Intelligent Security Performance Prediction for IoT-Enabled Healthcare Networks Using an Improved CNN
The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of Things (IoT) will play an important role in meeting the high throughput requirements of diversified intelligent healthcare applications. Howeve...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 18; no. 3; pp. 2063 - 2074 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of Things (IoT) will play an important role in meeting the high throughput requirements of diversified intelligent healthcare applications. However, the mobile IoT-enabled healthcare networks are diverse and open, the healthcare big data transmission is vulnerable to a potential attack, which can cause network outages and serious healthcare security issues. To process the complex healthcare security event in real time, security performance prediction is critical for mobile IoT-enabled healthcare networks. In this article, we first analyze the security performance, and derive the novel expressions for the security performance in a closed form. Then, to analyze the security performance in real time, a security performance intelligent prediction algorithm is proposed. An improved convolutional neural network (CNN) model is designed, which combines the four-layer convolution and a four-branch inception block, and can adopt different convolution kernels in the same layer. The four-branch inception block can increase the width of the CNN while reducing the parameters. The improved CNN model can not only increases the width of the CNN, extract different sizes of healthcare data features, but also increases the adaptability to the nonlinear healthcare big data. Compared with different methods, the proposed intelligent algorithm can obtain better security performance prediction. In particular, for prediction precision, the proposed intelligent algorithm is increased by 20%. |
---|---|
AbstractList | The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of Things (IoT) will play an important role in meeting the high throughput requirements of diversified intelligent healthcare applications. However, the mobile IoT-enabled healthcare networks are diverse and open, the healthcare big data transmission is vulnerable to a potential attack, which can cause network outages and serious healthcare security issues. To process the complex healthcare security event in real time, security performance prediction is critical for mobile IoT-enabled healthcare networks. In this article, we first analyze the security performance, and derive the novel expressions for the security performance in a closed form. Then, to analyze the security performance in real time, a security performance intelligent prediction algorithm is proposed. An improved convolutional neural network (CNN) model is designed, which combines the four-layer convolution and a four-branch inception block, and can adopt different convolution kernels in the same layer. The four-branch inception block can increase the width of the CNN while reducing the parameters. The improved CNN model can not only increases the width of the CNN, extract different sizes of healthcare data features, but also increases the adaptability to the nonlinear healthcare big data. Compared with different methods, the proposed intelligent algorithm can obtain better security performance prediction. In particular, for prediction precision, the proposed intelligent algorithm is increased by 20%. |
Author | Tao, Ye Zhou, Xinpeng Kumar, Neeraj Yu, Xu Liu, Lei Xu, Lingwei |
Author_xml | – sequence: 1 givenname: Lingwei orcidid: 0000-0002-2169-6356 surname: Xu fullname: Xu, Lingwei email: xulw@qust.edu.cn organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China – sequence: 2 givenname: Xinpeng surname: Zhou fullname: Zhou, Xinpeng email: xpzhou17853321957@163.com organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China – sequence: 3 givenname: Ye orcidid: 0000-0001-5470-9451 surname: Tao fullname: Tao, Ye email: ye.tao@qust.edu.cn organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China – sequence: 4 givenname: Lei orcidid: 0000-0001-8173-0408 surname: Liu fullname: Liu, Lei email: tianjiaoliulei@163.com organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China – sequence: 5 givenname: Xu orcidid: 0000-0003-4913-5734 surname: Yu fullname: Yu, Xu email: yuxu0532@qust.edu.cn organization: Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China – sequence: 6 givenname: Neeraj orcidid: 0000-0002-3020-3947 surname: Kumar fullname: Kumar, Neeraj email: neeraj.kumar@thapar.edu organization: Thapar Institute of Engineering and Technology, Patiala, India |
BookMark | eNp9kEFLAzEQhYMo2Kp3wUvA89ZJ0s0mRylVF6QK1vOSzc5q6jar2VTpvzel4sGDpxmG782beWNy6HuPhJwzmDAG-mpZlhMOnE0EKK6hOCAjpqcsA8jhMPV5zjLBQRyT8TCsAEQBQo8Ilj5i17kX9JE-od0EF7f0EUPbh7XxFuljwMbZ6HpP04yW_TKbe1N32NA7NF18tSYgXWD86sPbQJ8H51-o8bRcv4f-M1GzxeKUHLWmG_Dsp56Q55v5cnaX3T_clrPr-8xyzWLW6hpqJa2VhRK5RJnzBljTSl0XNTashlzUvCnQTIVmBVOqFphP0SjbFLqR4oRc7vcm648NDrFa9Zvgk2XFJRRKMaF1ouSesqEfhoBtZV00uw9jMK6rGFS7SKsUabWLtPqJNAnhj_A9uLUJ2_8kF3uJQ8RfXKf7lWTiGwsag5g |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1016_j_ijcip_2023_100647 crossref_primary_10_1109_TGCN_2022_3144532 crossref_primary_10_3390_s22155833 crossref_primary_10_52711_0974_360X_2024_00251 crossref_primary_10_1049_cmu2_12694 crossref_primary_10_1111_exsy_13737 crossref_primary_10_1007_s11042_023_16053_x crossref_primary_10_1109_ICJECE_2024_3471652 crossref_primary_10_3390_s21186268 crossref_primary_10_1016_j_compeleceng_2023_108925 crossref_primary_10_1016_j_jnca_2024_103976 crossref_primary_10_1007_s11235_024_01211_9 crossref_primary_10_1007_s12083_023_01501_0 crossref_primary_10_1002_dac_6096 crossref_primary_10_1109_JIOT_2024_3402827 crossref_primary_10_1155_2021_4132622 crossref_primary_10_1155_2022_6588197 crossref_primary_10_1109_TASE_2024_3456209 crossref_primary_10_3390_s21237933 crossref_primary_10_1016_j_jii_2025_100797 crossref_primary_10_1007_s11042_024_19188_7 crossref_primary_10_3390_electronics12051083 crossref_primary_10_1007_s42979_024_03307_0 crossref_primary_10_1109_JSEN_2022_3156819 crossref_primary_10_1109_TSUSC_2024_3359325 crossref_primary_10_3390_electronics11030474 crossref_primary_10_1109_TII_2022_3190405 crossref_primary_10_1007_s12083_022_01349_w crossref_primary_10_3390_s24144716 crossref_primary_10_1016_j_epsr_2025_111466 crossref_primary_10_1080_07391102_2024_2310785 crossref_primary_10_1016_j_asoc_2023_110326 crossref_primary_10_1142_S0219519423500689 crossref_primary_10_3390_s22124459 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1109_TVT_2023_3342173 crossref_primary_10_1016_j_knosys_2024_112037 crossref_primary_10_1155_2022_7536711 |
Cites_doi | 10.1109/JIOT.2019.2946359 10.1109/JIOT.2017.2772959 10.1007/s11036-019-01291-x 10.1109/TIT.2008.921908 10.1109/TCOMM.2019.2916070 10.1007/s00521-019-04379-3 10.1109/TII.2018.2808190 10.1109/TCOMM.2017.2712601 10.1109/TCOMM.2007.902497 10.1109/TNNLS.2016.2641475 10.1007/s11036-019-01224-8 10.1109/JIOT.2018.2854714 10.1109/TVT.2018.2866590 10.1109/TNNLS.2018.2881194 10.1109/LCOMM.2010.111910.101683 10.1049/iet-com.2012.0215 10.1109/JSEN.2018.2830109 10.1109/TII.2018.2883680 10.1109/TII.2017.2751640 10.1109/TII.2017.2687618 10.1109/COMST.2020.2973314 10.1109/TCE.2020.2987433 10.1109/TVT.2009.2014685 10.1007/s00521-019-04493-2 10.1109/LWC.2018.2852765 10.1109/CMC.2010.215 10.1109/JSEN.2018.2873357 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2021.3082907 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 2074 |
ExternalDocumentID | 10_1109_TII_2021_3082907 9439861 |
Genre | orig-research |
GrantInformation_xml | – fundername: Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control – fundername: Ministry of Education grantid: KFKT2020-09 funderid: 10.13039/100010449 – fundername: Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province grantid: 19kftk01 – fundername: Doctoral Found of QUST grantid: 1203043003480; 12030430010806 – fundername: Shandong Province Postdoctoral Innovation grantid: 201703032 – fundername: Shandong Province Colleges and Universities Young Talents Initiation Program grantid: 2019KJN047 – fundername: Shandong Province Natural Science Foundation grantid: ZR2020QF003 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-f9b0b86cc678356e652d01df69b7bed1b053b2d7ea43917188b3e54ea8cd79d63 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:09:07 EDT 2025 Tue Jul 01 03:00:14 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Wed Aug 27 05:11:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-f9b0b86cc678356e652d01df69b7bed1b053b2d7ea43917188b3e54ea8cd79d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3020-3947 0000-0002-2169-6356 0000-0001-8173-0408 0000-0001-5470-9451 0000-0003-4913-5734 |
PQID | 2607881399 |
PQPubID | 85507 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TII_2021_3082907 proquest_journals_2607881399 crossref_citationtrail_10_1109_TII_2021_3082907 ieee_primary_9439861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 gradshteyn (ref28) 2007 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – year: 2007 ident: ref28 publication-title: Table of Integrals Series and Products – ident: ref2 doi: 10.1109/JIOT.2019.2946359 – ident: ref20 doi: 10.1109/JIOT.2017.2772959 – ident: ref12 doi: 10.1007/s11036-019-01291-x – ident: ref24 doi: 10.1109/TIT.2008.921908 – ident: ref8 doi: 10.1109/TCOMM.2019.2916070 – ident: ref21 doi: 10.1007/s00521-019-04379-3 – ident: ref16 doi: 10.1109/TII.2018.2808190 – ident: ref11 doi: 10.1109/TCOMM.2017.2712601 – ident: ref15 doi: 10.1109/TCOMM.2007.902497 – ident: ref19 doi: 10.1109/TNNLS.2016.2641475 – ident: ref27 doi: 10.1007/s11036-019-01224-8 – ident: ref5 doi: 10.1109/JIOT.2018.2854714 – ident: ref10 doi: 10.1109/TVT.2018.2866590 – ident: ref22 doi: 10.1109/TNNLS.2018.2881194 – ident: ref13 doi: 10.1109/LCOMM.2010.111910.101683 – ident: ref26 doi: 10.1049/iet-com.2012.0215 – ident: ref18 doi: 10.1109/JSEN.2018.2830109 – ident: ref7 doi: 10.1109/TII.2018.2883680 – ident: ref3 doi: 10.1109/TII.2017.2751640 – ident: ref6 doi: 10.1109/TII.2017.2687618 – ident: ref1 doi: 10.1109/COMST.2020.2973314 – ident: ref4 doi: 10.1109/TCE.2020.2987433 – ident: ref14 doi: 10.1109/TVT.2009.2014685 – ident: ref25 doi: 10.1007/s00521-019-04493-2 – ident: ref9 doi: 10.1109/LWC.2018.2852765 – ident: ref23 doi: 10.1109/CMC.2010.215 – ident: ref17 doi: 10.1109/JSEN.2018.2873357 |
SSID | ssj0037039 |
Score | 2.5622025 |
Snippet | The global healthcare industry and artificial intelligence have promoted the development of the diversified intelligent healthcare applications. Internet of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2063 |
SubjectTerms | Airline security Algorithms Artificial intelligence Artificial neural networks Big Data Convolution Data transmission Fading channels Feature extraction Health care Improved convolutional neural network (CNN) Internet of Things Internet of Things (IoT) healthcare networks Kernel Medical services Performance prediction physical layer security Prediction algorithms Real time Security |
Title | Intelligent Security Performance Prediction for IoT-Enabled Healthcare Networks Using an Improved CNN |
URI | https://ieeexplore.ieee.org/document/9439861 https://www.proquest.com/docview/2607881399 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJz34NcXplBy8CKZrkzZtjjI2VmFl4Aa7leajF6WTrbv4603SD4eKeCslgcCT5P3I-zwvAPeMCiwxFYgxP0B-7gvEsWEBB7mKZCRVldCfJXS69J9XwaoDHlsujFLKFp8px3zat3y5FjuTKhsybT0jE-sc6MCt4mo1ty7RO5dZbdTAQwS7pHmSdNlwEcc6EMSeY6RZmGkcu2eCbE-VHxextS6TEzBr1lUVlbw6u5I74uObZON_F34Kjms3Ez5V--IMdFRxDo72xAd7QMWtGmcJX-o2dnD-RSSA8415xTHIQf0PxusFGluqlYTTtmwMJlUh-Rba6gOYFbBKVOhRoyS5AMvJeDGaorrpAhKYeSXKGXd5RIWgJidEFQ2wdD2ZU8ZDrqTH9anlWIYqM5xdbdkiTlTgqywSMmSSkkvQLdaFugLQlZzIUPo-0VGodiQiJbNMX2q-INrP42EfDBscUlErkpvGGG-pjUxclmrkUoNcWiPXBw_tjPdKjeOPsT0DRDuuxqAPBg3UaX1ct6kO6oysvnbWrn-fdQMOseE92OKzAeiWm5261d5Iye_sNvwEAyrbAw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROFAOhUKrLlDqAxx6yG7iJE584IAoaFMgQuoicUtje_bSahexWSF4lr4K78bY-QG1FTckblFkR4rn83hmPPMNwK4UmhsutCdlFHvRONKe4rYKOB5jalKDdUD_LBfDi-j7ZXy5AH-6WhhEdMln2LeP7i7fTPXchsoGkk7PVARNCuUJ3t6Qgzbbz76RNPc4Pz4aHQ69poeAp7kMKm8sla9SobWwIQ6BIubGD8xYSJUoNIEiECpuEixtCSop6lSFGEdYptok0oiQvvsGlsjOiHldHdbq-ZD2inRsrHHghdwP20tQXw5GWUauJw_6lgxG2la1Tw4918XlH9XvzrPjVbhvV6JOY_nVn1eqr-_-Iol8rUu1Bu8aQ5od1Mh_Dws4WYeVJ_SKG4BZxzdasR9Noz52_lgqwc6v7T2VxSajdyybjrwjV0xm2LBLjGN5nSo_Yy6_gpUTVodiaNRhnn-Aixf5z4-wOJlO8BMw36jQJCaKQvKzyVRK0ZQlqe1Ih2TJqqQHg1buhW44123rj9-F8718WRBSCouUokFKD752M65qvpFnxm5YwXfjGpn3YLuFVtEopFlBbqttHEDm6Ob_Z32B5eHo7LQ4zfKTLXjLbZWHS7XbhsXqeo6fyfaq1I7bAgx-vjSQHgBIEjkJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Security+Performance+Prediction+for+IoT-Enabled+Healthcare+Networks+Using+an+Improved+CNN&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Xu%2C+Lingwei&rft.au=Zhou%2C+Xinpeng&rft.au=Tao%2C+Ye&rft.au=Liu%2C+Lei&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=18&rft.issue=3&rft.spage=2063&rft.epage=2074&rft_id=info:doi/10.1109%2FTII.2021.3082907&rft.externalDocID=9439861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |