13039/501100005089
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-fbfbc13645ead04da45508a440f91f03e5908047e7b26aadf52fed13d8817bb93
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:16:26 EDT 2025
Tue Jul 01 03:07:11 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Wed Aug 27 02:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fbfbc13645ead04da45508a440f91f03e5908047e7b26aadf52fed13d8817bb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8935-9647
0000-0002-1403-5314
0000-0001-5755-7115
PQID 2640432174
PQPubID 85462
PageCount 12
ParticipantIDs proquest_journals_2640432174
crossref_primary_10_1109_TIM_2022_3154827
crossref_citationtrail_10_1109_TIM_2022_3154827
ieee_primary_9721893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref36
ref11
ref33
ref2
ref1
ref17
ref16
ref19
Szabó (ref10) 2003
ref18
Vaswani (ref30)
Ba (ref32)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Dosovitskiy (ref31)
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Simonyan (ref35)
References_xml – ident: ref15
  doi: 10.1016/j.wear.2018.01.007
– ident: ref17
  doi: 10.1109/CVPR.2016.90
– start-page: 88
  issue: 4
  year: 2003
  ident: ref10
  article-title: Wheel-profile wear simulation in case of operation on a specified railway network
  publication-title: Eur. Railway Rev.
– ident: ref6
  doi: 10.1177/0954409713478528
– ident: ref9
  doi: 10.1080/00423119708969355
– ident: ref24
  doi: 10.1109/TNNLS.2021.3060494
– volume-title: Proc. NIPS
  ident: ref32
  article-title: Layer normalization
– ident: ref4
  doi: 10.1016/0043-1648(91)90018-P
– ident: ref2
  doi: 10.1016/S0043-1648(02)00087-X
– ident: ref5
  doi: 10.1080/00423110600996017
– ident: ref26
  doi: 10.1109/TIE.2019.2902817
– ident: ref13
  doi: 10.1109/ICPHM.2018.8448864
– ident: ref22
  doi: 10.1109/TIM.2021.3088489
– ident: ref28
  doi: 10.1109/TIM.2020.2968161
– ident: ref23
  doi: 10.1109/TII.2019.2955540
– ident: ref1
  doi: 10.1080/00423110802331559
– ident: ref20
  doi: 10.1109/TIM.2020.3039612
– ident: ref36
  doi: 10.1109/CVPR.2017.195
– volume-title: Proc. ICLR
  ident: ref31
  article-title: An image is worth $16\times16$ words: Transformers for image recognition at scale
– ident: ref33
  doi: 10.1109/TII.2020.2967557
– ident: ref19
  doi: 10.1016/j.isatra.2021.04.022
– ident: ref12
  doi: 10.1063/1.1721448
– ident: ref25
  doi: 10.1109/TIM.2020.2969092
– ident: ref11
  doi: 10.1080/00423114.2002.11666258
– ident: ref18
  doi: 10.1016/j.knosys.2021.107187
– ident: ref7
  doi: 10.1016/j.triboint.2007.10.007
– ident: ref34
  doi: 10.3390/s17020425
– ident: ref16
  doi: 10.1109/TASLP.2020.3039600
– volume-title: Proc. ICLR
  ident: ref35
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref14
  doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.24
– ident: ref27
  doi: 10.1109/TIM.2020.3017900
– volume-title: Proc. NIPS
  ident: ref30
  article-title: Attention is all you need
– ident: ref8
  doi: 10.1016/j.wear.2006.03.025
– ident: ref29
  doi: 10.1109/TIM.2020.3047922
– ident: ref21
  doi: 10.1109/TIM.2020.3039614
– ident: ref3
  doi: 10.1080/00423114.2013.798421
SSID ssj0007647
Score 2.4563646
Snippet The wheel wear status of high-speed trains (HSTs) is an essential indicator for their safety and reliability. When the wheel wear exceeds the warning value...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Convolutional neural network (CNN)
Correlation
Deep learning
Derailments
Feature extraction
High speed rail
high-speed train (HST)
Machine learning
Multiplexing
Predictive models
Railroad accidents & safety
Railroad transportation
Railroad wheels
Representation learning
Tool wear
transformer
Transformers
Vibration
vibration signals
Vibrations
wheel wear prediction
Wheels
Title Transformer for High-Speed Train Wheel Wear Prediction With Multiplex Local-Global Temporal Fusion
URI https://ieeexplore.ieee.org/document/9721893
https://www.proquest.com/docview/2640432174
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5UEPTgo1WsL_bgRXDbJM3zKGJRMSKYUm8hu5lFsVSpKYi_3pk8ii_EU3LYDYFvd-ebnZlvAI4iP8AwzIw0uVHSDT0jFTqZxBwDW-eedsoq_vjGvxi6V_fe_QKczGthELFMPsMuv5ax_PxZz_iqrMdKM2RfF2GRHLeqVmt-6ga-W-lj2rSBiRU0IUkr6iWXMTmCjkP-qceql19MUNlT5cdBXFqXwTrEzX9VSSVP3Vmhuvr9m2Tjf398A9ZqmilOq3WxCQs4acHqJ_HBFiyXyZ_6tQ0qadgrTgU9BCd_yLsXMmwi4RYSgo5sHIsR7QpxO-XQDsMpRo_Fg4jrjMQ3cc1mUVZNBERSSV6NxWDG93FbMBycJ2cXsu69IAkdu5BGGaVtjlHSUrPcPOPq5zBzXctEtrH6yL3SLTfAQDl-luXGcwzmdj8PQztQKupvw9LkeYI7IJSlQyIRxhB3I1NIo0ONEfaNpRw0mdOBXgNHqmthcu6PMU5LB8WKUgIwZQDTGsAOHM9nvFSiHH-MbTMe83E1FB3YbxBP6137mhI5ZIVCctJ2f5-1Byv87eoKZh-WiukMD4iUFOqwXI0fioTeuA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58IOrBt1ife_AiuG2SJk1yFLFUbUQworeQ3cyiWKrUFMRf70wexRfiKTnsksC3u9_Mzsw3AIdhx8cgSI00mVHSDTwjFTqpxAx9W2eedooq_uiq07t1L-69-yk4ntTCIGKRfIZNfi1i-dmzHvNVWYuVZohfp2GWeN-zy2qtybnrd9xSIdOmLUx2QR2UtMJWfB6RK-g45KF6rHv5hYSKrio_juKCX7rLENV_VqaVPDXHuWrq92-ijf_99RVYqgxNcVKujFWYwuEaLH6SH1yDuSL9U7-ug4pr-xVHgh6C0z_kzQtRm4i5iYSgQxsH4o72hbgecXCHARV3j_mDiKqcxDfRZ2KUZRsBEZeiVwPRHfON3Abcds_i056sui9IwsfOpVFGaZujlLTYLDdLuf45SF3XMqFtrDZyt3TL9dFXTidNM-M5BjO7nQWB7SsVtjdhZvg8xC0QytIBmRHGkPVGZEijA40hto2lHDSp04BWDUeiK2ly7pAxSAoXxQoTAjBhAJMKwAYcTWa8lLIcf4xdZzwm4yooGrBbI55U-_Y1IfOQNQrJTdv-fdYBzPfiqJ_0z68ud2CBv1NeyOzCTD4a4x6ZKLnaL1bmB1JG4gE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformer+for+High-Speed+Train+Wheel+Wear+Prediction+With+Multiplex+Local%E2%80%93Global+Temporal+Fusion&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Wang%2C+Huan&rft.au=Men%2C+Tianli&rft.au=Li%2C+Yan-Fu&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2022.3154827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3154827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon