Intelligent Security Performance Prediction for IoT-Enabled Healthcare Networks Using an Improved CNN

The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of Things (IoT) will play an important role in meeting the high throughput requirements of diversified intelligent healthcare applications. Howeve...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 18; no. 3; pp. 2063 - 2074
Main Authors Xu, Lingwei, Zhou, Xinpeng, Tao, Ye, Liu, Lei, Yu, Xu, Kumar, Neeraj
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of Things (IoT) will play an important role in meeting the high throughput requirements of diversified intelligent healthcare applications. However, the mobile IoT-enabled healthcare networks are diverse and open, the healthcare big data transmission is vulnerable to a potential attack, which can cause network outages and serious healthcare security issues. To process the complex healthcare security event in real time, security performance prediction is critical for mobile IoT-enabled healthcare networks. In this article, we first analyze the security performance, and derive the novel expressions for the security performance in a closed form. Then, to analyze the security performance in real time, a security performance intelligent prediction algorithm is proposed. An improved convolutional neural network (CNN) model is designed, which combines the four-layer convolution and a four-branch inception block, and can adopt different convolution kernels in the same layer. The four-branch inception block can increase the width of the CNN while reducing the parameters. The improved CNN model can not only increases the width of the CNN, extract different sizes of healthcare data features, but also increases the adaptability to the nonlinear healthcare big data. Compared with different methods, the proposed intelligent algorithm can obtain better security performance prediction. In particular, for prediction precision, the proposed intelligent algorithm is increased by 20%.
AbstractList The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of Things (IoT) will play an important role in meeting the high throughput requirements of diversified intelligent healthcare applications. However, the mobile IoT-enabled healthcare networks are diverse and open, the healthcare big data transmission is vulnerable to a potential attack, which can cause network outages and serious healthcare security issues. To process the complex healthcare security event in real time, security performance prediction is critical for mobile IoT-enabled healthcare networks. In this article, we first analyze the security performance, and derive the novel expressions for the security performance in a closed form. Then, to analyze the security performance in real time, a security performance intelligent prediction algorithm is proposed. An improved convolutional neural network (CNN) model is designed, which combines the four-layer convolution and a four-branch inception block, and can adopt different convolution kernels in the same layer. The four-branch inception block can increase the width of the CNN while reducing the parameters. The improved CNN model can not only increases the width of the CNN, extract different sizes of healthcare data features, but also increases the adaptability to the nonlinear healthcare big data. Compared with different methods, the proposed intelligent algorithm can obtain better security performance prediction. In particular, for prediction precision, the proposed intelligent algorithm is increased by 20%.
Author Tao, Ye
Zhou, Xinpeng
Kumar, Neeraj
Yu, Xu
Liu, Lei
Xu, Lingwei
Author_xml – sequence: 1
  givenname: Lingwei
  orcidid: 0000-0002-2169-6356
  surname: Xu
  fullname: Xu, Lingwei
  email: xulw@qust.edu.cn
  organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Xinpeng
  surname: Zhou
  fullname: Zhou, Xinpeng
  email: xpzhou17853321957@163.com
  organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Ye
  orcidid: 0000-0001-5470-9451
  surname: Tao
  fullname: Tao, Ye
  email: ye.tao@qust.edu.cn
  organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
– sequence: 4
  givenname: Lei
  orcidid: 0000-0001-8173-0408
  surname: Liu
  fullname: Liu, Lei
  email: tianjiaoliulei@163.com
  organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China
– sequence: 5
  givenname: Xu
  orcidid: 0000-0003-4913-5734
  surname: Yu
  fullname: Yu, Xu
  email: yuxu0532@qust.edu.cn
  organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
– sequence: 6
  givenname: Neeraj
  orcidid: 0000-0002-3020-3947
  surname: Kumar
  fullname: Kumar, Neeraj
  email: neeraj.kumar@thapar.edu
  organization: Thapar Institute of Engineering and Technology, Patiala, India
BookMark eNp9kEFLAzEQhYMo2Kp3wUvA89ZJ0s0mRylVF6QK1vOSzc5q6jar2VTpvzel4sGDpxmG782beWNy6HuPhJwzmDAG-mpZlhMOnE0EKK6hOCAjpqcsA8jhMPV5zjLBQRyT8TCsAEQBQo8Ilj5i17kX9JE-od0EF7f0EUPbh7XxFuljwMbZ6HpP04yW_TKbe1N32NA7NF18tSYgXWD86sPbQJ8H51-o8bRcv4f-M1GzxeKUHLWmG_Dsp56Q55v5cnaX3T_clrPr-8xyzWLW6hpqJa2VhRK5RJnzBljTSl0XNTashlzUvCnQTIVmBVOqFphP0SjbFLqR4oRc7vcm648NDrFa9Zvgk2XFJRRKMaF1ouSesqEfhoBtZV00uw9jMK6rGFS7SKsUabWLtPqJNAnhj_A9uLUJ2_8kF3uJQ8RfXKf7lWTiGwsag5g
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_ijcip_2023_100647
crossref_primary_10_1109_TGCN_2022_3144532
crossref_primary_10_3390_s22155833
crossref_primary_10_52711_0974_360X_2024_00251
crossref_primary_10_1049_cmu2_12694
crossref_primary_10_1111_exsy_13737
crossref_primary_10_1007_s11042_023_16053_x
crossref_primary_10_1109_ICJECE_2024_3471652
crossref_primary_10_3390_s21186268
crossref_primary_10_1016_j_compeleceng_2023_108925
crossref_primary_10_1016_j_jnca_2024_103976
crossref_primary_10_1007_s11235_024_01211_9
crossref_primary_10_1007_s12083_023_01501_0
crossref_primary_10_1002_dac_6096
crossref_primary_10_1109_JIOT_2024_3402827
crossref_primary_10_1155_2021_4132622
crossref_primary_10_1155_2022_6588197
crossref_primary_10_1109_TASE_2024_3456209
crossref_primary_10_3390_s21237933
crossref_primary_10_1016_j_jii_2025_100797
crossref_primary_10_1007_s11042_024_19188_7
crossref_primary_10_3390_electronics12051083
crossref_primary_10_1007_s42979_024_03307_0
crossref_primary_10_1109_JSEN_2022_3156819
crossref_primary_10_1109_TSUSC_2024_3359325
crossref_primary_10_3390_electronics11030474
crossref_primary_10_1109_TII_2022_3190405
crossref_primary_10_1007_s12083_022_01349_w
crossref_primary_10_3390_s24144716
crossref_primary_10_1016_j_epsr_2025_111466
crossref_primary_10_1080_07391102_2024_2310785
crossref_primary_10_1016_j_asoc_2023_110326
crossref_primary_10_1142_S0219519423500689
crossref_primary_10_3390_s22124459
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1109_TVT_2023_3342173
crossref_primary_10_1016_j_knosys_2024_112037
crossref_primary_10_1155_2022_7536711
Cites_doi 10.1109/JIOT.2019.2946359
10.1109/JIOT.2017.2772959
10.1007/s11036-019-01291-x
10.1109/TIT.2008.921908
10.1109/TCOMM.2019.2916070
10.1007/s00521-019-04379-3
10.1109/TII.2018.2808190
10.1109/TCOMM.2017.2712601
10.1109/TCOMM.2007.902497
10.1109/TNNLS.2016.2641475
10.1007/s11036-019-01224-8
10.1109/JIOT.2018.2854714
10.1109/TVT.2018.2866590
10.1109/TNNLS.2018.2881194
10.1109/LCOMM.2010.111910.101683
10.1049/iet-com.2012.0215
10.1109/JSEN.2018.2830109
10.1109/TII.2018.2883680
10.1109/TII.2017.2751640
10.1109/TII.2017.2687618
10.1109/COMST.2020.2973314
10.1109/TCE.2020.2987433
10.1109/TVT.2009.2014685
10.1007/s00521-019-04493-2
10.1109/LWC.2018.2852765
10.1109/CMC.2010.215
10.1109/JSEN.2018.2873357
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3082907
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2074
ExternalDocumentID 10_1109_TII_2021_3082907
9439861
Genre orig-research
GrantInformation_xml – fundername: Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control
– fundername: Ministry of Education
  grantid: KFKT2020-09
  funderid: 10.13039/100010449
– fundername: Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province
  grantid: 19kftk01
– fundername: Doctoral Found of QUST
  grantid: 1203043003480; 12030430010806
– fundername: Shandong Province Postdoctoral Innovation
  grantid: 201703032
– fundername: Shandong Province Colleges and Universities Young Talents Initiation Program
  grantid: 2019KJN047
– fundername: Shandong Province Natural Science Foundation
  grantid: ZR2020QF003
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f9b0b86cc678356e652d01df69b7bed1b053b2d7ea43917188b3e54ea8cd79d63
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:09:07 EDT 2025
Tue Jul 01 03:00:14 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Wed Aug 27 05:11:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f9b0b86cc678356e652d01df69b7bed1b053b2d7ea43917188b3e54ea8cd79d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3020-3947
0000-0002-2169-6356
0000-0001-8173-0408
0000-0001-5470-9451
0000-0003-4913-5734
PQID 2607881399
PQPubID 85507
PageCount 12
ParticipantIDs crossref_primary_10_1109_TII_2021_3082907
proquest_journals_2607881399
crossref_citationtrail_10_1109_TII_2021_3082907
ieee_primary_9439861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
gradshteyn (ref28) 2007
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – year: 2007
  ident: ref28
  publication-title: Table of Integrals Series and Products
– ident: ref2
  doi: 10.1109/JIOT.2019.2946359
– ident: ref20
  doi: 10.1109/JIOT.2017.2772959
– ident: ref12
  doi: 10.1007/s11036-019-01291-x
– ident: ref24
  doi: 10.1109/TIT.2008.921908
– ident: ref8
  doi: 10.1109/TCOMM.2019.2916070
– ident: ref21
  doi: 10.1007/s00521-019-04379-3
– ident: ref16
  doi: 10.1109/TII.2018.2808190
– ident: ref11
  doi: 10.1109/TCOMM.2017.2712601
– ident: ref15
  doi: 10.1109/TCOMM.2007.902497
– ident: ref19
  doi: 10.1109/TNNLS.2016.2641475
– ident: ref27
  doi: 10.1007/s11036-019-01224-8
– ident: ref5
  doi: 10.1109/JIOT.2018.2854714
– ident: ref10
  doi: 10.1109/TVT.2018.2866590
– ident: ref22
  doi: 10.1109/TNNLS.2018.2881194
– ident: ref13
  doi: 10.1109/LCOMM.2010.111910.101683
– ident: ref26
  doi: 10.1049/iet-com.2012.0215
– ident: ref18
  doi: 10.1109/JSEN.2018.2830109
– ident: ref7
  doi: 10.1109/TII.2018.2883680
– ident: ref3
  doi: 10.1109/TII.2017.2751640
– ident: ref6
  doi: 10.1109/TII.2017.2687618
– ident: ref1
  doi: 10.1109/COMST.2020.2973314
– ident: ref4
  doi: 10.1109/TCE.2020.2987433
– ident: ref14
  doi: 10.1109/TVT.2009.2014685
– ident: ref25
  doi: 10.1007/s00521-019-04493-2
– ident: ref9
  doi: 10.1109/LWC.2018.2852765
– ident: ref23
  doi: 10.1109/CMC.2010.215
– ident: ref17
  doi: 10.1109/JSEN.2018.2873357
SSID ssj0037039
Score 2.5622025
Snippet The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2063
SubjectTerms Airline security
Algorithms
Artificial intelligence
Artificial neural networks
Big Data
Convolution
Data transmission
Fading channels
Feature extraction
Health care
Improved convolutional neural network (CNN)
Internet of Things
Internet of Things (IoT) healthcare networks
Kernel
Medical services
Performance prediction
physical layer security
Prediction algorithms
Real time
Security
Title Intelligent Security Performance Prediction for IoT-Enabled Healthcare Networks Using an Improved CNN
URI https://ieeexplore.ieee.org/document/9439861
https://www.proquest.com/docview/2607881399
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJz34NcXplBy8CKZrkzZtjjI2VmFl4Aa7leajF6WTrbv4603SD4eKeCslgcCT5P3I-zwvAPeMCiwxFYgxP0B-7gvEsWEBB7mKZCRVldCfJXS69J9XwaoDHlsujFLKFp8px3zat3y5FjuTKhsybT0jE-sc6MCt4mo1ty7RO5dZbdTAQwS7pHmSdNlwEcc6EMSeY6RZmGkcu2eCbE-VHxextS6TEzBr1lUVlbw6u5I74uObZON_F34Kjms3Ez5V--IMdFRxDo72xAd7QMWtGmcJX-o2dnD-RSSA8415xTHIQf0PxusFGluqlYTTtmwMJlUh-Rba6gOYFbBKVOhRoyS5AMvJeDGaorrpAhKYeSXKGXd5RIWgJidEFQ2wdD2ZU8ZDrqTH9anlWIYqM5xdbdkiTlTgqywSMmSSkkvQLdaFugLQlZzIUPo-0VGodiQiJbNMX2q-INrP42EfDBscUlErkpvGGG-pjUxclmrkUoNcWiPXBw_tjPdKjeOPsT0DRDuuxqAPBg3UaX1ct6kO6oysvnbWrn-fdQMOseE92OKzAeiWm5261d5Iye_sNvwEAyrbAw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROFAOhUKrLlDqAxx6yG7iJE584IAoaFMgQuoicUtje_bSahexWSF4lr4K78bY-QG1FTckblFkR4rn83hmPPMNwK4UmhsutCdlFHvRONKe4rYKOB5jalKDdUD_LBfDi-j7ZXy5AH-6WhhEdMln2LeP7i7fTPXchsoGkk7PVARNCuUJ3t6Qgzbbz76RNPc4Pz4aHQ69poeAp7kMKm8sla9SobWwIQ6BIubGD8xYSJUoNIEiECpuEixtCSop6lSFGEdYptok0oiQvvsGlsjOiHldHdbq-ZD2inRsrHHghdwP20tQXw5GWUauJw_6lgxG2la1Tw4918XlH9XvzrPjVbhvV6JOY_nVn1eqr-_-Iol8rUu1Bu8aQ5od1Mh_Dws4WYeVJ_SKG4BZxzdasR9Noz52_lgqwc6v7T2VxSajdyybjrwjV0xm2LBLjGN5nSo_Yy6_gpUTVodiaNRhnn-Aixf5z4-wOJlO8BMw36jQJCaKQvKzyVRK0ZQlqe1Ih2TJqqQHg1buhW44123rj9-F8718WRBSCouUokFKD752M65qvpFnxm5YwXfjGpn3YLuFVtEopFlBbqttHEDm6Ob_Z32B5eHo7LQ4zfKTLXjLbZWHS7XbhsXqeo6fyfaq1I7bAgx-vjSQHgBIEjkJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Security+Performance+Prediction+for+IoT-Enabled+Healthcare+Networks+Using+an+Improved+CNN&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Xu%2C+Lingwei&rft.au=Zhou%2C+Xinpeng&rft.au=Tao%2C+Ye&rft.au=Liu%2C+Lei&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=18&rft.issue=3&rft.spage=2063&rft.epage=2074&rft_id=info:doi/10.1109%2FTII.2021.3082907&rft.externalDocID=9439861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon